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Abstract: In the literature, I-convergence (or convergence in I) was first introduced in [11]. Later related
notions of I-sequential topological space and I∗-sequential topological space were introduced and studied. From
the definitions it is clear that I∗-sequential topological space is larger(finer) than I-sequential topological space.
This rises a question: is there any topology (different from discrete topology) on the topological space X which
is finer than I∗-topological space? In this paper, we tried to find the answer to the question. We define IK-
sequential topology for any ideals I, K and study main properties of it. First of all, some fundamental results
about IK-convergence of a sequence in a topological space (X , T ) are derived. After that, IK-continuity and
the subspace of the IK-sequential topological space are investigated.
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1. Introduction

The notion of convergence of real or complex valued sequences was generalized using asymptotic
density and was called statistical convergence by Fast [7] and Steinhause [20] in the same year 1951,
independently. After some years P. Kostyrko, T. Šalát, W. Wilczyńki [11] gave a generalization of
statistical convergence and called it as ideal convergence (or converges in ideal). Various fundamen-
tal properties (convergence in I and I∗) were investigated. Later B.K. Lahiri and P. Das in [12]
discussed convergence in I and in I∗ and investigate some additional results related to mentioned
concepts [4, 8–10, 15–17].

The concept of I∗-convergence of functions was extended to IK-convergence by M. Mačaj and
M. Sleziak in [13] in 2011. The authors of [2, 3, 5, 6, 14] gave further properties and results about
IK-convergence.

In first part of this paper we introduce IK-sequential topological (seq.-top.) space, which is a
natural generalization of I∗-seq.-top. space. Later we discuss the IK-continuity of the function and
in last two section we write about IK-subspace and IK-connectedness. We will use further the
abbreviation T.S. for a topological space.

2. Definition and preliminaries

In this part, we give some known definitions and necessary results.

Definition 1 [7, 20]. Let A ⊂ N, and for m ∈ N let the set

Am := {x ∈ A : x < m}

and |Am| stand for the cardinality of Am. Natural density of A is defined by

β(A) := lim
m→∞

|Am|

m
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whenever the limit exists. A real sequence x̃ = (xi) is said to statistically converges to x0 if for any
ε > 0,

β
(

{n : |xi − x0| > ε}
)

= 0

holds.

Definition 2 [11]. Let I be any subfamily of P(N), with P(N) being the family of all subsets
of N. Then, I is called an ideal on N if the following requirements hold :

(i) finite union of sets in I is again in I;
(ii) any subset of a set in I is in I.

I is admissible if all singleton subsets of N belong to I. The ideal I is non-trivial if I 6= ∅ and
I 6= P(N). A non-trivial ideal I is called proper if N is not in I.

The family of finite subsets of the N is an admissible non-trivial ideal denoted by Fin and the
family of the subsets of N with natural density zero is also an admissible non-trivial ideal denoted
by Iβ. The set of all non-trivial admissible ideals will be denoted as NA throughout the study.

Example 1. [11] Consider the decomposition of N as N =
⋃∞

j=1 βj where all βj are infinite
subsets of N and are mutually disjoint. Take the family

I = {N ⊂ N : N intersect only finite number of β′
js}.

Then, I belongs to NA.

Definition 3 [19]. Assume F ⊂ P(N). The collection F is a filter on N if

(i) a finite intersection of elements of F is in F and
(ii) if C ∈ F ∧ C ⊆ D, then D ∈ F .

If empty set is not in F then F is proper. If I ∈ NA then the collection

F = {N ⊂ N : NC ∈ I}

is a filter on N. It is known as the I-associated filter.

Definition 4 [21]. In a T.S. (X ,T ) a sequence x̃ = (xi) ⊂ X is called to converging in I to a
point x ∈ X if

{i ∈ N : xi ∈ υ} ∈ F(I)

holds for each neighborhood υ of x. The point x is referred to as the ideal limit of the sequence

x̃ = (xi) and it is represented by xi
I
→ x (or I − limxi = x).

Remark 1.

(i) Statistical and Iβ− convergence are coincide.
(ii) Classical convergence and Fin−convergence are coincide.

Lemma 1 [1]. Assume that I,I1 and I2 be ideals on the set N and consider a T.S. (X ,T ),
then

1. If I ∈ NA, then every convergent sequence is I-convergent sequence which converges to same
point.

2. If I1 ⊆ I2 and (xi) ⊆ X is a sequence which xi
I1→ x, then xi

I2→ x.
3. If X the Hausdorff space, then the limit of every convergent sequence is unique.
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3. IK-convergence of sequence

In this part we will investigate some results related to IK-convergence of sequences which is
a generalized form of I∗-convergence of sequences. If we consider Fin instead of K, then we will
have I∗-convergence.

Definition 5 [6]. In a T.S. (X ,T ) a sequence x̃ = (xi) ⊂ X is called to be I∗-converging to
x0 ∈ X if ∃M ∈ F(I) s.t. the sequence

yi :=

{

xi, i ∈ M,
x, i /∈ M

is Fin convergent to x.

That is, for each neighborhood υ of x,

{i ∈ N : yi ∈ υ} ∈ F(Fin),

or
{i ∈ M : yi /∈ υ} ∪ {i ∈ MC : yi /∈ υ} ∈ Fin.

So,
{i ∈ M : xi /∈ υ} ∪ {i ∈ MC : x /∈ υ} ∈ Fin.

This implies that
{i ∈ M : yi /∈ υ} ∈ Fin.

Therefore,
{i ∈ M : yi ∈ υ} ∈ F(Fin).

It is clear that this definition is the same as the definition given in [6]. In the definition of
I∗-convergence of sequence if we consider an arbitrary ideal K instead of the ideal Fin then it
yields the definition of IK-convergence of a sequence. That is, IK-convergence is the generalized
form of I∗-convergence.

Definition 6 [13]. Let I and K stand for the ideals of N and consider a T.S. (X ,T ). The
sequence x̃ = (xi) ⊂ X is IK-convergent to a point x ∈ X if ∃M ∈ F(I) s.t. the sequence

yi =

{

xi, i ∈ M,
x, i /∈ M,

K-converges to x. We represent it as IK − lim(xi) = x or xi
IK

→ x .

Definition 7. Let I and K stand for the ideals of N and (X ,T ) represent a T.S. Consider the
sequences x̃ = (xi) ⊂ X and ỹ = (yi) ⊂ X . Define a relation ∼I as

x̃ ∼I ỹ ⇔ {i : xi 6= yi} ∈ I.

The relation ∼I is an equivalence relation. That is,

1. ∀ x̃ = (xi) ⊂ X , {i : xi 6= xi} = ∅ ∈ I ⇒ x̃ ∼I x̃.
2. Let x̃ ∼I ỹ. Since {i : yi 6= xi} = {i : xi 6= yi} ∈ I, then ỹ ∼I x̃.
3. Let x̃ ∼I ỹ and ỹ ∼I z̃. Then, A := {i : xi = yi} ∈ F(I) and B := {i : yi = zi} ∈ F(I). So,

{i : xi = zi} = A ∩B ∈ F(I). Hence, x̃ ∼I z̃ holds.
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Lemma 2. Let I and K stand for the ideals of N and consider the T.S. (X ,T ) and the sequences

x̃ = (xi) ⊆ X . Assume xi
IK

→ x for any x ∈ X and t̃ = (ti) ⊆ X is a sequence s.t. x̃ ∼I t̃. Then,

the sequence ti
IK

→ x.

P r o o f. Let xi
IK

→ x, then ∃M ∈ F(I) s.t. the following sequence

yi =

{

xi, i ∈ M,
x, i /∈ M

is K-convergent to x. Since (xi) ∼I (ti). So ∀i ∈ M , xi = ti. Therefore, the following sequence

yi =

{

ti, i ∈ M,
x, i /∈ M

is K-convergent to x which shows that ti
IK

→ x holds.
�

The Definition 7 gives the possibility that the definition of IK-convergence of a sequence can
be rewritten as follows:

Definition 8. Let I and K stand for the ideals of N and consider the T.S. (X ,T ). A sequence
x̃ = (xi) ⊂ X is IK-convergent to the point x ∈ X if there exist a sequence t̃ = (ti) ⊂ X s.t. x̃ ∼I t̃

and ti
K
→ x holds.

In the following lemma we demonstrate that Definition 6 and Definition 8 are equivalent for
any ideals I and K and for any T.S. (X ,T ).

Lemma 3. Let I and K stand for the ideals of N and consider the T.S. (X ,T ) and

x̃ = (xi) ⊂ X be a sequence. Then, xi
IK

→ x iff ∃ t̃ = (ti) ⊂ X s.t. x̃ ∼I t̃ and ti
K
→ x hold.

P r o o f. Let xi
IK

→ x holds. Then, ∃M ∈ F(I) s.t. the following sequence

yi =

{

xi, i ∈ M,
x, i /∈ M

is K-convergent to x. Let us chose (ti) = (yi) ∀i ∈ N. Then, the proof will complete if we show
that x̃ ∼I ỹ.

Consider the fact {i ∈ N : xi = yi} = {i ∈ M : xi = yi} ∈ F(I). Hence, x̃ ∼I t̃.

Conversely, let x̃ = (xi) and t̃ = (ti) be sequences s.t. x̃ ∼I t̃ and ti
K
→ x hold. Since x̃ ∼I t̃,

then
M = {i ∈ N : xi = ti} ∈ F(I)

holds. Define a sequence

yi =

{

xi, i ∈ M,
x, i /∈ M.

Since xi = ti hold ∀i ∈ M , then we can write

ti =

{

xi, i ∈ M,
x, i /∈ M.

Because t̃ = (ti) is K-convergent to x, the sequence ỹ = (yi) is also K-convergent to x. Hence, the
sequence x̃ = (xi) is IK-convergent to the point x and this completes the proof. �
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4. IK-seq.-top. space

In this section, we are going to define a new topology on the X using the ideal I and K and
investigate some properties of the new T.S. This topology will be an extended version of the I∗-
seq.-top. space which was discussed in [18]. If we take I = Fin, then IK-seq.-top. space is coincide
with I∗-T.S.

Definition 9. Let I and K stand for the ideals of N and consider the T.S. (X ,T ). Then

1. A set F ⊆ X is IK-closed, if for each (xi) ⊆ F with xi
IK

→ x, then x ∈ F.
2. A set V ⊂ X is IK-open, if its complement V C is IK-closed.

Remark 2. Consider the T.S. (X ,T ). An O ⊂ X is IK-open iff each sequence in X − O has
IK-limit in X −O.

P r o o f. The proof is evident from Definition 9. Therefore, it is omitted here. �

Definition 10. Let I and K stand for the ideals of N and consider the T.S. (X ,T ). For any

subset A ⊆ X define a set A
IK

(it is called IK-closure of A) by

A
IK

:= {x ∈ X : ∃(xi) ⊆ A, xi
IK

→ x}.

It is clear that ∅
IK

= ∅, X
IK

= X , and A ⊆ A
IK

holds ∀A ⊆ X .

Remark 3. A subset C of the T.S. X is IK closed set iff C
IK

= C.

P r o o f. Proof is obvious from the Definition 10. So, it is omitted here. �

Lemma 4. Let I and K stand for the ideals of N and let (X ,T ) represent a T.S. For any
subset A ⊆ X , IK-closure of A is IK-closed.

P r o o f. We must show that

(A
IK

)
IK

= A
IK

.

It is clear that

A
IK

⊂ (A
IK

)
IK

.

Let x ∈ (A
IK

)
IK

. Then, there exist a sequence (xi) ⊂ A
IK

s.t. xi
IK

→ x holds. Since (xi) ⊂ A
IK

,

then there exist sequences (xni ) ⊂ A s.t. xni
IK

→ xi. Therefore there exist the sets Mn ∈ F(I) s.t.

{i ∈ Mn : xni /∈ υn} ∈ K

for each neighborhood υn of xi. Choose m1 the i where x1i is belonging to neighborhood υ1 of
x1, similarly m2 the i where x2i is belonging to neighborhood υ2 of x2. If we continue this process
and take mp the i where xpi is belonging to neighborhood υn of xp. The obtained sequence (xmp

)

belongs to A. The theorem will be proved if we show that xmp

IK

→ x. Since xi
IK

→ x, so ∃M ∈ F(I)
s.t. the sequence

yi =

{

xi, i ∈ M,
x, i /∈ M,

yi
K
→ x.



IK-Sequential Topology 51

So,

{i ∈ M : xi /∈ υ} ∈ K

for each neighborhood υ of x. Now,

{i ∈ M : υn 6⊂ υ} ⊆ {i ∈ M : xi /∈ υ} ∈ K.

Therefore,

{i ∈ M : υn 6⊂ υ} ∈ K

and

{i ∈ M : xmp
/∈ υ} ⊂ {i ∈ M : υn 6⊆ U} ∈ K

hold. So, xmp

IK

→ x and x ∈ A
IK

. �

Definition 11. Let I and K stand for the ideals of N and (X ,T ) represent a T.S. Then, for
A ⊂ X , IK-interior of A is defined as

A◦I
K

:= A− (X −A
IK

).

Proposition 1. Let V be a subset of T.S. X , then V is IK-open iff V◦IK

= V.

P r o o f. Let V be an IK-open set. Then, X − V is IK-closed set and

clIK(X − V) = X − V

holds. So, we have

V◦IK

= V − (X − V) = V.

Conversely assume that

V◦IK

= V

holds. From the definition of IK-interior of V we have

V = V − (X − V
IK

).

Hence,

V ∩ X − V
IK

= ∅.

Consequently

X − V
IK

⊂ X − V.

Thus,

X − V
IK

= X − V

is satisfied. Therefore, X − V is IK-closed and V is IK-open. �

Definition 12 [21]. A sequence (xi) in a T.S. X is I-eventually in a subset A of X if

{i ∈ N : xi ∈ A} ∈ F(I).
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Definition 13. Let I and K stand for the ideals of N and consider the T.S. (X ,T ). A sequence
x̃ = (xi) ⊆ X is IK-eventually in a subset V of X . If there exist a sequence ỹ = (yi) ⊆ X s.t.
ỹ ∼I x̃ and ỹ is K-eventually in V.

In the next theorem, we will provide a sequence characterization of IK− open set.

Theorem 1. Let I and K stand for the ideals of N and consider the T.S. (X ,T ). A subset υ
of X is IK-open iff each IK-convergent sequence to x0 ∈ υ is IK-eventually in υ.

P r o o f. Let υ is IK-open. Then, X − υ is IK-closed and X − υ
IK

= X − υ holds. Let

x̃ = (xi) ⊂ X be a sequence s.t. xi
IK

→ x and x ∈ υ. Then, ∃M ∈ F(I) s.t. the sequence

ti =

{

xi, i ∈ M,
x, i /∈ M

is K-convergent to x. Since υ is a neighborhood of x, then we have

H = {i ∈ N : xi /∈ υ} ∈ K.

If we choose yi = ti, then

{i ∈ N : yi = xi} = {i ∈ N : ti = xi} = M ∈ F(I)

holds. So, (yi) ∼I (xi) holds and (yi) is eventually in υ.
Conversely, let x̃ = (xi) ⊂ X is a sequence which is IK-convergent sequence to a point x ∈ υ and

it is IK-eventually in υ. Assume that υ is not IK-open subset of X . So there exists x0 ∈ X − υ
IK

which x0 /∈ X − υ. This means that there exists a sequence (xi) ⊂ X − υ which is IK-convergence
to x0 ∈ υ. So, (xi) is IK-eventually in υ.

Therefore, ∃ỹ = (yi) ⊂ X which x̃ ∼I ỹ and ỹ is K-eventually in υ. This implies that ỹ is
K-eventually in υ which is not in case. �

Theorem 2. Let I and K stand for the ideals of N and consider the T.S. (X ,T ). A subset
C ⊂ X is IK-closed iff

C = ∩{A : A is IK— closed and C ⊂ A}.

P r o o f. Let
C = ∩{A : A is IK— closed and C ⊂ A}.

Let x be any element of IK-closure of C. Then there exists (xi) ⊂ C s.t. xi
IK

→ x. Let x /∈ C so

x /∈ ∩{A : A is IK— closed and C ⊂ A}.

This implies that ∃ IK-closed subset F of X s.t. x /∈ A, but C is IK-closed and it is a subset of A,
which is a contradiction.

The converse is obvious. �

Theorem 3. Let I and K be ideals of N and (X ,T ) be a T.S. A function clIK : P(X ) → P(X )

defined as clIK(A) = A
IK

is satisfying Kuratowski closure axioms

(K1) clIK(∅) = ∅ and clIK(X ) = X ,
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(K2) A ⊆ clIK(A) ∀A ⊆ X ,
(K3) clIK(A) = clIK(clIK(A) ∀A ⊆ X ,
(K4) clIK(A ∪B) = clIK(A) ∪ clIK(B) ∀A,B ⊆ X .

P r o o f. (K1) and (K2) are clear from the definition of IK-closure function. By Lemma 4,
clIK(A) is closed. So, clIK(clIK(A)) = clIK(A). Therefore, (K3) holds.

To prove (K4), let x ∈ clIK(A) ∪ clIK(B). Then, x ∈ clIK(A) or x ∈ clIK(B). Without lost

of generality assume that x ∈ clIK(A). So, ∃(xi) ⊂ A s.t. xi
IK

→ x. Therefore, ∃(xi) ⊂ A ∪ B s.t.

xi
IK

→ x. So, x ∈ clIK(A) ∪ clIK(B).

Conversely, let x ∈ clIK(A ∪ B). Then, there exist a sequence (xi) ⊂ (A ∪ B) s.t. xi
IK

→ x.
Assume that x /∈ clIK(A) and x /∈ clIK(B). So, neither set A nor set B contains a sequence s.t. IK-
converges to the point x. Consequently, there is not any sequence in the A∪B which is convergent
to x. But x ∈ clIK(A ∪B) which is a contradiction. Hence,

clIK(A ∪B) = clIK(A) ∪ clIK(B)

holds. �

Corollary 1. A subset A of X is IK-closed iff clIK(A) = A and a subset O ⊂ X is IK-open
iff X −O is IK-closed.

Theorem 4. Let I and K stand for the ideals of N and consider the T.S. (X ,T ). Then,

TIK := {A ⊂ X : clIK(X −A) = X −A}

is a topology over the set X .

P r o o f. By (K1), it is clear that X ∈ TIK and ∅ ∈ TIK hold. Let A,B ∈ TIK be arbitrary
sets. To prove A ∪B ∈ TIK we must to prove that

X −A ∪B = clIK(X −A ∪B)

holds. By (K2), we have
X −A ∪B ⊂ clIK(X −A ∪B).

Now, let x ∈ clIK(X − A ∪ B) be an arbitrarily element. Then, ∃(xi) ⊂ X − (A ∪ B) s.t. it
is IK-convergent to x. This implies that (xi) is not subset of A ∪ B. So, (xi) is neither subset of
A nor subset of B. Therefore, (xi) ⊂ X − A or (xi) ⊂ X − B which IK-converges to point x. So,
x ∈ clIK(X −A) or x ∈ clIK(X −B). Since X −A and X −B are closed sets, then

x ∈ (X −A) ∪ (X −B) = X −A ∪B

holds.
Let {Ai} be a collection of IK-open subsets of X . Then, clIK(X − Ai) = X − Ai ∀i ∈ N. By

considering (K2), we have

∩i∈N(X −Ai) ⊆ clIK

(

∩n∈N (X −Ai)
)

.

Let x ∈ clIK ∩n∈N (X − Ai) be an arbitrary element. Then, ∃(xi) ⊂ ∩n∈N(X − Ai) which is
IK-convergent to x. Then, (xi) ⊂ (X −Ai) ∀i ∈ N. Since X −Ai are closed sets, then x ∈ X −Ai

∀i ∈ N. Therefore,
x ∈ ∩i∈N(X −Ai).

Hence, the set TIK is a topology and (X ,TIK) is a T.S. �
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Definition 14. The T.S. (X ,TIK) is called as IK-sequential T.S. For abbreviation we will
show it by IK-seq.-top. An IK-seq.-top. (X ,TIK) is said to be IK-discrete space if TIK = P(X ).

Theorem 5. Let I, K, I1, K1, I2 and K2 stand for ideals of N and (X ,T ) represents a T.S.
Let I1 ⊂ I2 and K1 ⊂ K2. Then,

1. TIK2
≺ TIK1

,
2. TIK

2

≺ TIK
1

.

P r o o f. Let υ be any IK2-open subset of X . Then, X−υ is IK2-closed and clIK2
(X−υ) = X−υ

hold. To prove υ is IK1-open subset ofX , we will show that

clIK1
(X − υ) ⊂ X − υ.

Let x ∈ clIK1
(X − υ) be any point. Then, there exists (xi) ⊂ X − υ s.t. xi

IK1

→ x. Since

K1 ⊂ K2, then by Proposition 3.6 in [13], xi
IK2

→ x. So, x ∈ clIK2
(X − υ). Therefore, x ∈ X − υ.

Hence X − υ is IK2-closed set and υ is IK2-open subset of X .

The second one can be proved by using the fact that if I1 ⊂ I2, then, xi
IK
1→ x implies xi

IK
2→ x,

it easily can be proved. �

Theorem 6. Let I and K stand for the ideals of N and (X ,T ) represent a T.S. Then, every
I∗-open set is IK-open set.

P r o o f. If we take K = Fin then I∗-open set will be IK-open set. �

Theorem 7. Let I and K stand for the ideals of N and (X ,T ) represent a T.S. Then, every
IK-open set is K-open set.

P r o o f. Let υ be an arbitrary IK-open subset of X . Then, X − υ is IK-closed and

clIK(X − υ) = X − υ.

To prove υ is K open, it is sufficient to show that X − υ is K-closed, i.e,

X − υ = X − υ
K
.

It is clear that X − υ ⊂ X − υ
K

. Let x ∈ X − υ
K

be an arbitrary element s.t. ∃(xi) ⊂ X − υ

satisfying xi
K
→ x.

Then, by Lemma 3.5 in [13] we have xi
IK

→ x . So, x ∈ clIK(X −υ) = X −υ. Hence, the theorem
proved. �

Proposition 2. Let I and K stand for the ideals of N and (X ,T ) represent a T.S. Then, the
following statements are true:

1. If K ⊂ I, then, each I-open set is IK-open set.

2. If the space X is a first countable space and the ideal I has additive property with respect to
K (see Definition 3.10 in [13]), then, each IK-open set is I-open set.

3. If I ⊂ K, then every K-open set is IK-open.

P r o o f. The proof is obvious from Proposition 3.7 and Theorem 3.11 of [13]. �
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5. IK-continuity of functions

In this section we will define IK−continuous and sequential IK-continuous functions. We will
prove that in any IK-sequential T.S. these two concepts coincide. Also, we will state some theorems
that give the definition of IK-continuous function in different words and ways. At the end of this
section we will see that the combination of IK-continuous functions is IK-continuous.

Definition 15. Let I and K stand for the ideals of N and (X ,TIK) (Y,T
′

IK) represent IK-
seq.-top. spaces. A function f , from X to Y is said to be

(i) IK-continuous which provides that inverse image of any IK-open subset of Y is IK-open
in X .

(ii) Sequentially IK-continuous which provides that f(xi)
IK

→ f(x) ∀(xi) ⊂ X with xi
IK

→ x.

Theorem 8. Let I and K stand for the ideals of N and (X ,TIK) (Y,T
′

IK) represent IK-seq.-
top. spaces; and f , from X to Y be a function. Then, f is IK-continuous iff it is sequentially
IK-continuous.

P r o o f. Let f be an IK-continuous function. Then, inverse image of any IK-open subset of

Y is IK-open subset in X . Let (xi) ⊂ X be a sequence with xi
IK

→ x. Then, there exists M ∈ F(I)
s.t. the following sequence

ti :=

{

xi, i ∈ M,
x, i /∈ M

is K-convergent to x. That is, for each neighborhood υ of x we have

{i ∈ N : ti ∈ υ} ∈ F(K).

Let V be any IK-open neighborhood of f(x). Then, f−1(V) is IK-open subset of X which contains
the point x. So, it is a neighborhood of x. Therefore,

{i ∈ N : ti ∈ f−1(V)} ∈ F(K),

implies that {i ∈ N : f(ti) ∈ V} ∈ F(K). Hence, the sequence

f(ti) :=

{

f(xi), i ∈ M,
f(x), i /∈ M

is K-convergent to f(x). So, f(xi)
IK

→ f(x). Hence, f is sequentially IK-continuous function.
Conversely, let the function f be sequentially IK-continuous and υ is any IK-open subset of Y.

Assume that f−1(υ) is not IK-open subset of X . Then, X − f−1(υ) is not IK-closed subset of X .
So,

∃(xi) ⊂ X − f−1(υ) s.t. xi
IK

→ x and x /∈ X − f−1(υ),

i.e. xi /∈ f−1(υ) ∀n and xi
IK

→ x which means x ∈ f−1(υ). Since f is IK-sequentially continuous

function then f(xi)
IK

→ f(x). So, f(x) ∈ υ and f(xi) /∈ υ ∀n. This is a contradiction. �

Lemma 5. Let I and K stand for the ideals of N and (X ,TIK) (Y,T
′

IK) represent IK-seq.-
top. spaces and f , from X to Y be an IK-continuous function. If (yi) ⊂ Y be a sequence s.t.

yi
IK

→ y, then f−1(yi)
IK

→ f−1(y).
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P r o o f. Let f be an IK-continuous function. Let yi
IK

→ y then ∃M ∈ F(I) s.t. the sequence

sn =

{

yi, i ∈ M,
y, i /∈ M

is K-convergent to y. So, for each neighborhood υ of Y,

{i ∈ N : yi ∈ υ} ∈ F(K).

Since f is IK-continuous function, then inverse image of any IK− open set in Y is IK-open in X ,
f−1(υ) is open neighborhood of x in X . Then

{i ∈ N : f−1(yi) ∈ f−1(υ)} ∈ F(K).

Therefore,

f−1(sn) =

{

f−1(yi), i ∈ M,
f−1(y), i /∈ M,

is K-convergent to f−1(y) and hence f−1(yi)
IK

→ f−1(y). �

Theorem 9. Let I and K stand for the ideals of N and (X ,TIK) (Y,T
′

IK) represent IK-seq.-
top. spaces. Then the function f , from X to Y is IK-continuous iff

clIK(f−1(B) = f−1(clIK(B)

holds ∀B ⊂ Y.

P r o o f. Assume that function f , from X to Y is IK-continuous function. Let

x ∈ clIK(f−1(B)).

Then, ∃(xi) ⊂ f−1(B) s.t. xi
IK

→ x. Since f is IK-continuous so,

f(xi)
IK

→ f(x).

In another hand (xi) ⊂ B, so f(x) ∈ clIK(B) and x ∈ f−1(clIK(B)).

Now, let x ∈ f−1(clIK(B)), i.e. f(x) ∈ clIK(B). Therefore, ∃(yi) ⊂ B s.t. xi
IK

→ x. Then,

by Lemma 5 there exists (xi) = (f−1(yi) ⊂ f−1(B) s.t. xi
IK

→ x, where x = f−1(y) holds. So,
x ∈ clIK(f−1(B)). Hence,

clIK(f−1(B) = f−1(clIK(B).

Conversely, let
clIK(f−1(B) = f−1(clIK(B), ∀B ∈ P(Y).

Let υ be IK-open subset of Y then

clIK(Y −B) = Y −B.

Let B = Y − υ, then

clIK(f−1(Y − υ)) = f−1(clIK(Y − υ)) = f−1(Y − υ).

This shows that f−1(Y − υ) is IK-closed. Hence, the following equality

f−1(Y − υ) = X − f−1(υ)

implies that X − f−1(υ) is IK-closed. Therefore f−1(υ) is IK-open set. �
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Corollary 2. Let I and K stand for the ideals of N and (X ,TIK) (Y,T
′

IK) represent IK-seq.-
top. spaces. A function f , from X to Y is IK-continuous iff

intIK(f−1(B) = f−1(intIK(B) ∀B ⊂ Y.

Definition 16. Let I and K stand for the ideals of N and (X ,TIK) (Y,T
′

IK) represent IK-seq.-
top. spaces and f , from X to Y be a function. The function f is IK-continuous at a point x ∈ X
if inverse image of any neighborhood of f(x) is a neighborhood of x in X .

Corollary 3. Let I and K stand for the ideals of N and (X ,TIK) (Y,T
′

IK) represent IK-seq.-
top. spaces. Then, the function f , from X to Y is IK-continuous iff it is IK-continuous at every
point x ∈ X .

Definition 17. Let I and K stand for the ideals of N and (X ,TIK) (Y,T
′

IK) represent IK-
seq.-top. spaces and f , from X to Y be a function, f is said to be IK-closure preserving if

f(clIK(A)) = clIK(f(A) ∀A ⊂ X .

Theorem 10. The function f , from X to Y is IK-continuous iff it is IK-closure preserving.

P r o o f. Let f : X → Y be an IK-continuous function. Then, for any subset B of Y

clIK(f−1(B) = f−1(clIK(B)

holds. Consider a set A ⊂ X s.t. f(A) is subset of Y. So,

clIK(f−1(f(A)) = f−1(clIK(f(A))

holds and it implies that f(clIK(A)) = clIK(f(A)) ∀A ⊂ X holds.

Conversely, let f be IK-closure preserving function, then

f(clIK(A)) = clIK(f(A)) ∀A ⊂ X .

Let υ be any subset of Y, then f−1(υ) is subset of X and

f(clIK(f−1(υ))) = clIK(f(f−1(υ) = clIK(υ)

holds. So

clIK(f−1(υ) = f−1(clIK(υ)

and by Theorem 9 the function f is IK-continuous. �

Theorem 11. Let X ,Y and Z be IK-seq.-top. spaces. Let f , from X to Y and g, from Y to
Z be IK-continuous functions. Then g ◦ f : X → Z is IK-continuous functions.

P r o o f. Let υ be any IK-open subset of Z. Since g is IK-continuous function then g−1(υ)
is IK-open subset of Y and because f is IK-continuous function therefore f−1(g−1(υ)) is IK-open
subset of X hence (g ◦ f)−1(υ) is IK-open subset of X . �
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6. Subspace of IK-seq.-top. space

In this section subspaces of the IK-seq.-top. space and its properties under an IK-continuous
function will be discussed.

Definition 18. Let (X ,TIK) be an IK-seq.-top. space and Y ⊂ X . Then

CY : P(Y) → P(Y), CY (A) = Y ∩ clIK(A)

is a Kuratowsky operator. Define a T.S. as (Y,T Y
IK), where

T Y
IK = {U ∩ Y, Y ∈ TIK} ⊂ P(Y).

This T.S. is called IK-subspace of X .

Lemma 6. Let Y be an IK-subspace of IK-seq.-top. space X . If set A is IK-open subset of Y
and Y is an IK-subset of X . Then A is IK-open subset of X .

P r o o f. Let A be IK-open subset of Y. Then ∃U ∈ TIK s.t. A = Y ∩ U . Since Y is an
IK-open subset of X . Then A ∈ TIK. �

Proposition 3. Let (X ,TIK) and (Y,T
′

IK) be IK-sequential spaces, f : X → Y be IK-
continuous function and A ⊂ X is IK-subspace of X . Then f/A : A → Y, the restriction f

over A is IK-continuous function.

P r o o f. Let U be an IK-open subset of Y. Since f is IK-continuous function then f−1(U) is
IK-open subset of X . That is f−1(U) ∈ TIK.

In other hand f−1
/A (U) = A ∩ f−1(U). So f−1

/A (U) is IK-open subset of subspace A. Hence f/A

is IK-continuous function. �

Lemma 7. If A is IK-subspace of IK-sequential T.S. X . Then the inclusion map j : A → X
is IK-continuous.

P r o o f. If U is IK-open in X then j−1(U) = U ∩ A is IK-open in subspace Y hence j is
IK-continuous. �

Proposition 4. Let (X ,TIK) and (Y,T
′

IK) be IK-sequential spaces, B ⊂ Y be subspace of Y
and f : X → B be IK-continuous function. Then, h : X → Y obtained by expanding the range of
f is IK-continuous.

P r o o f. To show h : X → Y is IK-continuous function, if B as subspace of Y then note that
h is the composition of the map f : X → B and j : B → Y. �
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7. Conclusion

In this article we defined the notion of IK-closed (resp. IK-open) set in a T.S. (X ,T ) and
established some important results concerning this notion. Furthermore, we defined the IK-seq.-
top., which is a generalized form of the I∗-sequential space. We also talked about IK-continuity of
functions and saw that in IK-seq.-top. space the notion of continuity and sequential continuity are
the same. And in the last section of the paper, subspace of IK-sequential space have been studied
and some important results established.
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