# GRACEFUL CHROMATIC NUMBER OF SOME CARTESIAN PRODUCT GRAPHS ${ }^{1}$ 

I Nengah Suparta ${ }^{a, \dagger}$, Mathiyazhagan Venkathacalam ${ }^{b, \dagger \dagger}$, Putu Andi Cipta Pratama ${ }^{a, \dagger \dagger \dagger \dagger}$<br>${ }^{a}$ Department of Mathematics, Universitas Pendidikan Ganesha, J1. Udayana 11, Singaraja-Bali 81117, Indonesia<br>${ }^{b}$ Department of Mathematics, Kongunadu Arts and Science College, Coimbatore-641029, Tamil Nadu, India<br>${ }^{\dagger}$ nengah.suparta@undiksha.ac.id $\quad{ }^{\dagger}$ venkatmaths@kongunaducollege.ac.in<br>${ }^{\dagger \dagger \dagger}$ igedearisgunadi@undiksha.ac.id $\quad{ }^{\dagger \dagger \dagger \dagger}$ andicipta25@gmail.com


#### Abstract

A graph $G(V, E)$ is a system consisting of a finite non empty set of vertices $V(G)$ and a set of edges $E(G)$. A (proper) vertex colouring of $G$ is a function $f: V(G) \rightarrow\{1,2, \ldots, k\}$, for some positive integer $k$ such that $f(u) \neq f(v)$ for every edge $u v \in E(G)$. Moreover, if $|f(u)-f(v)| \neq|f(v)-f(w)|$ for every adjacent edges $u v, v w \in E(G)$, then the function $f$ is called graceful colouring for $G$. The minimum number $k$ such that $f$ is a graceful colouring for $G$ is called the graceful chromatic number of $G$. The purpose of this research is to determine graceful chromatic number of Cartesian product graphs $C_{m} \times P_{n}$ for integers $m \geq 3$ and $n \geq 2$, and $C_{m} \times C_{n}$ for integers $m, n \geq 3$. Here, $C_{m}$ and $P_{m}$ are cycle and path with $m$ vertices, respectively. We found some exact values and bounds for graceful chromatic number of these mentioned Cartesian product graphs.


Keywords: Graceful colouring, Graceful chromatic number, Cartesian product.

## 1. Introduction

A graph $G(V, E)$ is a system consisting of a finite non empty set of vertices $V(G)$ and a set of edges $E(G)$. Let $G$ and $H$ be two disjoint graphs. The Cartesian product of $G$ and $H$, denoted by $G \times H$, is the graph with vertex set $V(G) \times V(H)$, and edges $x y, u v \in V(G) \times V(H)$ are adjacent in $G \times H$, if $x=u$ and $y v \in E(H)$ or $y=v$ and $x u \in E(G)$. A (proper) vertex colouring of $G$ is a way of colouring vertices in $G$ such that each adjacent vertices are assigned to different colours.

If for a vertex colouring of $G$ we have that every adjacent edges in $G$ have different induced colours, then the vertex colouring is called graceful. We may think a graceful colouring of $G$ as a function $f: V(G) \rightarrow\{1,2, \ldots, k\}$, for some positive integer $k$, such that for every edge $u v \in E(G)$ we have $f(u) \neq f(v)$, and for any vertex $u \in V(G)$ we have $|f(u)-f(v)| \neq|f(u)-f(w)|$ for every vertices $v, w \in V(G)$ which are adjacent to $u$. The absolute value $|f(u)-f(v)|$ for every $u v \in E(G)$, is the induced label of the edge $u v \in \mathrm{E}(\mathrm{G})$. In this sense, the terms colour and label are interchangeable. The smallest value of $k$ for which the function $f$ is a graceful vertex colouring of $G$ is called the graceful chromatic number of $G$. The graceful colouring is a variation of graceful labeling which was introduced by Alexander Rosa in 1967 (see Gallian in [5]). Whereas, the notion of graceful colouring was introduced by Gary Chartrand in 2015, as a variant of the proper vertex $k$-colouring problem (see [3]). Since then, researches on graceful colouring numbers started to be celebrated.

Byers in [3] derived exact values for the graceful chromatic number of some graphs: path, cycle, wheel, and caterpillar; and introduced some bounds for certain connected regular graphs.

[^0]Moreover, English, et al. in [4] invented graceful chromatic number of some classes of trees, and gave a lower bound for the graceful chromatic number of connected graphs with certain minimum degree. Mincu et al. in [6] derived graceful chromatic number of some well-known graph classes, such as diamond graph, Petersen graph, Moser spindle graph, Goldner-Harary graph, friendship graphs, and fan graphs. Graceful chromatic number of some particular unicyclic class graphs were presented by Alfarisi et al. (2019) in [1].

Furthermore, in 2022, Asy'ari et al. in [2] presented graceful chromatic numbers of several types of graphs, including star graphs, diamond graphs, book graphs. In addition, Asy'ari, et al. also stated some open problems. One of the problems is to determine the graceful chromatic number of some Cartesian product of certain graphs. Here we derive graceful chromatic number of Cartesian product graph $C_{m} \times P_{n}, m \geq 3, n \geq 2$, where $C_{m}$ is the cycle with $m$ vertices and $P_{n}$ is the path with $n$ vertices. The Cartesian product graph $C_{m} \times P_{n}$ is known as prism for $n=2$ and as generalized prism for $n \geq 3$. We also introduce bounds for Cartesian product graph $C_{m} \times C_{n}$, $m, n \geq 3$.

To proceed with the main results, we need to introduce some introductory facts which will be beneficial for our further discussion.

Let $G$ be a graph and $x$ be a vertex of $G$. All vertex which are adjacent to $x$ are called the neighbors of $x$, and denoted by $N(x)$. The degree of the vertex $x$, denoted by $\operatorname{deg}(x)$, is equal to the cardinality of $N(x), \operatorname{deg}(x)=|N(x)|$. We will start with the following lemma.

Lemma 1. Let $G$ be a graph and $u$ be a vertex in $G$ with degree $d \geq 1$. Let $f$ be a graceful colouring for $G$. If $f(u)=a, 1 \leq a \leq d$, then there is a vertex $v \in N(u)$ with colour $f(v) \geq d+a$.

Proof. Let $f(u)=a$ with $1 \leq a \leq d$. If $a=1$, the smaller possible colours we can assign for the all $d$ neighbors $v \in N(u)$ of $u$, are $2,3, \ldots, d$ and the colour $d+1$. This means that, there is a vertex $v \in N(u)$ with $f(v) \geq d+1=d+a$. We are done for the case $a=1$.

Now, assume $f(u)=a, 1<a \leq d$. Note that the colours $k$ and $2 a-k$, for every $k, 1 \leq k \leq a-1$, can not be assigned simultaneously for the vertices in $N(u)$, since they give the same difference from the colour $a$. Therefore, the maximum number of colours we may assign from the first $2(a-1)$ smallest colours $\{k, 2 a-k: 1 \leq k \leq a-1\}$ is equal to $a-1$. It implies that the remaining vertices in $N(u)$ which are not coloured yet, is at least $d-(a-1)$ vertices. The colours we need for these vertices are started from a colour $\geq 2 a$. This means that the next $d-(a-1)$ smallest colours we should assign are $2 a, 2 a+1, \ldots, 2 a+(d-(a-1)-1)$. So, there is a vertex $v \in N(u)$ such that its colour $f(v) \geq 2 a+(d-(a-1)-1)=d+a$.

In a specific case, the colour of a vertex $u$ is equal to the degree of $u, f(u)=\operatorname{deg}(u)$, we have the following corollary.

Corollary 1. In a graph $G$ with graceful colouring $f$, if the vertex $u$ has degree $d \geq 1$ and colour $d$, then there is a vertex $v \in N(u)$ with colour $f(v) \geq 2 d$.

Proof. Let $G$ be a graph and $u$ be a vertex of $G$ with $\operatorname{deg}(u)=d$. Let $f$ be a graceful colouring for $G$ where $f(u)=d$. By Lemma 1, we found a neighbor $v$ of $u$ such that $f(v) \geq d+d=2 d$.

The following result was introduced by Byers (2018) in [3].
Lemma 2 (Byers in [3]). The graceful chromatic number of cycle $C_{n}$ on $n \geq 3$ vertices is

$$
\chi_{g}\left(C_{n}\right)=\left\{\begin{array}{lll}
4, & \text { if } & n \neq 5,  \tag{1.1}\\
5, & \text { if } & n=5
\end{array}\right.
$$

Then, we will introduce some terminologies related with certain ladder graphs.
A ladder of $2 m$ vertices, $m \geq 2$, denoted by $L_{m}$, is the Cartesian product graph of the path on $m$ vertices and the path on two vertices. The ladder $L_{2}$ is the cycle graph of four vertices. Assume that the vertices of $L_{m}$ are $v_{1}, v_{2}, \ldots, v_{m}, w_{1}, w_{2}, \ldots, w_{m}$ such that its edges are $v_{i} v_{i+1}, w_{i} w_{i+1}$ : $1 \leq i \leq m-1, v_{i} w_{i}: 1 \leq i \leq m$. For $m \geq 4$, if the vertices $v_{1}$ and $v_{m}$, and the vertices $w_{1}$ and $w_{m}$ are identified, then we obtain a prism $C_{m-1} \times P_{2}$. In this resulting $C_{m-1} \times P_{2}, v_{1}=v_{m}, w_{1}=w_{m}$, and edge $v_{1} w_{1}=v_{m} w_{m}$. Due to this, we may call the ladder $L_{m}$ as the open graph of $C_{m-1} \times P_{2}$ about the edge $v_{1} w_{1}$.

On the other side, let $C_{m} \times P_{2}, m \geq 3$, be a prism. This prism has vertex set $\left\{v_{1}, v_{2}, \ldots, v_{m}, w_{1}, w_{2}, \ldots, w_{m}\right\}$ and edge set

$$
\left\{v_{i} v_{i+1}, w_{i} w_{i+1}: 1 \leq i \leq m-1\right\} \cup\left\{v_{1} v_{m}, w_{1} w_{m},\right\} \cup\left\{v_{i} w_{i}: 1 \leq i \leq m\right\}
$$

After opening $C_{m} \times P_{2}$ about the edge $v_{1} w_{1}$ into the ladder $L_{m+1}$, the vertices $v_{1}$ and $w_{1}$ copy themselves into two copies each; the first copy of $v_{1}\left(\right.$ resp. $w_{1}$ ) is adjacent with $v_{2}\left(\right.$ resp. $\left.w_{2}\right)$, and the second copy of $v_{1}$ (resp. $w_{1}$ ) is adjacent with $v_{m}\left(\right.$ resp. $\left.w_{m}\right)$. These last vertex copies in the ladder $L_{m+1}$ are named as $v_{m+1}$ and $w_{m+1}$, respectively. Therefore, if $f$ a colouring for the prism $C_{m} \times P_{2}$, then in the ladder $L_{m+1}$ we have $f\left(v_{1}\right)=f\left(v_{m+1}\right.$ as well as $f\left(w_{1}\right)=f\left(w_{m+1}\right)$. In this case, we may also call $C_{m} \times P_{2}$ as the closed graph of $L_{m+1}$ about the edges $v_{1} w_{1}$ and $v_{m} w_{m}$.

In the following lemma we will show that a ladder of $2 m$ vertices, with $m \not \equiv 0(\bmod 4)$, can not be gracefully coloured using 4 colours.

Lemma 3. Using four different colours, the graph $C_{m} \times P_{2}$, with $m \geq 3, m \not \equiv 0(\bmod 4)$, can not be gracefully coloured.

Proof. Let $a, b, c$ and $d$ be four different colours, and let $m=4 k+r, 1 \leq r \leq 3$. Consider the ladder $L_{m+1}$ as the opened graph of $C_{m} \times P_{2}$. Let the vertex and edge sets of the ladder $L_{m+1}$ be $\left\{v_{i}, w_{i}: 1 \leq i \leq m+1\right\}$ and $\left\{v_{i} v_{i+1}, w_{i} w_{i+1}: 1 \leq i \leq m, v_{i} w_{i}: 1 \leq i \leq m+1\right\}$, respectively. Observe that the colour of $v_{j}$ (resp. $w_{j}$ ) must be the same with the colour of $w_{j+2}$ (resp. $v_{j+2}$ ) or of $w_{j-2}$ (resp. $v_{j-2}$ ) for realizable integer $j$ (realizable means in the range of discussion). Without loss of generality, let the colour of $v_{1}$ is $a$. Therefore, the colour of $w_{4 s+3}$ and of $v_{4 t+1}$ is $a$, for some realizable non-negative integers $s, t$. Now let us see cases: $r=1, r=2$, and $r=3$. Suppose that $f$ is a graceful colouring for $C_{m} \times P_{2}$.

Case $r=1$. If we take $t=k$, then we have $f\left(v_{1}\right)=a=f\left(v_{4 k+1}\right)=f\left(v_{m}\right)$. Note that $v_{m+1}=v_{4 k+2}$ is adjacent with $v_{m}$. Thus, $f\left(v_{m+1}\right)$ can not be $a$ to maintain proper colouring property. But, in $C_{m} \times P_{2}$, vertices $v_{1}$ and $v_{m+1}$ are identical which insist $f\left(v_{m+1}\right)=f\left(v_{1}\right)=a$. This implies a contradiction. So, for $r=1$ the graph $C_{m} \times P_{2}$ can not be gracefully coloured.

Case $r=2$. Applying a similar argument, by assuming the colour of $v_{1}$ is $a$, we have that $f\left(w_{m+1}\right)=f\left(w_{4 k+3}\right)=f\left(v_{1}\right)=a$. In graph $C_{m} \times P_{2}$, vertices $w_{1}$ and $w_{m+1}$ are identical. On the other side, $w_{1}$ is adjacent with $v_{1}$, so that they can not get the same colour. Thus, a contradiction occurs.

Case $r=3$. Again by using a similar reason, we have that $f\left(w_{m}\right)=f\left(w_{4 k+3}\right)=f\left(v_{1}\right)=a$. We know that $w_{m+1}$ in $C_{m} \times P_{2}$ is identified with $w_{1}$, and therefore is adjacent with both $w_{m}$ and $v_{1}$. This implies that the induced edge colours of $v_{1} w_{1}\left(=v_{1} w_{m+1}\right)$ and $w_{1} w_{m}$ are the same which then contradicts the gracefulness property.

In any case we have proven that $C_{m} \times P_{2}, m \not \equiv 0(\bmod 4)$, can not be gracefully coloured using only 4 colours.


Figure 1. A graceful colouring of $C_{8} \times P_{2}$.

## 2. Results on prism and generalized prism graphs

In this section, we will be dealing with the graceful chromatic number of prism $C_{m} \times P_{2}$ first, $m \geq 3$, and then with the graceful chromatic number of generalized prism graphs $C_{m} \times P_{n}$, $m, n \geq 3$. As for some consequences, we also derive some bounds for graceful chromatic number of graph $C_{m} \times C_{n}, m, n \geq 3$, for some specific values of $m$ and $n$.

Our main discussion will be separated into two subsections: For $C_{m} \times P_{2}, m \geq 3$ and for $C_{m} \times P_{n}$, with $m, n \geq 3$.

### 2.1. Prism graph $C_{m} \times P_{2}$ for $m \geq 3$.

Theorem 1. If $m \equiv 0(\bmod 4)$, then the graceful chromatic number of graph $C_{m} \times P_{2}$ is equal to 5 .

Proof. Note that the graph $C_{m} \times P_{2}$ contains subgraph $C_{4}$. Based on Lemma 2, we may conclude that $\chi_{g}\left(C_{m} \times P_{2}\right) \geq 4$. Since all vertices of $C_{m} \times P_{2}$ has degree 3, if the colour 3 is used, then by Corollay 1 , the colour greater than 6 should occur. Therefore, the four colours we will use are $1,2,4$, and 5 . Now we will prove that using these four colours, we are able to colour $C_{m} \times P_{2}$ gracefully. To confirm this, we will do by introducing the following graceful colouring technique for $C_{m} \times P_{2}$ using only labels $1,2,4$, and 5 .

Let the vertices of $C_{m} \times P_{2}$ is the set

$$
\left\{v_{1+i}, v_{2+i}, v_{3+i}, v_{4+i}, w_{1+i}, w_{2+i}, w_{3+i}, w_{4+i}: i=4 k, k=0,1,2, \ldots, m / 4-1\right\}
$$

and its edge set is

$$
\left\{v_{1} v_{m}, w_{1} w_{m}, v_{m} w_{m}, v_{i} v_{i+1}, w_{i} w_{i+1}, v_{i} w_{i}: i=1,2, \ldots, m-1\right\} .
$$

Define a colouring $f$ for $C_{m} \times P_{2}$ as follows.

$$
f\left(v_{i}\right)=\left\{\begin{array}{llll}
1, & \text { if } & i \equiv 1 & (\bmod 4),  \tag{2.1}\\
4, & \text { if } & i \equiv 2 & (\bmod 4), \\
5, & \text { if } & i \equiv 3 & (\bmod 4), \\
2, & \text { if } & i \equiv 0 & (\bmod 4),
\end{array} \quad f\left(w_{i}\right)=\left\{\begin{array}{llll}
5, & \text { if } & i \equiv 1 & (\bmod 4), \\
2, & \text { if } & i \equiv 2 & (\bmod 4), \\
1, & \text { if } & i \equiv 3 & (\bmod 4), \\
4, & \text { if } & i \equiv 0 & (\bmod 4) .
\end{array}\right.\right.
$$

Based on the above function $f$, it is clear that for every adjacent vertices $u$ and $v$ we have $f(u) \neq f(v)$. We can immediately observe that for any adjacent edges $u w$ and $w v$ in $C_{m}$ we have

$$
\{|f(u)-f(w)|,|f(w)-f(v)|\}=\{1,3\}
$$

Furthermore, we also have

$$
\left\{\left|f\left(v_{i}\right)-f\left(w_{i}\right)\right|: 1 \leq i \leq m\right\}=\{2,4\}
$$

Remember that each vertex $u$ in $C_{m} \times P_{2}$ has degree 3 ; say $x_{1}, x_{2}$, and $x_{3}$ are the vertices adjacent to $u$. From the function $f$ we can immediately conclude that the set

$$
\left\{\left|f(u)-f\left(x_{1}\right)\right|,\left|f(u)-f\left(x_{2}\right)\right|,\left|f(u)-f\left(x_{3}\right)\right|\right\}
$$

is equal to $\{1,2,3\}$ or to $\{1,3,4\}$. Thus, the function $f$ satisfies the property to become graceful colouring for $C_{m} \times P_{2}$. Therefore, $\chi_{g}\left(C_{m} \times P_{2}\right)=5$.

Theorem 2. If $m \not \equiv 0(\bmod 4)$, then the graceful chromatic number of graph $C_{m} \times P_{2}$ is equal to 6 .

Proof. The proof of Theorem 2 will make use of the result described in the proof of Theorem 1 .

For some positive integer $k \geq 1$, consider $C_{4 k} \times P_{2}$ which is coloured as in (2.1). Let the ladder $L_{4 k+1}$ be the open graph of $C_{4 k} \times P_{2}$ about $v_{1} w_{1}$. Since $C_{m} \times P_{2}$ contains subgraph $C_{4}$, to colour it gracefully, one needs at least 4 colours. But, when $m \equiv 1,2$ or $3(\bmod 4)$, based on Lemma 3, we can not colour the graph $C_{4 k} \times P_{2}$ gracefully using only 4 colours. Therefore, we have to use at least 5 colours. The smallest five colours are $1,2,3,4$, and 5 . But, based on Corollary 1, whenever we apply 3 for a vertex colour, the colour 6 or greater colour must occur. Thus, the graceful chromatic number of $C_{m} \times P_{2}$ is at least 6 . To conclude that $\chi_{g}\left(C_{m} \times P_{2}\right)=6$, we will proceed by showing that a graceful colouring exist with maximum colour 6 , as follows.

Case 1: $m \equiv 1(\bmod 4)$. First, consider $C_{5} \times P_{2}$ with vertex set $\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}\right\}$ and with edge set $\left\{a_{1} a_{5}, b_{1} b_{5}, a_{i} a_{i+1}, b_{i} b_{i+1}: i=1 \leq i \leq 4\right\} \cup\left\{a_{i} b_{i}: 1 \leq i \leq 5\right\}$. Now, we colour vertices using the following function $f$ :

$$
f\left(a_{i}\right)=\left\{\begin{array}{lll}
1, & \text { if } \quad i=1, \\
4, & \text { if } \quad i=2, \\
3, & \text { if } \quad i=3, \\
5, & \text { if } \quad i=4, \\
2, & \text { if } \quad i=5,
\end{array} \quad f\left(b_{i}\right)=\left\{\begin{array}{lll}
5, & \text { if } i=1, \\
2, & \text { if } i=2, \\
6, & \text { if } i=3, \\
1, & \text { if } i=4, \\
4, & \text { if } i=5
\end{array}\right.\right.
$$

The coloured $C_{5} \times P_{2}$ will be used as the seed of our general construction for Case 1, and its diagram is depicted in Fig. 2.

Consider the opened ladder $L_{6}$ from the coloured $C_{5} \times P_{2}$ above about $a_{1} b_{1}$. In $L_{6}$, the colours of $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$, and $a_{6}$ are $1,2,5,3,4$, and 1 , while the colours of $b_{1}, b_{2}, b_{3}, b_{4}, b_{5}$, and $b_{6}$ are $5,4,1,6,2$, and 5 .

Then, consider the open ladder $L_{4 k+1}$, for some positive integer $k \geq 1$, from the coloured $C_{4 k} \times P_{2}$ in Theorem 1 about $v_{1} w_{1}$. Here, the colours of $v_{1}$ and $w_{1}$ are also 1 and 5 , respectively. The same colours are also for $v_{4 k+1}$ which is 1 , and for $w_{4 k+1}$ which is 5 . Based on (2.1), we have $f\left(v_{4 k}\right)=2$, and $f\left(w_{4 k}\right)=4$. By identifying $v_{4 k+1}$ with $a_{6}$ and $w_{4 k+1}$ with $b_{6}$, and maintaining the


Figure 2. A graceful colouring of $C_{5} \times P_{2}$.
other vertex colours, then we get a new ladder on $4(k+1)+2$ vertices, $L_{4(k+1)+2}$, with graceful colouring.

Furthermore, we know that $f\left(v_{2}\right)=4, f\left(w_{2}\right)=2, f\left(a_{2}\right)=2$, and $f\left(b_{2}\right)=4$. Thus by identifying $v_{1}$ with $a_{1}$ and $w_{1}$ with $b_{1}$ in the ladder $L_{4(k+1)+2}$, we obtain $C_{4(k+1)+1} \times P_{2}$ with a graceful colouring.

From here, we may infer that the graceful chromatic number of the graph $C_{m} \times P_{2}$, for $m \equiv 1$ $(\bmod 4)$ is equal to 6 .

Case 2: $m \equiv 2(\bmod 4)$. First, consider $C_{6} \times P_{2}$ with vertex set

$$
\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}\right\}
$$

and with edge set

$$
\left\{a_{1} a_{6}, b_{1} b_{6}, a_{i} a_{i+1}, b_{i} b_{i+1}: i=1 \leq i \leq 5, \quad a_{i} b_{i}: 1 \leq i \leq 6\right\} .
$$

As a seed graph, we define the following colouring for $C_{6} \times P_{2}$ as follows.

$$
f\left(a_{i}\right)=\left\{\begin{array}{ll}
1, & \text { if } i=1, \\
3, & \text { if } i=2, \\
4, & \text { if } i=3, \\
1, & \text { if } i=4, \\
3, & \text { if } i=5, \\
4, & \text { if } i=6,
\end{array} \quad f\left(b_{i}\right)= \begin{cases}5, & \text { if } i=1, \\
6, & \text { if } i=2, \\
2, & \text { if } i=3, \\
5, & \text { if } i=4, \\
6, & \text { if } i=5, \\
2, & \text { if } i=6\end{cases}\right.
$$

By inspection we can verify that the above colouring for $C_{6} \times P_{2}$ is graceful. The diagram of the coloured graph is shown in Fig. 3.

Let the ladder of 7 vertices, $L_{7}$, is the open graph from the $C_{6} \times P_{2}$ above about $v_{1} w_{1}$. We emphasize here that in this ladder $L_{7}$, vertices $a_{7}$ and $b_{7}$ have colours 1 and 5 , respectively; the same as the colours of $a_{1}$ and $b_{1}$, respectively.

We use again the same ladder $L_{4 k+1}, k \geq 1$, as in Case 1 . Now we identify $v_{4 k+1}$ with $a_{7}$ and $w_{4 k+1}$ with $b_{7}$, and maintaining the other vertex colours. Then we get a new ladder on $4(k+1)+3$ vertices, $L_{4(k+1)+3}$, with graceful colouring.

Furthermore, we identify $v_{1}$ with $a_{1}$ and $w_{1}$ with $b_{1}$ in the ladder $L_{4(k+1)+3}$. Based on the previous colours, we know that the colours of $v_{2}, w_{2}, a_{2}, b_{2}, v_{1}=a_{1}, w_{1}=b_{1}$, are $4,2,3,6,1,5$, respectively. This means that after the last identification, the gracefulness colouring of $C_{4(k+1)+2}$ are maintained. Thus, we may conclude that $C_{4(k+1)+2} \times P_{2}$ is with graceful colouring.


Figure 3. A graceful colouring of $C_{6} \times P_{2}$.


Figure 4. A graceful colouring of $C_{10} \times P_{2}$.

A graceful labeled $C_{10} \times P_{2}$ which is constructed using this method is depicted in Fig. 4.
From here, we may infer that the graceful chromatic number of the graph $C_{m} \times P_{2}$, for $m \equiv 2(\bmod 4)$ is equal to 6 .

Case 3: $m \equiv 3(\bmod 4)$. Here we will introduce a construction for graceful colouring of $C_{m} \times P_{2}$ with $m \equiv 3(\bmod 4)$. We start with $C_{3} \times P_{2}$ with vertex set $\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}$ and edge set $\left\{a_{3} a_{1}, a_{1} a_{2}, a_{2} a_{3}, b_{3} b_{1}, b_{1} b_{2}, b_{2} b_{3}, a_{1} b_{1}, a_{2} b_{2}, a_{3} b_{3}\right\}$. Then we colour $C_{3} \times P_{2}$ using the following colouring $f$.

$$
f\left(a_{i}\right)=\left\{\begin{array}{ll}
1, & \text { if } i=1, \\
3, & \text { if } i=2, \\
4, & \text { if } i=3,
\end{array} \quad f\left(b_{i}\right)=\left\{\begin{array}{lll}
5, & \text { if } i=1, \\
6, & \text { if } i=2, \\
2, & \text { if } i=3
\end{array}\right.\right.
$$

We can immediately check that this colouring $f$ is graceful. The diagram of the gracefully coloured graph $C_{3} \times P_{2}$ is shown in Fig. 5. We can verify that the graceful chromatic number of this graph is 6 .

We should mention again that this above colouring of $C_{3} \times P_{2}$ is graceful. As we did for Case 1 and Case 2, first we will observe the open ladder $L_{4}$ from $C_{3} \times P_{2}$ about $a_{1} b_{1}$. In this $L_{4}$, the


Figure 5. A graceful colouring of $C_{3} \times P_{2}$.


Figure 6. A graceful colouring of $C_{7} \times P_{2}$.
colour of vertices $a_{4}=a_{1}=1$ and $b_{4}=b_{1}=5$. Observe back the open ladder $L_{4 k+1}$ in Case 1 (and Case 2).

Now we identify $v_{4 k+1}$ with $a_{4}$ and $w_{4 k+1}$ with $b_{4}$ to obtain a graceful colouring ladder $L_{4 k+4}$. Let us denote the colouring as $\alpha$. We can easily see that in this ladder we have $\alpha\left(a_{1}\right)=\alpha\left(v_{1}\right)=1$ and $\alpha\left(b_{1}\right)=\alpha\left(w_{1}\right)=5$. Moreover, we have also $\alpha\left(a_{2}\right)=f\left(a_{2}\right)=3, \alpha\left(b_{2}\right)=f\left(b_{2}\right)=6, \alpha\left(v_{2}\right)=4$, and $\alpha\left(w_{2}\right)=2$. Thus, by identifying $v_{1}$ with $a_{1}$ and $w_{1}$ with $b_{1}$, we get a graceful colouring $C_{4 k+3} \times P_{2}$, with graceful chromatic number is 6 . See the labeled graph $C_{7} \times P_{2}$ in Fig. 6 as an example of the graph resulted from the construction.

Therefore, we may conclude that the graceful chromatic number of the graph $C_{m} \times P_{2}$, with $m \equiv 3(\bmod 4)$ is also 6 .

Since in all cases of $m$ we proved that $C_{m} \times P_{2}$ has graceful chromatic number 6 , we may conclude that $\chi_{g}\left(C_{m} \times P_{2}\right)=6$.
2.2. Results on generalized prism graphs $C_{m} \times P_{n}, m, n \geq 3$.

For a graph $G$, let $f$ be a graceful colouring for $G$. It is obvious that for a vertex $u \in V(G)$, if $v, w \in N(u)$, then $f(v) \neq f(w)$. Therefore, we can immediately observe that the graph $P_{3} \times P_{3}$ can not be coloured by only four different colours. This observation gives

$$
\chi_{g}\left(P_{3} \times P_{3}\right) \geq 5 .
$$

But, if we use only five colours $1,2,3,4$ and 5 , the center vertex of $P_{3} \times P_{3}$ must be 1 or 5 . Then, by inspection we can show that using only five colours, we can not colour $P_{3} \times P_{3}$ gracefully. This gives the following lemma.

Lemma 4. The graceful chromatic number of the graph $P_{3} \times P_{3}, \chi_{g}\left(P_{3} \times P_{3}\right) \geq 6$.
The following Lemma 5 will be an important tool for the proofs of our main results encountered in this section.

Lemma 5. The graceful chromatic number of the graph $P_{5} \times P_{5}, \chi_{g}\left(P_{5} \times P_{5}\right) \geq 7$.
Proof. Let the vertices of $P_{5} \times P_{5}$ be $V\left(P_{5} \times P_{5}\right)=\left\{v_{i j}: i, j=0,1,2,3,4\right\}$ and $E\left(P_{5} \times P_{5}\right)=\left\{v_{i j} v_{i(j+1)}, v_{i j} v_{(i+1) j}: i, j=0,1,2,3\right\}$. Now, observe the subgraph $P_{3} \times P_{3}$ with $V\left(P_{3} \times P_{3}\right)=\left\{v_{i j}: i, j=1,2,3\right\}$ and

$$
E\left(P_{3} \times P_{3}\right)=\left\{v_{i j} v_{(i+1) j}, v_{i j} v_{(i)(j+1)}: i, j=1,2\right\}
$$

In $P_{5} \times P_{5}$, every vertex of the subgraph $P_{3} \times P_{3}$ has degree 4 . Based on Lemma 4 , for gracefully colouring $P_{3} \times P_{3}$, we need at least five colours. If the colour 3 or 4 is assigned for a vertex of $P_{3} \times P_{3}$, then based on Lemma 1 the colour greater than or equal to $4+3=7$ must appear in $P_{5} \times P_{5}$. If the colors 3 and 4 both are not assigned for any vertex of $P_{3} \times P_{3}$, then, since we need at least five colours, we need some color greater than or equal to 7 for gracefully colouring $P_{5} \times P_{5}$.

Now, observe the graph $P_{4} \times P_{3}$. We will make use of this observation for facilitating the result which will be formulated in Lemma 6. Let $V\left(P_{4} \times P_{3}\right)=\left\{v_{i j}: i=0,1,2,3 ; j=0,1,2\right\}$, and $E\left(P_{4} \times P_{3}\right)=\left\{v_{i j} v_{i(j+1)}: i=0,1,2,3 ; j=0,1\right\} \cup\left\{v_{i j} v_{(i+1) j}: i=0,1,2 ; j=0,1,2\right\}$. The picture in Fig. 7 is the diagram of graph $P_{4} \times P_{3}$ with vertex names.


Figure 7. The graph $P_{4} \times P_{3}$ with vertex names.
In here, we will restrict a vertex colouring $\alpha$ for $P_{4} \times P_{3}$ as $\alpha\left(v_{0 j}\right)=\alpha\left(v_{3 j}\right), \forall j=0,1,2$. We will show that under this restriction, using only six colours, the vertex colouring $\alpha$ can not be graceful.

Let the six colours be $1,2,3,4,5$ and 6 . Based on Lemma 1 , since the degree of vertices $v_{11}$ and $v_{21}$ each is four, the colours 3 and 4 both can not be used for these two vertices. So, there are four colours: $1,2,5$, and 6 that can be assigned for the vertices $v_{11}$ and $v_{21}$. In total, there are six different combinations for colouring these two vertices: $\left\{\alpha\left(v_{11}\right), \alpha\left(v_{21}\right)\right\}=\{a, b\}, a, b \in\{1,2,5,6\}$, with $a \neq b$. We can check by inspection that any one of these combinations results in the colouring $\alpha$ is not graceful. But, for the space consideration, we will only describe the detail process for combination $\left\{\alpha\left(v_{11}\right), \alpha\left(v_{21}\right)\right\}=\{1,2\}$ as in Fig. 8. Note that the case $\alpha\left(v_{11}\right)=a$ and $\alpha\left(v_{21}\right)=b$ is similar to the case $\alpha\left(v_{11}\right)=b$ and $\alpha\left(v_{21}\right)=a$.

The explanation of the colouring process in Fig. 8 is the following:

1) The colours $\alpha\left(v_{11}\right)=1$ and $\alpha\left(v_{21}\right)=2$ are fixed as the initial combination.
2) The next vertex colouring follows the following vertices order: $v_{20}, v_{10}, v_{00}, v_{01}, v_{02}, v_{12}, v_{22}$. Note that $\alpha\left(v_{3 j}\right):=\alpha\left(v_{0 j}\right), \forall j=0,1,2$, based on the restriction imposed for $\alpha$.
3) For some colours $x, y$ and $z$, a notation $x / \mathbf{y} / z$ means that we assign the colour $y$ (indicated with bold face) for the related vertex among the possible colours $x, y$ and $z$.
4) The colour which stands alone (written in red bold face), indicates that the colour is the only possible colour for the related vertex.
5) The red cross sign $\mathbf{X}$ informs that the colouring process is discontinue at the related vertex, since there is no possible choice of colours to colour the vertex. The appearance of $\mathbf{X}$ indicates that the colouring fails to be graceful.

From Fig. 8 we can see that each colouring process ends to be not graceful which is indicated by the appearance of the sign $\mathbf{X}$. Thus, we may conclude that under the restriction $\alpha\left(v_{1 j}\right)=\alpha\left(v_{4 j}\right), j=0,1,2$, using exactly six different colours, we can not colour the graph $P_{4} \times P_{3}$ gracefully.


Figure 8. The colouring process for $P_{4} \times P_{3}$ with $\alpha\left(v_{11}\right)=1$ and $\alpha\left(v_{21}\right)=2$.

If we extend this last observation to graph $P_{4} \times P_{n}, n \geq 3$, with

$$
V\left(P_{4} \times P_{n}\right)=\left\{v_{i j}: i=0,1,2,3 ; j=0,1, \ldots, n-1\right\},
$$

and
$E\left(P_{m} \times P_{n}\right)=\left\{v_{i j} v_{i(j+1)}: i=0,1,2,3 ; j=0,1, \ldots, n-2\right\} \cup\left\{v_{i j} v_{(i+1) j}: i=0,1,2 ; j=0,1, \ldots, n-1\right\}$,
under restriction that $\alpha\left(v_{0 j}\right)=\alpha\left(v_{3 j}\right), j=0,1, \ldots, n-1$, we may also conclude that we need at least seven colours to maintain the colouring $\alpha$ becomes graceful for $P_{4} \times P_{n}$.
From this last observation we can formulate the following result.
Lemma 6. For $n \geq 3$, the graceful chromatic number of the graph $C_{3} \times P_{n}, \chi_{g}\left(C_{3} \times P_{n}\right) \geq 7$.

Proof. The generalized prism graph $C_{3} \times P_{n}, n \geq 3$, can be obtained by identifying vertices $v_{0 j}$ and $v_{3 j}$ for every $j=0,1,2, \ldots, n-1$ as it is in the last observation. By considering a graceful colouring $\alpha$ for the graph $P_{4} \times P_{n}$ under the above mentioned restriction, we are done.

For facilitating the discussion of our main results in this section, we need the following definition, as we defined a ladder as an open graph of $C_{m} \times P_{2}$ in the previous section. Here we will define a similarone as an open graph from the graph $C_{m} \times P_{n}, m, n \geq 3$. Let the vertex set of graph $C_{m} \times P_{n}, m, n \geq 3$, be

$$
\left\{v_{i j}, 0 \leq i \leq m-1,0 \leq j \leq n-1\right\}
$$

and its edge set be

$$
\left\{v_{i j} v_{k l}, \text { if } i=k \quad \text { and } \quad|j-l|=1 \quad \text { or } \quad j=l \quad \text { and } \quad|i-k| \equiv 1 \quad(\bmod m)\right\} .
$$

Consider the open graph of $C_{m} \times P_{n}, m, n \geq 3$, about the path $P$ which has end vertices $v_{00}$ and $v_{0 n}$, and has vertex set and edge set $\left\{v_{0 j}, j=0,1, \ldots, n-1\right\}$ and $\left\{v_{0 j} v_{0(j+1)}, j=0,1, \ldots, n-2\right\}$, respectively. Denote this open graph by $\mathcal{L}_{m+1, n}$. This graph is a grid graph having $(m+1) \times n$ vertices which involves two copies of path $P$. These two copies of path $P$, each has vertices $v_{0 j}, j=0,1, \ldots, n-1$ and edges $v_{0 j} v_{0(j+1)}, j=0,1, \ldots, n-2$. In the open graph $\mathcal{L}_{m+1, n}$, the vertices and edges of the second copy of $P$ will be denoted by $v_{m j}, j=0,1, \ldots, n-1$, and $v_{m j} v_{(m)(j+1)}$, $j=0,1, \ldots, n-1$, respectively. It is clear that the vertex $v_{m j}$ is adjacent with $v_{(m-1) j}$ for every $j=0,1, \ldots, n-2$. In this case, $C_{m} \times P_{n}$ can be reconstructed from $\mathcal{L}_{m+1, n}$ by identifying vertex $v_{0 j}$ and $v_{m j}$ for every $j=0,1, \ldots, n-1$.

Theorem 3. For any positive integers $m, n \geq 3$, with $m \equiv 0(\bmod 3), \chi_{g}\left(C_{m} \times P_{n}\right)=7$.
Proof. From Lemma 4 we know that the graceful chromatic number of $C_{m} \times P_{n}$ is at least seven. Now we will show that a graceful colouring exists for $C_{m} \times P_{n}$ such that it uses only seven different colours, and therefore $\chi_{g}\left(C_{m} \times P_{n}\right)=7$.

Let the vertex set of $C_{m} \times P_{n}$ is $\left\{v_{i j} \mid 0 \leq i \leq m-1 ; 0 \leq j \leq n-1\right\}$, and edge set

$$
\left\{v_{i j} v_{r s} \mid i=r \quad \text { and } \quad|s-j| \equiv 1 \quad(\bmod n) \quad \text { or } \quad j=s \quad \text { and } \quad|i-r| \equiv 1 \quad(\bmod m)\right\} .
$$

To this end, here we define a colouring function $f$ for $C_{m} \times P_{n}$ as follows.

An example of a graceful coloured graph $C_{6} \times P_{n}$ using (2.2) is shown in Fig. 9. In this figure we may also see the related open graph $\mathcal{L}_{7, n}$ of $C_{6} \times P_{n}$.


Figure 9. A graceful colouring of $C_{6} \times P_{n}, n \geq 3$.
Fig. 9 also helps us to be able to check by inspection that $f$ is a graceful colouring for the graph $C_{m} \times P_{n}$, with $m \equiv 0(\bmod 3)$. Therefore, we may conclude that this graph has chromatic number 7 .

Furthermore, based on (2.2) we see that for every $i, 0 \leq i \leq m-1$, we have $f\left(v_{i j}\right)=f\left(v_{i k}\right)$ provided $|j-k| \equiv 0(\bmod 6)$.

Corollary 2. For any positive integers $m, n \geq 3$, with $m \equiv 0(\bmod 3)$ and with $n \equiv 0(\bmod 6)$, $\chi_{g}\left(C_{m} \times C_{n}\right)=7$.

Proof. The proof of this corollary may be derived from (2.2). From Theorem 3 we conclude that $\chi_{g}\left(C_{m} \times P_{n}\right)=7$, if $m \equiv 0(\bmod 3)$, and $n \geq 3$. From (2.2) we know that $f\left(v_{i j}\right)=f\left(v_{i k}\right)$ whenever $|j-k| \equiv 0(\bmod 6)$. Thus, if $n \equiv 0(\bmod 6)$, then if we identify vertex $v_{i 0}$ and $v_{i n}$ for every $i, 0 \leq i \leq m-1$ in $C_{m} \times P_{n}$, then we get a graceful coloured graph $C_{m} \times C_{n}, m \equiv 0(\bmod 3)$ and $n \equiv 0(\bmod 6)$. Therefore, we may conclude that $\chi_{g}\left(C_{m} \times C_{n}\right)=7$ where $m \equiv 0(\bmod 3)$ and $n \equiv 0(\bmod 6)$.

In the remaining part of this section we will see the graceful colouring number for $C_{m} \times P_{n}$, with $m \not \equiv 0(\bmod 3), n \geq 3$. We start to observe the case $m \equiv 1(\bmod 3)$ as we formulate in the following theorem.

Theorem 4. If $m \equiv 1(\bmod 3)$, then $7 \leq \chi_{g}\left(C_{m} \times P_{n}\right) \leq 8$.
Proof. We will make use of prism graph $C_{4} \times P_{n}$ as the seed of our graceful colouring construction. We first introduce a colouring for the graph $C_{4} \times P_{n}, n \geq 3$.


Figure 10. A graceful colouring of $C_{4} \times P_{n}$.

Let the vertex set of $C_{4} \times P_{n}$ is

$$
\left\{v_{i j} \mid 0 \leq i \leq 3 ; 0 \leq j \leq n-1\right\},
$$

and edge set

$$
\left\{v_{i j} v_{r s} \mid i=r \quad \text { and } \quad|s-j| \equiv 1 \quad(\bmod n) \quad \text { or } \quad j=s \quad \text { and } \quad|i-r| \equiv 1 \quad(\bmod 4)\right\} .
$$

To this end, we define a colouring function $f$ as follows.

$$
f\left(v_{i j}\right)=\left\{\begin{array}{llll}
1, & \text { if } i \equiv 0(\bmod 4), & j \equiv 0 & (\bmod 4),  \tag{2.3}\\
2, & \text { f } i \equiv 0(\bmod 4), & j \equiv 1 & (\bmod 4), \\
6, & \text { if } i \equiv 0(\bmod 4), & j \equiv 2 & (\bmod 4), \\
5, & \text { if } i \equiv 0(\bmod 4), & j \equiv 3 & (\bmod 4), \\
3, & \text { if } i \equiv 1(\bmod 4), & j \equiv 0 & (\bmod 4), \\
4, & \text { if } i \equiv 1(\bmod 4), & j \equiv 1 & (\bmod 4), \\
8, & \text { if } i \equiv 1(\bmod 4), & j \equiv 2(\bmod 4), \\
7, & \text { if } i \equiv 1(\bmod 4), & j \equiv 3 & (\bmod 4), \\
6, & \text { if } i \equiv 2(\bmod 4), & j \equiv 0 & (\bmod 4), \\
7, & \text { if } i \equiv 2(\bmod 4), & j \equiv 1 & (\bmod 4), \\
3, & \text { if } i \equiv 2(\bmod 4), & j \equiv 2 & (\bmod 4), \\
2, & \text { if } i \equiv 2(\bmod 4), & j \equiv 3 & (\bmod 4), \\
4, & \text { if } i \equiv 3(\bmod 4), & j \equiv 0(\bmod 4), \\
5, & \text { if } i \equiv 3(\bmod 4), & j \equiv 1 & (\bmod 4), \\
1, & \text { if } i \equiv 3(\bmod 4), & j \equiv 2 & (\bmod 4), \\
8, & \text { if } i \equiv 3(\bmod 4), & j \equiv 3 & (\bmod 4) .
\end{array}\right.
$$

For an illustration one can see in Fig. 10
Fig. 10 helps us to see that (2.3) gives a graceful colouring for $C_{4} \times P_{n}$ for every $n \geq 3$ with $\chi_{g}\left(C_{4} \times P_{n}\right) \leq 8$. Therefore, based on Lemma 4, we may conclude that $7 \leq \chi_{g}\left(C_{4} \times P_{n}\right) \leq 8$.

Furthermore, the graceful colouring of $C_{m} \times P_{n}$, with $m \equiv 1(\bmod 3)$ and $n \geq 3$ in general, is obtained by extending graceful coloured graph $C_{4} \times P_{n}$ using the prism graph $C_{3} \times P_{n}$ which has colouring as we will show below.

Let the vertex set of $C_{3} \times P_{n}$ is

$$
\left\{v_{i j} \mid 0 \leq i \leq 2 ; 0 \leq j \leq n-1\right\},
$$



Figure 11. A graceful colouring of $C_{3} \times P_{n}$.
and edge set

$$
\left\{v_{i j} v_{r s} \mid i=r \quad \text { and } \quad|s-j| \equiv 1 \quad(\bmod n) \quad \text { or } j=s \text { and }|i-r| \equiv 1 \quad(\bmod 3)\right\} .
$$

To this end, we define a colouring function $f$ as follows.

$$
f\left(v_{i j}\right)=\left\{\begin{array}{lllll}
1, & \text { if } i \equiv 0(\bmod 3), & j \equiv 0(\bmod 4),  \tag{2.4}\\
2, & \text { if } i \equiv 0(\bmod 3), & j \equiv 1 & (\bmod 4), \\
6, & \text { if } i \equiv 0(\bmod 3), & j \equiv 2 & (\bmod 4), \\
5, & \text { if } i \equiv 0(\bmod 3), & j \equiv 3 & (\bmod 4), \\
3, & \text { if } i \equiv 1(\bmod 3), & j \equiv 0 & (\bmod 4), \\
4, & \text { if } i \equiv 1(\bmod 3), & j \equiv 1 & (\bmod 4), \\
8, & \text { if } & i \equiv 1(\bmod 3), & j \equiv 2 & (\bmod 4), \\
7, & \text { if } & i \equiv 1 & (\bmod 3), & j \equiv 3 \\
6, & \text { if } & i \equiv 2(\bmod 4), \\
7, & \text { if } & i \equiv 2(\bmod 3), & j \equiv 0 & (\bmod 4), \\
3, & \text { if } & i \equiv 2(\bmod 3), & j \equiv 2(\bmod 4), \\
2, & \text { if } i \equiv 2(\bmod 4), \\
2 & (\bmod 3), & j \equiv 3 & (\bmod 4) .
\end{array}\right.
$$

The diagram of coloured graph $\mathcal{L}_{4, n}$ from $C_{3} \times P_{n}$ is depicted in Fig. 11. The coloured graph $C_{3} \times P_{n}$ is obtained by identifying $v_{0 j}$ and $v_{3 j}$ for all $j, 0 \leq j \leq n-1$. We can immediately observe that (2.4) gives a graceful colouring for the prism graph $C_{3} \times P_{n}$ with $\chi_{g}\left(C_{3} \times P_{n}\right) \leq 8$. Again based on Lemma 4, we conclude that $7 \leq \chi_{g}\left(C_{3} \times P_{n}\right) \leq 8$.

For producing a graceful colouring for $C_{m} \times P_{n}, m \equiv 1(\bmod 3)$ we use $\mathcal{L}_{5, n}$ from $C_{4} \times P_{n}$ and $\mathcal{L}_{4, n}$ from $C_{3} \times P_{n}$, by identifying $v_{5 j}$ of $\mathcal{L}_{5, n}$ and $v_{0 j}$ of $\mathcal{L}_{4, n}$ for all $j, 0 \leq j \leq n-1$. This identification results in a graceful coloured grid graph $\mathcal{L}_{8, n}$. Then, if we identify $v_{8 j}$ of $\mathcal{L}_{8, n}$ and $v_{0 j}$ of $\mathcal{L}_{4, n}$ for all $j, 0 \leq j \leq n-1$, we get a graceful coloured grid graph $\mathcal{L}_{11, n}$. Continuing the same procedure, then we get a graceful coloured grid graph $\mathcal{L}_{(m+1), n}$. Then by identifying vertex $v_{0 j}$ and $v_{m j}$ from $\mathcal{L}_{(m+1), n}$ we obtain $C_{m} \times P_{n}$ with $m \equiv 1(\bmod 3)$ and $n \geq 3$.

As one consequence, as we formulated Corollary 2 based on Theorem 3, we also formulate a corollary based on Theorem 4 as the following.

Corollary 3. If $m \equiv 1(\bmod 3)$ and $n \equiv 0(\bmod 4)$, then $7 \leq \chi_{g}\left(C_{m} \times C_{n}\right) \leq 8$.
Now we go to the next case $m \equiv 2(\bmod 3)$. The result is formulated in the following theorem.


Figure 12. A graceful colouring of grid graph $\mathcal{L}_{6, n}$ of $C_{5} \times P_{n}$.

Theorem 5. If $m \equiv 2(\bmod 3)$, then $7 \leq \chi_{g}\left(C_{m} \times P_{n}\right) \leq 8$.
Proof. To proof this theorem, we will start with a graceful colouring for $C_{5} \times P_{n}, m \equiv 2$ $(\bmod 3), n \geq 3$. We introduce the following colouring for the graph $C_{5} \times P_{n}, n \geq 3$.

The diagram for coloured grid graph $\mathcal{L}_{6, n}$ of $C_{5} \times P_{n}$, which is derived from (2.5), can be seen in Fig. 12. Using this diagram we may conclude that the colouring is graceful. It is clear that $\chi_{g}\left(C_{5} \times P_{n}\right) \leq 8$.

The process of expanding to get coloured graph $C_{m} \times P_{n}, m \equiv 2(\bmod 3), n \geq 3$, is similar to the previous process as was described in the proof of Theorem 4. Here we use graceful coloured grid graph $\mathcal{L}_{6, n}$ from graceful coloured graph $C_{5} \times P_{n}$, and graceful coloured grid graph $\mathcal{L}_{4, n}$ from graceful coloured graph $C_{3} \times P_{n}$. Again by considering Lemma 4, we then conclude that
$7 \leq \chi_{g}\left(C_{5} \times P_{n}\right) \leq 8$.

Similar to the previous corollaries, here we formulate the following corollary as a consequence of Theorem 5 .

Corollary 4. If $m \equiv 2(\bmod 3)$ and $n \equiv 0(\bmod 4)$, then $7 \leq \chi_{g}\left(C_{m} \times C_{n}\right) \leq 8$.

## 3. Conclusion

In the discussion above, it has been proven that prism graph $C_{m} \times P_{2}$ has a chromatic number equal to 5 when $m \equiv 0(\bmod 4)$, and equal to 6 when $m \not \equiv 0(\bmod 4)$. While for generalized prism $C_{m} \times P_{n}$ we found that its chromatic number is equal to 7 while $m \equiv 0(\bmod 3)$. Whereas for $m \not \equiv 0(\bmod 3)$, we got that $7 \leq \chi_{g}\left(C_{m} \times P_{n}\right) \leq 8$. Based on these results, we could also derive some exact and bound values of graceful chromatics number of $C_{m} \times C_{n}$ for certain $m, n \geq 3$. Regarding this last observation, we propose the following open problem and conjecture.

Conjecture. If $m \not \equiv 0(\bmod 3)$ and $n \geq 3$, then $\chi_{g}\left(C_{m} \times P_{n}\right)=8$.
Open problem. What is $\chi_{g}\left(C_{m} \times C_{n}\right)$, if $m \not \equiv 0(\bmod 3), m, n \geq 3$ ?

## Acknowledgements

The authors express their deep gratitude to referees for their invaluable corrections and suggestions. The first author thanks to the Research and Social Service Board of Universitas Pendidikan Ganesha for the provided support to conduct this research.

## REFERENCES

1. Alfarisi R., Dafik, Prihandini R. M., Adawiyah R., Albirri E.R., Agustin I.H. Graceful Chromatic Number of Unicyclic Graphs. J. Phys.: Conf. Ser., 2019. Vol. 1306: The 2nd Int. Conf. Math.: Education, Theory, and Application (30-31 October 2018, Sukoharjo, Indonesia). Art. no. 012039. DOI: 10.1088/1742-6596/1306/1/012039
2. Asyari M.L., Agustin I.H., Nisviasari R., Adawiyah R. On graceful chromatic number of some graphs. J. Phys.: Conf. Ser., 2022. Vol. 2157: The 5th Int. Conf. Combinatorics, Graph Theory, and Network Topology, ICCGANT 2021. (21-22 August 2021, Jember, Indonesia). Art. no. 012013. DOI: 10.1088/1742-6596/2157/1/012013
3. Byers A. D. Graceful Colorings and Connection in Graphs. Diss. Doct. at Western Michigan University, 2018. Dissertations. Vol. 3308. URL: https://scholarworks.wmich.edu/dissertations/3308
4. English E., Zhang P., Kalamazoo. On graceful colourings of trees. Math. Bohem., 2016. Vol. 142, No. 1. P. 57-73. URL: http://dml.cz/dmlcz/146009
5. Gallian J. A. A dynamic survey of graph labeling. Electron. J. Combin., 2021. Vol. 24, \#DS6. 623 p. URL: https://www.combinatorics.org/files/Surveys/ds6/ds6v25-2022.pdf
6. Mincu R., Obreja C., Popa A. The graceful chromatic number for some particular classes of graphs. In: Proc. 21st Int. Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC). IEEE Xplore, 2019. Art. no. 19492926. DOI: 10.1109/SYNASC49474.2019.00024

[^0]:    ${ }^{1}$ This work was supported by LP2M of Universitas Pendidikan Ganesha.

