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APPROXIMATION OF DIFFERENTIATION OPERATORS
BY BOUNDED LINEAR OPERATORS IN LEBESGUE SPACES
ON THE AXIS AND RELATED PROBLEMS IN THE SPACES
OF (p, q)-MULTIPLIERS AND THEIR PREDUAL SPACES1

Vitalii V. Arestov

Ural Federal University,
51 Lenin ave., Ekaterinburg, 620000, Russian Federation

vitalii.arestov@urfu.ru

Abstract: We consider a variant En,k(N ; r, r; p, p) of the four-parameter Stechkin problem En,k(N ; r, s; p, q)
on the best approximation of differentiation operators of order k on the class of n times differentiable functions
(0 < k < n) in Lebesgue spaces on the real axis. We discuss the state of research in this problem and related
problems in the spaces of multipliers of Lebesgue spaces and their predual spaces. We give two-sided estimates
for En,k(N ; r, r; p, p). The paper is based on the author’s talk at the S.B.Stechkin’s International Workshop-
Conference on Function Theory (Kyshtym, Chelyabinsk region, August 1–10, 2023).

Keywords: Differentiation operator, Stechkin’s problem, Kolmogorov inequality, (p, q)-Multiplier, Predual
space for the space of (p, q)-multipliers.

1. Introduction

1.1. Some notation

In this paper, we use the standard notation for the classical complex spaces of complex-
valued measurable (in particular, continuous) functions of one variable on the real axis. Thus,
Lγ = Lγ(−∞,∞), 1 ≤ γ < ∞, is the Lebesgue space of functions f measurable on the real axis
R = (−∞,∞) such that the function |f |γ is integrable over the axis; the space Lγ is equipped with
the norm

‖f‖γ = ‖f‖Lγ =

(∫
|f(t)|γdt

)1/γ

;

hereinafter, we omit the integration set in integrals over the axis. The space L∞ = L∞(−∞,∞)
consists of measurable essentially bounded functions on the axis; the space is equipped with the
norm

‖f‖∞ = ‖f‖L∞
= ess sup

{
|f(t)| : t ∈ (−∞,∞)

}
.

The space L∞ = L∞(−∞,∞) contains the space C = C(−∞,∞) of bounded continuous functions
on the axis with the uniform norm

‖f‖C = sup{|f(t)| : t ∈ (−∞,∞)}.

Let C0 = C0(−∞,∞) be the subspace of C = C(−∞,∞) of functions vanishing at infinity. Denote
by V the space of (complex) bounded Borel measures on (−∞,∞). We will identify this set with
the set of (complex) functions µ of bounded variation on (−∞,∞) such that values of their real

1This work was supported by the Russian Science Foundation, project no. 22-21-00526,
https://rscf.ru/project/22-21-00526/ .

https://doi.org/10.15826/umj.2023.2.001
mailto:vitalii.arestov@urfu.ru
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and imaginary parts at the discontinuity points are between the right-sided and left-sided limits.
The norm in the space V is the total variation

∨
µ =

∨∞
−∞ µ of a measure (a function) µ ∈ V .

These spaces and their norms are invariant under the group of translations {τh, h ∈ R} defined
by the formula (τhf)(t) = f(t−h), t ∈ R, as well as under the family of operators {σh, h ∈ R} given
by the formula (σhf)(t) = f(h−t), t ∈ R. The operators of these two families are related as follows:
σh = τhσ0, where σ0 is the operator of changing the sign of a function argument: (σ0f)(t) = f(−t),
t ∈ R.

We define the direct and inverse Fourier transforms of functions (at least from the space
L = L1(R)) by the formulas

f̂ (t) =

∫
e−2πtηif(η) dη, f

∧

(t) =

∫
e2πtηif(η) dη = f̂ (−t), (1.1)

respectively. Properties of the Fourier transform can be found, for example, in [44, Ch. I, Sects. 1, 2].
Let S be the space of rapidly decreasing, infinitely differentiable functions on the axis, and

let S ′ be the corresponding dual space of generalized functions (see, for example, [41, 42, 44]).
The value of a functional θ ∈ S ′ on a function φ ∈ S will be denoted by 〈θ, φ〉. The space S ′

contains the set L = L (R) of functions f measurable and locally integrable on R, and satisfying
the condition ∫

(1 + |t|)d|f(t)|dt <∞

with some exponent d = d(f) ∈ R; functions f ∈ L are called slowly growing (classical) functions.
A function f ∈ L is associated with a functional f ∈ S ′ by the formula

〈f, φ〉 =
∫
f(t)φ(t)dt, φ ∈ S .

The convolution θ ∗ φ of an element θ ∈ S ′ and a function φ ∈ S is the function y(η) = 〈θ, σηφ〉.
If θ ∈ L is a classical function, then

(θ ∗ φ)(η) =
∫
θ(t)φ(η − t) dt.

The Fourier transform θ̂ of a functional θ ∈ S ′ is a functional θ̂ ∈ S ′ acting by the formula
〈θ̂, φ〉 = 〈θ, φ̂〉, φ ∈ S . If θ ∈ Lγ , 1 ≤ γ ≤ 2, then θ̂ ∈ Lγ′ , 1/γ + 1/γ′ = 1; moreover, the

Hausdorff–Young inequality ‖θ̂‖γ′ ≤ ‖θ‖γ holds (see, for example, [44, Ch. V, Sect. 1]).

1.2. Stechkin’s problem on the best approximation
of differentiation operators by bounded linear operators
in Lebesgue spaces on the real axis

Let r, s, p, and q be parameters satisfying the constraints 1 ≤ r, s, p, q ≤ ∞. Let us agree that,
for r = ∞, by L∞ = L∞(−∞,∞), we mean the space C0 = C0(−∞,∞) of continuous functions
on the axis vanishing at infinity. For p = ∞, by L∞ = L∞(−∞,∞), we mean the classical space
of essentially bounded functions on the axis. For s = ∞ and q = ∞, by L∞ = L∞(−∞,∞), we
mean the space C = C(−∞,∞) of bounded continuous functions on the axis or even the space
C0 = C0(−∞,∞) of continuous functions vanishing at infinity depending on the situation; these
situations will be stipulated.

For an integer n ≥ 1, we define the space W n
r,p of functions f ∈ Lr that are n − 1 times

continuously differentiable on the axis, their derivatives f (n−1) of order n− 1 are locally absolutely
continuous, and f (n) ∈ Lp. In the space W n

r,p, consider the class

Qn
r,p =

{
f ∈W n

r,p : ‖f (n)‖p ≤ 1
}
.
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Denote by B(Lr, Ls) the set of all bounded linear operators from Lr to Ls, and let B(N ;Lr, Ls)
for N > 0 be the set of operators T ∈ B(Lr, Ls) with the norm ‖T‖Lr→Ls ≤ N . Let 0 ≤ k < n be
an integer and k > 0 if r = s. For an operator T ∈ B(Lr, Ls), define

U(T ) = sup
{
‖f (k) − Tf‖q : f ∈ Qn

r,p

}
.

If the difference f (k)−Tf does not belong to the space Lq, then we assume that ‖f (k)−Tf‖Lq = ∞.
For N > 0, the quantity

E(N) = En,k(N) = En,k(N ; r, s; p, q) = inf
{
U(T ) : T ∈ B(N ;Lr, Ls)

}
(1.2)

is the best approximation (in the space Lq) of the differentiation operator of order k on the class Qn
r,p

by the set of bounded linear operators B(N ;Lr, Ls). Stechkin’s problem is to study quantity (1.2)
and an extremal operator on which the infimum is attained in (1.2); we will call it problem (1.2),
and sometimes the problem En,k(N ; r, s; p, q).

Problem (1.2) is a specific version of Stechkin’s problem on the best approximation of an un-
bounded linear operator by bounded linear operators on a class of elements of a Banach space, which
arose in his paper [46]. Problem (1.2) and its specific cases were studied by many mathematicians:
S.B. Stechkin, L.V. Taikov, Yu.N. Subbotin, V.N. Gabushin, V.I. Berdyshev; V.M.Tikhomirov and
his colleagues A.P. Buslaev and G.G. Magaril-Il’yaev; V.F. Babenko and his colleagues and stu-
dents; V.V. Arestov, R.R. Akopyan, V.G. Timofeev, M.A. Filatova, E.E. Berdysheva, and a lot
others; see, for example, the review papers [9, 15, 16] and the bibliography therein. Some specific
results will be described in what follows.

Note some facts. Necessary and sufficient conditions for the finiteness of quantity (1.2) are
known, see [26] (s = q) and [4] (s 6= q). Roughly speaking, these conditions are

s ≥ r, q ≥ p. (1.3)

More precisely, if conditions (1.3) are satisfied, then there exists N0 > 0 such that E(N) < ∞ for
N ≥ N0. If the problem parameters satisfy the constraints

k − 1

s
+

1

r
> 0, n− k +

1

q
− 1

p
> 0, (1.4)

then conditions (1.3) are necessary and sufficient for the quantity E(N) to be finite for any N > 0.
For a discussion of conditions (1.4), see [4].

Under conditions (1.3) and (1.4), we have the formula

E(N) = E(1)N−γ , γ = (n− k + 1/q − 1/p)/(k + 1/r − 1/s) > 0; (1.5)

See [46] for the case q = p = s = r = ∞; in the general case, formula (1.5) is justified similarly, see,
for example, [2].

The present paper considers problem (1.2) in the case s = r and q = p, i.e., the variant
En,k(N ; r, r; p, p). We review the results obtained so far in this version of the problem and related
problems in multiplier spaces of Lebesgue spaces and predual spaces of multiplier spaces. In the
last section of the paper, we give two-sided estimates for the value En,k(N ; r, r; p, p) in this variant
of the problem.

1.3. Connection with the Kolmogorov inequality

Stechkin’s problem (1.2) is related to several other extremal problems of function theory. Among
them are the exact Kolmogorov inequalities for differentiable functions on the axis

‖f (k)‖Lq ≤ G‖f‖αLr
‖f (n)‖βLp

, f ∈W n
r,p, (1.6)
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α = (n− k − 1/p + 1/q)/(n − 1/p + 1/r), β = 1− α.

Such inequalities were studied by G.H. Hardy, J.E. Littlewood, E. Landau, J. Hadamard,
B. Szőkefalvi-Nagy, A.N. Kolmogorov, S.B. Stechkin, L.V. Taikov, V.N. Gabushin, V.I. Berdyshev,
N.P. Kuptsov, A.P. Buslaev, G.G. Magaryl-Il’yaev, V.M. Tikhomirov, V.F. Babenko, etc. (see the
bibliography in [9, 16, 17, 48]). V.N. Gabushyn found necessary and sufficient conditions for the
existence of inequality (1.6), more precisely, for the finiteness of the constant G = G(n, k; r, p, q)
in (1.6). Namely, he proved [24] (see also [27, 28]) that G <∞ if and only if

n− k

r
+
k

p
≥ n

q
. (1.7)

S.B. Stechkin made an important observation that, in the classical case s = q, the value (1.2)
and the best constant in (1.6) are related by the inequality

En,k(N ; r, q; p, q) ≥ βαα/βG1/βN−α/β , N > 0. (1.8)

To avoid discussing specific degenerate values of the parameters, we will assume that conditions (1.3)
and (1.4) hold. Inequality (1.8) is a specific version of a more general statement and more general
considerations by S.B. Stechkin contained in [46, Sect. 2].

As follows from (1.3) and (1.7), the conditions for the finiteness of the value
E(N) = En,k(N ; r, q; p, q) of Stechkin’s problem and the best constant G = G(n, k; r, p, q) in (1.6)
are different. Consequently, there are cases when E(N) = ∞ and G < ∞; in this situation, in-
equality (1.8) is strict. In the case E(N) < ∞, depending on the values of the parameters, both
possibilities are realized: inequality (1.8) can turn into equality, and inequality (1.8) can be strict.
A more informative discussion of this issue can be found in [9, Sect. 4].

Inequality (1.8) is an important tool for studying both the three-parameter version of prob-
lem (1.2) (the case s = q) and inequality (1.6). Indeed, an arbitrary specific function f∗ ∈ W n

r,p

estimates the best constant G in inequality (1.6) from below. This, due to (1.8), gives a lower esti-
mate for the quantity En,k(N ; r, q; p, q). A specific operator T ∗ ∈ B(Lr, Lq) gives an upper estimate
for the quantity En,k(N ; r, q; p, q): En,k(N ; r, q; p, q) ≤ U(T ∗) for N = ‖T ∗‖; in this case, it is not
necessary to have the exact value of U(T ∗) but only again an upper estimate. If we managed to
choose a function f∗ and an operator T ∗ so that the obtained upper and lower estimates for the
quantity E(N) coincide, then we have a solution to both the problems. More precisely, we have
exact values of E(‖T ∗‖) and the best constant G in (1.6). Moreover, the operator T ∗ is extremal
in Stechkin’s problem, and the function f∗ is extremal in the Kolmogorov inequality. Along this
path, a solution to both problems was found in several new cases; see [9, Sect. 4] and the references
therein.

The considerations just outlined are not universal in the study of problem (1.2). Firstly, in-
equality (1.8) can be strict and, therefore, in this case, it is impossible to obtain an exact lower
estimate for En,k(N ; r, q; p, q). Secondly, in the four-parameter case s 6= q, there is no analog of
inequality (1.8), at least in Lebesgue spaces.

In the study of Stechkin’s problem, the property of the translation invariance of problem (1.2)
occurs useful. The norms of spaces, the class Qn

r,p, and the approximated differentiation operator

Dk = dk/dtk are invariant under the translation group {τh}; precisely in this sense, we say that
problem (1.2) is translation invariant. Due to this property, in problem (1.2), we can restrict
ourselves to approximating operators T that are also translation invariant; details can be found in
[4–6, 8, 9]. This property makes it possible to solve Stechkin’s problem in some cases (in particular,
for s 6= q) and, which is no less essential, expands the environment of the problem. It is these issues
that most of this paper is devoted to.
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The property of invariance of approximating operators in Stechkin’s problem and related prob-
lems in spaces of periodic functions was obtained and applied in the study of these problems by
B.E. Klotz [33, 34].

2. Translation invariance of Stechkin’s problem

In this section, we present some properties of spaces of bounded linear operators in Lebesgue
spaces on the axis that are translation invariant; in particular, we describe their predual spaces.

2.1. The space of translation invariant bounded operators

For 1 ≤ p, q ≤ ∞, denote by Tp,q = Tp,q(R) the set of bounded linear operators from Lp = Lp(R)
to Lq = Lq(R) that are invariant under (any) translation, i.e., such that τhT = Tτh on Lp for
all h ∈ R. Extensive research has been devoted to the properties of invariant bounded operators
(see [32, 37, 44] and the references therein). It is known (see, for example, [32, Theorem 1.1]) that
if p > q, then, for p < ∞, the set Tp,q consists only of the operator T ≡ 0, and, for p = ∞, the
restriction of an operator T ∈ T∞,q to the set (L∞)0 of functions from L∞ having zero limit at
infinity is the zero operator. In this regard, when discussing the properties of bounded invariant
operators in what follows, we will assume that 1 ≤ p ≤ q ≤ ∞.

In a joint paper [23], Figà-Talamanca and Gaudry (1967) proved that, for 1 ≤ p ≤ q < ∞,
the space Tp,q(G) of bounded linear operators from Lp(G) to Lq(G) on a locally compact Abelian
group G invariant under translation (more precisely, under the group operation) is the conjugate
space for a function space Ap,q(G) constructively described by them. More precisely, in [23], function
spaces Ap,q(G) were constructed such that the space Tp,q(G) of invariant operators is isometrically
isomorphic to the dual space A∗

p,q(G), in short, Tp,q(G) = A∗
p,q(G). Two years earlier (in 1965),

Figa-Talamanca [22] obtained a similar result for the case 1 < q = p <∞.

Let X and Y be a pair of normed linear spaces such that Y is the conjugate space of X, i.e.,
X∗ = Y . In this case, we say that X is the predual space of Y . In this terminology, the results
of [22] and [23] mean that the spaces Ap,q(G) (for 1 ≤ p ≤ q <∞) are predual of the spaces Tp,q(G).

The results of [22] and [23] are valid, in particular, for the spaces Tp,q(R) of bounded linear
operators from the space Lp(R) to the space Lq(R) invariant under the group of translations τh,
h ∈ R. So, for 1 ≤ p ≤ q <∞, the spaces Tp,q(R) are conjugate spaces of the spaces Ap,q = Ap,q(R)
constructed in [22] and [23]; i.e., Ap,q are their predual.

In the author’s papers (see [12, 14] and the references therein), a function space Fp,q = Fp,q(R) ⊂
Lr(R) was constructed which is the predual space of the space Tp,q = Tp,q(R) of translation invariant
bounded linear operators from Lp(R) to Lq(R). It is described in terms different from [22, 23],
however, (for 1 ≤ p ≤ q < ∞) it coincides, more precisely, is isometrically isomorphic to the space
Ap,q(R) of Figá-Talamanca and Gaudry [23]. The space Fp,q will be described and used in what
follows.

2.1.1. The space of (p, q)-multipliers

Let us discuss some properties of bounded linear operators from Lp(R) to Lq(R) that are invariant
under (any) translation.

It is known (see [32, Theorem 1.2] or [44, Ch. I, Theorem 3.16]) that, if q ≥ p, then an operator
T ∈ Tp,q on S has the form of the convolution with an element θ = θT ∈ S ′:

Tφ = θ ∗ φ, φ ∈ S .
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The set Mp,q = {θT : T ∈ Tp,q} ⊂ S ′ is a Banach space with respect to the norm

‖θT ‖Mp,q = ‖T‖Lp→Lq .

Elements θ ∈Mp,q, 1 ≤ p ≤ q ≤ ∞ are often called (p, q)-multipliers.

In what follows, we always assume that 1 ≤ p ≤ q ≤ ∞. Denote by ρ a parameter chosen from
the condition

1/p − 1/q = 1− 1/ρ; (2.1)

we have 1 ≤ ρ ≤ ∞. It is known that if θ ∈ Lρ and x ∈ Lp, then θ ∗ x ∈ Lq and the Young
inequality holds (see, for example, [44, Ch. V, Sect. 1]):

‖θ ∗ x‖q ≤ ‖θ‖ρ‖x‖p. (2.2)

This fact and inequality (2.2) imply the embedding

Lρ ⊂Mp,q,
1

ρ
= 1−

(
1

p
− 1

q

)

with the inequality ‖θ‖Mp,q ≤ ‖θ‖ρ, θ ∈ Lρ, for the norms of the elements.

Let us mention further known properties of the spaces Mp,q (see, for example, [32, Sect. 1.2],
[44, Ch. V, Sect. 1]). For two pairs of conjugate exponents (p, q) and (q′, p′), the equality

Mp,q =Mq′,p′

holds together with the equality of the norms of the elements: ‖θ‖Mp,q = ‖θ‖Mq′,p′
, θ ∈ Mp,q.

From this and the Riesz–Thorin interpolation theorem (see, for example, [21, Ch. VI, Sect. 10,
Theorem 11] or [44, Ch. V, Sect. 1, Theorem 1.16]), it follows that if

1

α
=

1− t

p
+
t

q′
,

1

β
=

1− t

q
+

t

p′
, 0 ≤ t ≤ 1,

then we have the embedding

Mp,q ⊂Mα,β

and the inequality

‖θ‖Mα,β
≤ ‖θ‖Mp,q , θ ∈Mp,q.

A constructive description of multipliers is known only in several cases. The structure of the
spaces M2,2 and Mp,∞ = M1,p′ is known; namely (see, for example, [32, Sect. 1.2] and [44, Ch. 1,
Sect. 3]), the following equalities are valid (together with the equalities of the norms of the elements):

M2,2 = L̂∞ = {θ̂ : θ ∈ L∞},

Mp,∞ =M1,p′ = Lp′ for 1 ≤ p <∞,

M∞,∞ =M1,1 = V ;

here, V = V (R) is the space of (complex) bounded Borel measures on R.
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2.1.2. The predual space of the space of (p, q)-multipliers

This section describes function spaces Fp,q constructed by the author in [14] and some of their
properties. These spaces are predual of the spaces of multipliers Mp,q: F

∗
p,q =Mp,q. The spaces Fp,q

are described in different terms compared to Ap,q in [23], although, in fact, they are isometrically
isomorphic [14, Theorem 3.2]. Here, as before, 1 ≤ p ≤ q ≤ ∞. Let γ be a parameter defined by
the relation

1/γ = 1/p − 1/q; (2.3)

for γ = ∞ (i.e., for q = p), we assume that Lγ = C0. Comparing (2.3) with (2.1), we conclude that
γ = ρ′.

On the set S , we define the functional

‖φ‖p,q = sup{|〈θ, φ〉| : θ ∈Mp,q, ‖θ‖Mp,q ≤ 1}, φ ∈ S . (2.4)

Functional (2.4) on the set S is finite and is a norm [14, Lemma 2.1].

Let Fp,q = Fp,q(R) be the completion of the space S with respect to the norm (2.4). For all
1 ≤ p ≤ q ≤ ∞, the space Fp,q is a function space; moreover, it is embedded in the space Lγ

[14, Lemma 2.3]:

Fp,q ⊂ Lγ and ‖f‖γ ≤ ‖f‖Fp,q , f ∈ Fp,q. (2.5)

Hereinafter, we use the notation ‖f‖p,q for the norms ‖f‖Fp,q of functions f ∈ Fp,q.

For the convenience of reference, we formulate as a separate lemma the following statement
from [14, Lemma 2.5].

Lemma 1. For specific values of the parameters, the space Fp,q has the following properties.

(1) For q = ∞,

Fp,∞ = F1,p′ = Lp, 1 ≤ p <∞,

F∞,∞ = F1,1 = C0.
(2.6)

(2) For q = p = 2,

F2,2 = L

∧

= {f ∈ C0 : f̂ ∈ L}, ‖f‖2,2 = ‖f̂ ‖L, f ∈ F2,2. (2.7)

(3) Let q = p and p = max{p, p′}. The spaces Fp,p do not decrease in p; more exactly, if

2 ≤ p1 ≤ p2 ≤ ∞, then

Fp1,p1 ⊂ Fp2,p2 and ‖f‖p2,p2 ≤ ‖f‖p1,p1, f ∈ Fp1,p1 ; (2.8)

in particular, for all 1 ≤ p ≤ ∞,

Fp,p ⊂ C0 and ‖f‖p,p ≥ ‖f‖C0
, f ∈ Fp,p,

F2,2 ⊂ Fp,p and ‖f‖p,p ≤ ‖f‖2,2 = ‖f̂ ‖L, f ∈ F2,2.

The spaces Fp,q that are predual spaces of the spaces of (p, q)-multipliers will sometimes be
briefly called the predual spaces.
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2.2. Two extremal problems related to Stechkin’s problem (1.2)
in the spaces of multipliers and their predual spaces

Let r, s, p, and q be parameters satisfying the constraints 1 ≤ r ≤ s ≤ ∞ and 1 ≤ p ≤ q ≤ ∞.
For integer n ≥ 1, we define the space Wn

r,s;p,q of functions f ∈ Fr,s that are n−1 times continuously

differentiable on the axis, their derivatives f (n−1) of order n− 1 are locally absolutely continuous,
and f (n) ∈ Fp,q. As a consequence of (2.5), we have the embedding Wn

r,s;p,q ⊂ W n
γ1,γ2 , where

1/γ1 = 1/r − 1/s and 1/γ2 = 1/p − 1/q.
In the space Wn

r,s;p,q, consider the class

Q = Qn
r,s;p,q =

{
f ∈ Wn

r,s;p,q : ‖f (n)‖p,q ≤ 1
}
.

On this class, consider a variant of Stechkin’s problem on the best approximation of the functional
f (k)(0) by the ball Mr,s(N) of radius N > 0 in the space of multipliers Mr,s:

e(N) = en,k(N) = en,k(N ; r, s; p, q) = inf
{
u(θ) : θ ∈Mr,s, ‖θ‖r,s ≤ N

}
, (2.9)

where
u(θ) = un,k(θ) = sup

{
|f (k)(0) − 〈θ, f〉| : f ∈ Qn

r,s;p,q

}

is the deviation of a functional θ ∈Mr,s from the functional f (k)(0) on the class Q.
Problem (2.9) is associated with a multiplicative inequality of Kolmogorov type, but in the

predual spaces:
‖f (k)‖C ≤ Bn,k‖f‖αr,s‖f (n)‖βp,q, f ∈ Wn

r,s;p,q, (2.10)

α =
n− k + 1/q − 1/p

n+ 1/q − 1/p + 1/r − 1/s
, β = 1− α =

k + 1/r − 1/s

n+ 1/q − 1/p + 1/r − 1/s
;

we assume that here Bn,k = Bn,k(r, s; p, q) is the best (the smallest possible) constant (independent
of the function f).

The following statement is contained in the author’s paper [8, Theorem 3]; however, this result
was preceded by several years of research by the author, see [4–6, 8] and [13, 14].

Theorem 1. If s ≥ r ≥ 1, q ≥ p > 1, and conditions (1.4) hold, then the following equality

holds for any N > 0 for the values of problems (1.2) and (2.9) and the best constant B in (2.10):

En,k(N) = en,k(N) = βαα/βB
1/β
n,k N

−α/β . (2.11)

In addition, there is an extremal multiplier in problem (2.9); the convolution with this multiplier is

an extremal operator of Stechkin’s problem (1.2).

3. Stechkin’s problem and related problems in the case s = r, q = p

In this section, we will discuss Stechkin’s problem (1.2) and the corresponding problems (2.9)
and (2.10) with the following relationship between the parameters:

1 ≤ s = r ≤ ∞, 1 ≤ q = p ≤ ∞. (3.1)

These restrictions and restrictions (1.4) imply that k > 0, so from now on 0 < k < n. Let us agree
further in all situations instead of the set of parameters r, r; p, p write r; p; so instead of Wn

r,r;p,p the
notation Wn

r;p will be used.
In several cases when (3.1) holds, the exact solutions to all three problems are known; a review

of the corresponding results will be given here.
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For the convenience of further references, we repeat the definitions of the problem and of the
quantities in problem (1.2) under restrictions (3.1):

E(N) = En,k(N) = En,k(N ; r; p) = inf
{
U(T ) : T ∈ B(N ;Lr, Lr)

}
, (3.2)

U(T ) = sup
{
‖f (k) − Tf‖p : f ∈ Qn

r,p

}
. (3.3)

In this case, inequality (2.10) has the form

‖f (k)‖C ≤ Bn,k‖f‖αr,r‖f (n)‖βp,p, f ∈ Wn
r;p, (3.4)

α =
n− k

n
, β = 1− α =

k

n
; (3.5)

here, Bn,k = Bn,k(r; p) is the best (the least possible) constant (independent of the function f).
Note that indices (3.5) in inequality (3.4) are independent of the parameters r and p.

Restrictions (3.1) contain in particular the two sets of parameters s = r = q = p = ∞ and
s = r = q = p = 2, which the study of Stechkin’s problem (1.2) began with. As we will see
below, these two cases are, in a sense, “extreme” in set (3.1). These two cases are discussed in the
subsequent two sections.

3.1. The classical variant of Stechkin’s problem

Problem (1.2) was first studied by Stechkin in the uniform norm on the axis and semi-axis,
see [46] and an earlier paper [45].

We will denote by En,k(N ;C), along with En,k(N ;∞;∞), problem (1.2) and the value of this
problem in the uniform norm on the axis; more exactly, for

s = r = q = p = ∞.

As already noted above in Section 1.3 (see inequality (1.8)), Stechkin found out that the problem
En,k(N ;C) is related to the exact inequality

‖f (k)‖C ≤ Cn,k‖f‖(n−k)/n
C ‖f‖k/nL∞

, f ∈W n
∞,∞, (3.6)

between the norms of derivatives of differentiable functions. Namely, Stechkin showed [46] that the
smallest constant Cn,k in (3.6) gives an estimate from below of the value En,k(N ;C) (see (1.8)). It
turned out later that this estimate is in fact an equality:

En,k(N ;C) = k

(
Cn,k

n

)n/k ( N

n− k

)−(n−k)/k

, N > 0. (3.7)

This fact is a consequence of Domar’s result [20] and of a more general result by Gabushin [25] on
the best approximation of unbounded functionals by bounded ones.

Inequality (3.6) with a certain finite constant was obtained and used by Hardy and Littlewood in
1912 [30]. The exact inequality (3.6), i.e., the inequality with the best constant was first obtained
in 1914 by Hadamard [29] for n = 2 and k = 1; and by Shilov in 1937 [18] for n = 3, 4 for
all 1 ≤ k < n and for n = 5 and k = 2. In 1939, Kolmogorov found [35] the exact constant
in inequality (3.6) for all 1 ≤ k < n using an elegant comparison theorem. Kolmogorov’s result
is very striking and important in this topic; in this regard, inequality (3.6) and more general
inequalities (1.6) on the axis and semi-axis are often called Kolmogorov inequalities.
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The Favard–Akhiezer–Krein function

fn(t) =
4

π

∞∑

ℓ=0

sin ((2ℓ+ 1)t− nπ/2)

(2ℓ+ 1)n+1
(3.8)

is extremal in inequality (3.6) [35]. For the properties of this function, see, for example, [36, Ch. 5,
Sect. 5.4]. The uniform norm of function (3.8) has the following value:

Kn = ‖fn‖C =
4

π

∞∑

ℓ=0

(−1)ℓ(n+1)

(2ℓ+ 1)n+1
.

For all 1 ≤ k ≤ n, we have the relation f
(k)
n = fn−k; in particular, f

(n)
n (t) = f0(t) = sign sin t. The

extremal function (3.8) in inequality (3.6) and its properties listed imply the following formula for
the best constant in (3.6):

Cn,k = Kn−k (Kn)
−(n−k)/n; (3.9)

for this value, the estimates 1 < Cn,k < π/2 hold [35, (3)].

Stechkin proved [45, 46] that the following classical (difference) operators T n,k
h are extremal in

the problem En,k(N ;C) for n = 2 and 3 and 1 ≤ k < n:

(T h
2,1f)(t) = (T h

3,1f)(t) =
f(t+ h)− f(t− h)

2h
, N = h−1, (3.10)

(T h
3,2f)(t) =

f(t+ h)− 2f(t) + f(t− h)

h2
, N =

4

h2
.

For n = 4 and 5, the solution to this case of problem (1.2) was found (1967) by Arestov [1], and
for an arbitrary n ≥ 6 by Buslaev [19]. For n ≥ 4, the extremal operators are infinite difference
operators with uniform nodes. More precisely, for example, for k = 1, the extremal operator has
the form

Tn,1f(t) = h−1
∞∑

ℓ=0

αℓ(f(t+ (2ℓ+ 1)h) − f(t− (2ℓ+ 1)h)).

The sequence {αℓ}ℓ≥0 is the sum of several geometric progressions. To prove the results, we used
the lower estimate (3.7) and the exact Kolmogorov inequality (3.6).

According to the results of Stechkin [46], Arestov [1], and Buslaev [19], in the classical version
of Stechkin’s problem En,k(N ;C), there is an extremal operator T ∗

n,k = T ∗
n,k(N), which is a finite

difference operator for n = 2 and 3 and infinite difference with a uniform step for n ≥ 4. The norm
of this operator in the space C and the deviation value (3.3) have the following extremal values:

‖T ∗
n,k‖C→C = N ; Un,k(T

∗
n,k;C) = En,k(N ;C).

The operator T ∗
n,k is bounded linear in the spaces Lr for all 1 ≤ r <∞, and

‖T ∗
n,k‖Lr→Lr ≤ N.

Let us discuss the corresponding inequality (3.4). According to (2.6), the space
Wn

∞;∞ = Wn
∞,∞;∞,∞ consists of functions f ∈ C0 continuously differentiable n times on the axis,

for which f (n) ∈ C0. Inequality (3.4) in this case coincides with inequality (3.6) on a narrower space
Wn

∞;∞; inequality (3.6) with constant (3.9) remains exact on Wn
∞;∞.
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3.2. Approximation of the differentiation operator in the space L2

and related problems

3.2.1. Approximation of the differentiation operator in the space L2

A version of the Stechkin problem on the best approximation of the differentiation operator in
the space L2(−∞,∞) (i.e., problem (3.2) for s = r = q = p = 2) was solved by Subbotin and
Taikov [47] back in 1968. They proved the following formula for the best approximation value
En,k(N ;L2):

En,k(Nn,k(h);L2) =
k

n
hn−k, Nn,k(h) =

n− k

n
h−k, h > 0. (3.11)

The extremal operator they constructed will be discussed below. The proof of (3.11) used Stechkin’s
lower estimate (1.8). The corresponding exact inequality (1.6) in this case has the form

‖f (k)‖L2
< ‖f‖(n−k)/n

L2
‖f (n)‖k/nL2

, f ∈W n
2,2, f 6≡ 0. (3.12)

A proof of inequality (3.12) for n = 2 and k = 1 see in [31, Ch. VII, Theorem 261]; the general
case is proved similarly.

To prove (3.11), Subbotin and Taikov [47] constructed an extremal operator T h
n,k, h > 0. This

operator is a convolution:

T̂ h
n,kf = λ · f̂ , f ∈ L2,

in which the multiplier λ = λh is defined by the formulas

λ(η) = ik
(
(2πη)k − k

n
hn−k(2πη)nsign ηn−k

)
, |η| ≤ 1

2πh

(n
k

)1/(n−k)
,

λ(η) = 0, |η| > 1

2πh

(n
k

)1/(n−k)
.

(3.13)

Note that function (3.13) differs from the multiplier of [47] by a change of a variable; this is because
the definition of the Fourier transform adopted here differs from that used in [47] by a factor of
−2π in the exponent.

3.2.2. The space Wn
2;2

Before considering inequality (2.10) and problem (2.9) in the case s = r = q = p = 2, we discuss
the properties of functions from the space Wn

2;2.

Lemma 2. The space Wn
2;2 consists of functions f ∈ C0 that can be represented in the form

f(t) = x

∧

(t) =

∫
e2πtηix(η) dη, (3.14)

where the function x = f̂ belongs to L and has the property

y(η) = (2πηi)nx(η) ∈ L. (3.15)

Moreover,

f (n)(t) = y

∧

(t) =

∫
e2πtηi(2πηi)nx(η) dη.
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P r o o f. The space Wn
2;2 is formed by functions f ∈ F2,2 such that f (n) ∈ F2,2. The derivative

f (n) is understood in the sense of the theory of generalized functions, see, for example, [42, 44].
Namely, for a pair of functions f, g ∈ L = L (R), it is assumed that g = f (n) if the following
equality holds for all functions φ ∈ S :

∫
g(t)φ(t)dt = (−1)n

∫
f(t)φ(n)(t)dt. (3.16)

According to (2.7) and (1.1), a function f ∈ F2,2 has the form (3.14). Its derivative g = f (n) has a
similar form:

g (t) =

∫
e2πtηiy(η) dη, y ∈ L. (3.17)

Substituting representations (3.14) and (3.17) into (3.16), we obtain

∫
φ(t)

∫
e2πtηiy(η) dηdt = (−1)n

∫
φ(n)(t)

∫
e2πtηix(η) dηdt.

We may change the orders of integration on both sides of this relation:

∫
y(η)

∫
e2πtηiφ(t) dt dη = (−1)n

∫
x(η)

∫
e2πtηiφ(n)(t) dt dη. (3.18)

Let us introduce the notation

ψ(η) = φ

∧

(η) =

∫
e2πtηiφ(t) dt. (3.19)

Together with the function φ, the function ψ also belongs to the space S . Relation (3.19) implies
that

φ(η) = ψ̂(η) =

∫
e−2πtηiψ(t) dt. (3.20)

Differentiate relation (3.20) n times:

φ(n)(η) =

∫
e−2πtηi(−2πti)nψ(t) dt.

Hence, we conclude that

φ(n)

∧

(η) =

∫
e2πtηiφ(n)(t) dt = (−2πηi)nψ(η). (3.21)

Substituting (3.21) and (3.19) into (3.18), we obtain

∫
y(η)ψ(η) dη = (−1)n

∫
x(η)(−2πηi)nψ(η) dη

and ∫
(y(η)− (2πηi)nx(η))ψ(η) dη = 0, ψ ∈ S .

The Fourier transform, and therefore the inverse Fourier transform (3.19), is a bijection of S onto
itself, and therefore ψ in the last relation is an arbitrary function from S . Hence,

y(η) − (2πηi)nx(η) = 0, a.e. on the axis.

Property (3.15) is justified. Lemma 2 is proved. �
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Consider now the corresponding inequality (3.4). It is convenient to study it in terms of Fourier
transforms of functions f ∈ Wn

2;2. Let us introduce the notation

Y n = Ŵn
2;2 = {x = f̂ : f ∈ Wn

2;2} = {x ∈ L : (2πti)nx ∈ L}.
In terms of functions from the space Y n, inequality (3.4) takes the following form in this case:

‖x∧(k)‖C ≤ Bn,k ‖x‖(n−k)/n
L ‖(2πti)nx‖k/nL , x ∈ Y n. (3.22)

Obviously, for every function x ∈ Y n, the function |x| also belongs to the space Y n, and the function

x

∧(k)(t) =

∫
e2πtηi(2πηi)kx(η) dη

satisfies the relations

‖x∧(k)‖C ≤ ‖ |x|

∧(k)
‖C = | |x|

∧(k)
(0) | = ‖(2πti)kx‖L.

Therefore, inequality (3.22) is equivalent to the inequality

‖(2πti)kx‖L ≤ Bn,k ‖x‖(n−k)/n
L ‖(2πti)nx‖k/nL , x ∈ Y n, (3.23)

(with the same value of the best constant Bn,k).

3.2.3. Stechkin’s problem in the space of multipliers M2,2

and the corresponding inequality in the predual space

Consider now the corresponding variant of Stechkin’s problem (2.9) on the best approximation of
the functional

x

∧(k)(0) =

∫
(2πηi)kx(η)dη

by the space of multipliersM2,2. The class Q
n
2;2 ⊂ Wn

2;2 is correspond in Y n to the class of functions

Θn
2 = Q̂n

2;2 =
{
x ∈ L : (2πti)nx ∈ L, ‖(2πti)nx‖L ≤ 1

}
.

As a result, we have the problem

en,k(N) = en,k(N ; 2; 2) = inf
{
u(θ) : θ ∈ L∞, ‖θ‖L∞

≤ N
}
, (3.24)

where

u(λ) = un,k(λ) = sup
{∣∣∣

∫
(2πηi)kx(η)dη −

∫
λ(η)x(η) dη

∣∣∣ : x ∈ Θn
2

}
.

The best upper estimate for value (3.24) is given by multiplier (3.13). The relevant properties
of this multiplier are summarized in the following lemma; all of them are available in [47].

Lemma 3. The following two statements are valid for function (3.13).
(1) Function (3.13) is continuous and bounded on the axis, and

‖λ‖C(−∞,∞) =
∣∣λ(±(2πh)−1

)
| = h−kn− k

n
. (3.25)

(2) The function

∆(η) =
(2πηi)k − λ(η)

(2πηi)n
(3.26)

belongs to the space L∞(−∞,∞), and

‖∆‖L∞(−∞,∞) =
k

n
hn−k. (3.27)
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P r o o f. The continuity, boundedness, and property (3.25) for function (3.13) are rather
evident.

Let us now study function (3.26). For

0 < |η| ≤ 1

2πh

(n
k

)1/(n−k)
,

we have

∆(η) = ik
k

n

hn−k(2πη)nsign ηn−k

(2πηi)n
=
k

n
hn−ksign ηn−kik−n.

In the case when

|η| ≥ 1

2πh

(n
k

)1/(n−k)
,

we have

∆(η) =
(2πηi)k

(2πηi)n
=

1

(2πηi)n−k
;

hence,

|∆(η)| ≤ k

n
hn−k, |η| ≥ 1

2πh

(n
k

)1/(n−k)
.

This implies property (3.27) of function (3.26). Lemma 3 is proved. �

The following statement is contained in equality (3.11), inequality (3.12), Lemma 2, and The-
orem 1. However, its proof will be given here. This proof largely repeats that of statement (3.11)
in [47].

Theorem 2. The following statements are valid for value (3.24) and the best constant Bn,k in

inequality (3.23) for 0 < k < n.

(1) For all h > 0,

en,k(Nn,k(h)) =
k

n
hn−k, Nn,k(h) = h−kn− k

n
, h > 0; (3.28)

and functional (3.13) is extremal.

(2) The best constant in inequality (3.23) is one:

Bn,k = 1. (3.29)

P r o o f. (1) First, we obtain an upper estimate for the value en,k(N). To do this, we use
multiplier (3.13). Relations (3.25) and (3.27) imply the following upper estimate for en,k(N):

en,k(Nn,k(h)) ≤
k

n
hn−k, Nn,k(h) = h−kn− k

n
, h > 0. (3.30)

(2) Let us now obtain a lower estimate for the best constant Bn,k in inequality (3.23). We start
with the function

f(t) = e2πti =

∫
e2πtηidµ(η);

here µ is the measure on the axis, which can be written as dµ(η) = δ(η−1) dη, where δ is the Dirac
δ-function. For ρ > 0, we define a function xρ on the axis by the relation

xρ(η) =





1

ρ
, η ∈ [1, 1 + ρ] ;

0, η 6∈ [1, 1 + ρ] .
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For this function, we have ‖xρ‖L = 1 and

‖(2πti)kxρ‖L → (2π)k, ‖(2πti)nxρ‖L → (2π)n as ρ→ +0.

Substitute the function xρ into inequality (3.23) and let ρ→ +0. As a result,

Bn,k ≥ ‖(2πti)kxρ‖L
‖xρ‖(n−k)/n

L ‖(2πti)nxρ‖k/nL

→ 1.

Thus, the following lower estimate holds for the best constant Bn,k in inequality (3.23):

Bn,k ≥ 1. (3.31)

(3) Statement (2.11) and estimates (3.30) and (3.31) imply equalities (3.28) and (3.29).
Theorem 2 is proved. �

Inequality (3.23) is an inequality of the Carlson type; the studies of V.I. Levin, F.I. Andrianov,
and others were devoted to such inequalities in the middle of the last century, see [38], [31, Levin V.I.,
Stechkin S.B. Additions to the Russian edition], [3], and the references therein. For statements like
Theorem 2 related to Carlson’s inequalities, see [3].

In the previous two Sections 3.1 and 3.2, Stechkin’s lower estimate (1.8) for the value of the best
approximation of the differentiation operator in terms of the best constant in the corresponding
Kolmogorov inequality was applied in the study of Stechkin’s problem. At the time of studying
Stechkin’s problem, the exact constant in the corresponding inequalities (3.6) and (3.12) was known;
moreover, inequality (1.8) gave an exact estimate for the value of the best approximation. In the
next two Sections 3.3 and 3.4, Stechkin’s problem will be discussed in situations where there is no
corresponding inequality (1.8). A lower estimate for the best approximation will be based on the
considerations of the translation invariance of Stechkin’s problem; more precisely, the statements
of Theorem 1 will be used.

3.3. Approximation in the uniform norm on the axis by operators bounded
in the space Lr: the case 1 ≤ s = r ≤ ∞, p = q = ∞

Here, we discuss Stechkin’s problem (3.2) for values of the parameters

1 ≤ s = r ≤ ∞, p = q = ∞. (3.32)

For real r, 1 ≤ r ≤ ∞, and integer n ≥ 1, the space W n
r,∞ consists of functions f ∈ Lr that

are n − 1 times continuously differentiable on the axis, their derivatives f (n−1) of order n − 1 are
locally absolutely continuous, and f (n) ∈ L∞. In the space W n

r,∞, consider the class

Qn
r,∞ = {f ∈W n

r,∞ : ‖f (n)‖L∞
≤ 1}.

Denote by B(Lr) the set of all bounded linear operators in the space Lr. Let B(N ;Lr) for N > 0
be the set of operators T ∈ B(Lr) with the norm ‖T‖Lr→Lr ≤ N . In this section, for r = ∞, we
mean by L∞ the space C = C(−∞,∞).

We are interested in the best approximation (in the space C) of the differentiation operator
Dk = dk/dtk on the class Qn

r,∞ by the set of bounded linear operators B(N ;Lr):

En,k(N) = En,k(N ; r;∞) = inf{U(T ) : T ∈ B(N ;Lr)}, N > 0, (3.33)

U(T ) = Un,k(T ; r;∞) = sup{‖f (k) − Tf‖C : f ∈ Qn
r,∞}.

The problem is to calculate value (3.33) and an extremal operator on which the infimum in (3.33)
is attained.
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3.3.1. Case n ≥ 3, 1 ≤ r ≤ ∞

Recall that

Kn = ‖fn‖C =
4

π

∞∑

ℓ=0

(−1)ℓ(n+1)

(2ℓ+ 1)n+1
(3.34)

is the uniform norm of the Favard–Akhiezer–Krein function (3.8). Define

Kn =
4

π

∞∑

ℓ=0

1

(2ℓ+ 1)n+1
. (3.35)

This is, in a sense, the “norm” of the same function fn in the space F2,2. Comparing (3.35)
with (3.34), we see that Kn ≤ Kn; more exactly,

Kn = Kn if n is odd; Kn < Kn if n is even.

The following two statements are valid [13] for the problem En,k(N ;Lr).

Theorem 3. The following two-sided estimates for the value of problem (3.33) hold for all

n ≥ 2, 1 ≤ k < n, and 1 ≤ r ≤ ∞:

k

(
Kn−k

n

)n/k (N Kn

n − k

)−(n−k)/k

≤ En,k(N ; r;∞) ≤ k

(
Kn−k

n

)n/k (N Kn

n− k

)−(n−k)/k

. (3.36)

Theorem 4. The following statements hold in problem (3.33) for odd n ≥ 3 and arbitrary k,
1 ≤ k < n.

(1) The following formula holds for value (3.33) independently of r, 1 ≤ r ≤ ∞:

En,k(N ; r;∞) = En,k(N,C) = k

(
Kn−k

n

)n/k (N Kn

n− k

)−(n−k)/k

.

(2) An operator T ∗
n,k = T ∗

n,k(N) that is extremal in the problem En,k(N,C) is also extremal in

the problem En,k(N,Lr) for all r, 1 ≤ r <∞.

3.3.2. Case n = 2, r = 2

For even n ≥ 2 and 1 < r < ∞, the statements of Theorem 4, generally speaking, no longer hold.
The author’s paper [11] provides a solution to problem (3.33) for

n = 2 (k = 1); r = s = 2, p = q = ∞. (3.37)

In this case, the first inequality in (3.36) is exact. More precisely, the following statement is true.

Theorem 5. The following formula holds for values of the parameters (3.37) for all h > 0:

E2,1(N2,1(h); 2;∞) =
πh

4
, N2,1(h) =

π2

2h

(
4

∞∑

ℓ=0

1

(2ℓ+ 1)3

)−1

. (3.38)

An extremal operator in (3.38) is the singular convolution operator on the space L2 defined by the

formula

(Θhf)(t) = A(h)

∫ πh

0
(f(t+ u)− f(t− u)) y

(
uh−1

)
du,

where

y(u) =
π − u

4 sin u
, u ∈ (0, π); A(h) = h−2

(
4

∞∑

ℓ=0

1

(2ℓ+ 1)3

)−1

.
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For comparison, consider the result of Stechkin [46] for n = 2, k = 1, and (q = p =)s = r = ∞:

E2,1(N2,1(h);∞;∞) =
πh

4
, N2,1(h) = h−1.

An extremal operator is the difference operator (3.10):

(T h
2,1f)(t) =

f(t+ h)− f(t− h)

2h
.

3.3.3. Inequalities for values of the parameters (3.32) in predual spaces

In the case 1 ≤ s = r ≤ ∞ and p = q = ∞ under consideration, inequality (2.10) has the form

‖f (k)‖C ≤ Bn,k(r;∞)‖f‖(n−k)/n
r,r

(
‖f (n)‖∞

)k/n
, f ∈ Wn

r;∞. (3.39)

For s = r = ∞, this is the classical variant (3.6) of the inequality between the uniform norms of
derivatives studied by Kolmogorov. In the case s = r = 2, inequality (3.39) takes the form

‖f (k)‖C ≤ Bn,k(2;∞)‖f̂‖(n−k)/n
1

(
‖f (n)‖∞

)k/n
, f ∈ Wn

2;∞. (3.40)

The following inequality holds [11, 13] for the best constants in (3.39) and, in particular,
in (3.40):

Bn,k(r;∞) ≤ Bn,k(∞;∞) = Cn,k, 1 ≤ r ≤ ∞; (3.41)

recall that Cn,k was defined in (3.9). For odd n ≥ 3, we have the equality Bn,k(r;∞) = Bn,k(∞),
1 ≤ r ≤ ∞, and the Favard–Akhiezer–Krein function fn (3.8) is extremal for all r.

For even n ≥ 2, this is, generally speaking, no longer the case. At least for n = 2 (k = 1) and
r = 2, the best constant in inequality (3.40) has the following value [11]:

B2,1(2;∞) =
π

2

(
4

π

∞∑

ℓ=0

1

(2ℓ+ 1)3

)−1/2

, (3.42)

and the Favard–Akhiezer–Krein function f2 is extremal again. The following estimates hold for
constant (3.42): √

π

2
< B2,1(2;∞) <

√
2 (3.43)

(see details in [11]). According to Hadamard’s result [29], the best constant in inequality (3.6)
for n = 2 and k = 1 is C2,1 =

√
2. Consequently, the second inequality (3.43) means that

B2,1(2;∞) < B2,1(∞;∞) = C2,1, so that inequality (3.41) is strict in this case.
Inequalities of type (3.40) containing the norms of intermediate and highest derivatives and the

norm of the Fourier transform of functions, with norm parameters different from (3.40), also arose
in the studies by Magaril-Il’yaev and Osipenko of extremal problems of recovering functions from
information about their spectrum [39, 40].

3.4. Case 1 ≤ s = r ≤ ∞, p = q = 2

Here we will discuss Stechkin’s problem (3.2) studied in [5, 7, 10] for the parameter values

1 ≤ s = r ≤ ∞, p = q = 2. (3.44)

For real r, 1 ≤ r ≤ ∞, and integer n ≥ 1, the space W n
r,2 consists of functions f ∈ Lr that are

n−1 times continuously differentiable on the axis, their derivatives f (n−1) of order n−1 are locally
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absolutely continuous, and f (n) ∈ L2. Here, for r = ∞, we mean by L∞ the space C = C(−∞,∞).
In the space W n

r,2, consider the class Qn
r,2 = {f ∈ W n

r,2 : ‖f (n)‖L2
≤ 1}. As was said above, B(Lr)

denotes the set of all bounded linear operators in the space Lr, and B(N ;Lr) for N > 0 is the set
of operators T ∈ B(Lr) with the norm ‖T‖Lr→Lr ≤ N.

We are interested in the best approximation in the space L2 of the differentiation operator Dk

on the class Qn
r,2 by the set of bounded linear operators B(N ;Lr):

En,k(N) = En,k(N ; r; 2) = inf
{
Un,k(T ; r; 2) : T ∈ B(N ;Lr)

}
, N > 0,

U(T ) = Un,k(T ; r; 2) = sup
{
‖f (k) − Tf‖L2

: f ∈ Qn
r,2

}
.

3.4.1. Case n ≥ 3, 1 ≤ r ≤ ∞ [5]

Theorem 6. For n ≥ 3, 1 ≤ k < n, 1 ≤ r ≤ ∞, and all h > 0,

En,k(Nn,k(h); r; 2) =
k

n
hn−k, (3.45)

where

Nn,k(h) =
n− k

n
h−k. (3.46)

For r = 2, statement (3.45)+(3.46) is statement (3.11) of Subbotin and Taikov [47]. To justify
(3.45)+(3.46), the author used in [5] an operator that differs from the one in [47]; for more detailed
discussion see Section 3.4.3.

3.4.2. Cases n = 2, k = 1, r = ∞ [7, 10], and r = 2 [47]

Theorem 7. For all h > 0,

E2,1(N2,1(h); r; 2) =
1

2
h,

where

N2,1(h) =
1

2
h−1

for r = 2 and

N2,1(h) =
16

hπ3

∞∑

l=0

1

(2l + 1)3

for r = ∞.

3.4.3. Extremal operators

Case n ≥ 3 and k = 1. Let us describe the construction of an extremal operator [5]. Let η be the
2π-periodic odd function defined on [0, π] by the relations

η(t) =





t− 1

n

(
2

π

)n−1

tn, t ∈
[
0,
π

2

]
,

η(π − t), t ∈
[π
2
, π

]
.

The Fourier series of this function has the form

η(t) =

∞∑

l=0

cl sin(2l + 1)t, cℓ =
4

π

∫ π/2

0
η(t) sin(2l + 1)tdt.
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The coefficients of this expansion for n ≥ 3 have the following signs (see [5, proof of Theorem 4.1]):

(−1)lcl ≥ 0, l ≥ 0. (3.47)

For a number h > 0, we set ν = ν(h) = πh/2 and define an operator Tn,1 by the formula

(Tn,1f)(t) =
1

2ν(h)

∞∑

l=0

cl
{
f(t+ (2l + 1)ν)− f(t− (2l + 1)ν)

}
.

It is clear that Tn,1 is a bounded linear operator in the space Lr for all 1 ≤ r ≤ ∞ and

‖Tn,1‖Lr→Lr =
1

ν

∞∑

l=0

|cl| =
1

ν
η
(π
2

)
=
n− 1

nh
.

For this operator,

Un,k(Tn,1; r; 2) =
k

n
hn−k. (3.48)

It is this operator that is extremal in (3.45) for n ≥ 3, k = 1, and all 1 ≤ r ≤ ∞. It is different
from the operator constructed by Subbotin and Taikov [47] for r = 2.

Case n = 2, k = 1, and r = ∞. For n = 2, the property of signs (3.47) is violated. More
precisely, we have

η(t) =
∞∑

l=0

cl sin(2l + 1)t, cl =
8

π2
1

(2l + 1)3
.

The operator T2,1 defined by the formula

(T2,1f)(t) =
1

2ν(h)

∞∑

l=0

cl
{
f(t+ (2l + 1)ν(h)) − f(t− (2l + 1)ν(h))

}
,

where ν = ν(h) = πh/2, is a bounded linear operator in C and

‖T2,1‖C→C =
1

ν

∞∑

l=0

cl =
16

π3h

∞∑

l=0

1

(2l + 1)3
= N2,1(h).

The norm of the operator T2,1 has a different expression in comparison with (3.46). The same
formula (3.48) holds for the value of the deviation.

Paper [47] by Subbotin and Taikov contains the case n = 2, k = 1, and r = 2 as a special case.

3.4.4. Inequalities for cases (3.44) in predual spaces

Let us discuss now inequality (2.10) for the set of parameters (3.44) in the space

Wn
r;2 =

{
f ∈ Fr,r : f̂ (n) ∈ L

}
=

{
f ∈ Fr,r : f

(n) = z

∧

, z ∈ L
}
, (3.49)

and, in particular, in the space

Wn
∞;2 =

{
f ∈ C0 : f̂ (n) ∈ L

}
=

{
f ∈ C0 : f

(n) = z

∧

, z ∈ L
}
. (3.50)



Approximation of Differentiation Operators 23

Theorem 8 [5]. The following inequality holds for functions of space (3.49) for 1 ≤ r ≤ ∞,
n ≥ 3, and 1 ≤ k < n:

‖f (k)‖C ≤ Bn,k(r; 2)‖f‖(n−k)/n
r,r ‖f̂ (n)‖k/nL , f ∈ Wn

r;2, (3.51)

with the smallest possible constant

Bn,k(r; 2) = 1. (3.52)

For all n ≥ 3 and 1 ≤ k < n, an “ideal” extremal function is sin.

For n = 2 (k = 1), inequality (3.51) with constant (3.52) holds for r = 2 (see Theorem 9 below)
and does not hold for r = ∞. The value of the constant B2,1(r; 2) for other values of r is currently
unknown. The following statement highlights the case r = ∞ of Theorem 8 and adds information
about inequality (3.51) in the case n = 2 and r = 2.

Theorem 9 [7]. The following inequality holds for functions of space (3.50) for n ≥ 2,
1 ≤ k < n, and r = ∞:

‖f (k)‖C ≤ Bn,k(∞; 2)‖f‖(n−k)/n
C ‖f̂ (n)‖k/nL , f ∈ Wn

∞;2,

with the smallest possible constants

B2,1(∞; 2) =

{
32

π3

∞∑

l=0

1

(2l + 1)3

}1/2

> 1, n = 2, k = 1;

Bn,k(∞; 2) = 1, n ≥ 3, 1 ≤ k < n.

For n ≥ 3, an “ideal” extremal function is sin. For n = 2, it is the entire function

f(t) =
1

2

∫ π

0

π − u

sinu
sin 2πtu du.

4. Two-sided estimates for the value of Stechkin’s problem (3.2)

For parameters 1 ≤ r, p ≤ ∞, define r = max{r, r′} and p = max{p, p′}. In statements of this
section, we assume the following condition on two pairs of parameters r1, r2 and p1, p2:

r1 ≤ r2, p1 ≤ p2. (4.1)

Theorem 10. The following two statements hold for the value En,k(N ; r; p) = En,k(N ; r, r; p, p)
for 1 ≤ r ≤ ∞, 1 < p ≤ ∞, and 0 < k < n.

(1) For all N > 0, the value En,k(N ; r; p) of Stechkin’s problem (3.2) does not decrease in the

parameters r and p; more exactly, if two pairs of parameters r1, r2 and p1, p2 satisfy condi-

tions (4.1), then the following inequality holds:

En,k(N ; r1; p1) ≤ En,k(N ; r2; p2).

(2) For all N > 0, the following (exact) two-sided estimates hold for the values of Stechkin’s

problems (3.2) and (2.9):

βαα/βN−α/β ≤ En,k(N ; r; p) = en,k(N ; r; p) ≤ βαα/β (Cn,k)
1/β N−α/β ,

where

α =
n− k

n
, β =

k

n
.
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4.1. Auxiliary statement

Lemma 4. The following two statements hold for the best constant Bn,k = Bn,k(r; p) in in-

equality (3.4) for 1 ≤ r ≤ ∞, 1 ≤ p ≤ ∞, and 0 < k < n.

(1) If two pairs of parameters r1, r2 and p1, p2 satisfy conditions (4.1), then the following inequal-

ity holds for the best constant in inequality (3.4):

Bn,k(r1; p1) ≤ Bn,k(r2; p2). (4.2)

(2) The following (exact) two-sided estimates hold :

1 ≤ Bn,k(r; p) ≤ Cn,k

(
<
π

2

)
. (4.3)

P r o o f. The constant in inequality (3.4) can be represented in the form

Bn,k(r; p) = sup

{
‖f (k)‖C

‖f‖(n−k)/n
r,r ‖f (n)‖k/np,p

: f ∈ Wn
r;p, f 6≡ 0

}
. (4.4)

According to statement (2.8) of Lemma 1, under conditions (4.1), we have the embeddings

Fr1,r1 ⊂ Fr2,r2 and ‖f‖r2,r2 ≤ ‖f‖r1,r1 , f ∈ Fr1,r1 ,

Fp1,p1 ⊂ Fp2,p2 and ‖g‖p2,p2 ≤ ‖g‖p1,p1 , g ∈ Fp1,p1 ,

and hence the embeddings
Wn

r1;p1 ⊂ Wn
r2;p2 ; (4.5)

moreover, the following inequalities hold on Wn
r1;p1 :

‖f‖r2,r2 ≤ ‖f‖r1,r1 , ‖f (n)‖p2,p2 ≤ ‖f (n)‖p1,p1 , f ∈ Wn
r1;p1 . (4.6)

Representation (4.4), embedding (4.5), and inequality (4.6) imply property (4.2).
In particular, we have the inequalities

Bn,k(2; 2) ≤ Bn,k(r; p) ≤ Bn,k(∞;∞).

According to the result (3.29) of Lemma 2, Bn,k(2; 2) = 1. In the case r = p = ∞, the
value Bn,k(∞;∞) coincides with the best constant (3.9) in the Kolmogorov inequality (3.6):
Bn,k(∞;∞) = Cn,k. Thus, statement (4.3) is verified. Lemma 4 is proved.

4.2. The proof of Theorem 10

Both statements of Theorem 10 follow from the corresponding statement of Lemma 4 and
statement (2.11) of Theorem 1. Theorem 10 is proved.

5. Conclusions

As can be seen from the results described above, even in the case (3.1), the topics considered
here are far from exhausted. One of the main reasons for the difficulties in studying Stechkin’s
problem is that the description of (p, q)-multipliers and the value of the norm of multipliers are
known only in several exceptional cases (see Section 2.1.1).
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For example, Stechkin’s problem and the corresponding inequalities between the norms of
derivatives in the case of equal exponents

1 ≤ s = r = q = p ≤ ∞

are of interest. Denote by En,k(N)p Stechkin’s problem and its value for this case. This case is
embedded in the assumptions and conclusions of Theorem 10. According to Theorem 10, the value
En,k(N)p does not decrease in the parameter p = {p, p′} and the following estimates hold:

En,k(N)2 ≤ En,k(N)p ≤ En,k(N)∞.

The solution to Stechkin’s problem En,k(N)p is known only in the cases p = ∞, 2, and 1. Of
course, one of the reasons for this is that the description of the multipliers of the Lebesgue spaces
Lp(−∞,∞) is known only for these values of the parameter p.

Let Bn,k(p) be the best constant in the corresponding inequality

‖f (k)‖p ≤ Bn,k(p) ‖f‖(n−k)/n
p ‖f (n)‖k/np , f ∈W n

p,p,

between the p-norms of the derivatives. The following estimates are known for the best constant
in this inequality:

Bn,k(2) = 1 ≤ Bn,k(p) ≤ Bn,k(∞) = Cn,k <
π

2
. (5.7)

The second inequality in (5.7) is Stein’s result [43]. To justify the first inequality, one should
substitute the (appropriately smoothed) function sin into (5.7). No results regarding monotonicity
of the value Bn,k(p) in p are unknown to the author.
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Abstract: In this article, we introduce the idea of I-compactness as a covering property through ideals of
N and regardless of the I-convergent sequences of points. The frameworks of s-compactness, compactness and
sequential compactness are compared to the structure of I-compact space. We began our research by looking at
some fundamental characteristics, such as the nature of a subspace of an I-compact space, then investigated its
attributes in regular and separable space. Finally, various features resembling finite intersection property have
been investigated, and a connection between I-compactness and sequential I-compactness has been established.
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1. Introduction

The concept of statistical convergence ([17], also [21]) depends on the idea of natural density of
subsets of the set of natural number N. The density of a set S ⊆ N is denoted by δ(S) and defined
as

δ(S) = lim
n→∞

1

n

∣

∣

{

k ≤ n : k ∈ S
}
∣

∣.

Later on, Maio and Kočinak [14] redefine the statistical convergence for a topological space. On
the recent days, one of the most significant study area in pure mathematics is the ideal convergence
which is an extension of statistical convergence and other convergence concepts. To define the ideal
convergence Kostyrko et al. [19] used the notion of an ideal which is defined as I ⊆ P(N) having
the following properties:

(i) ∅ ∈ I;
(ii) A ∪B ∈ I, for each A,B ∈ I;
(iii) for each A ∈ I and B ⊆ A ⇒ B ∈ I.

In a topological space (X, τ), a sequence x = (xn) is said to be I-convergent if there exists a ℓ
such that for every open neighbourhood U of ℓ, the set [20]

{n ∈ N : xn /∈ U} ∈ I.

This idea is being studied and used broadly by many researchers [1, 10, 12, 13].

On the other hand, the study of different covering properties (some recent works [7, 9, 11]) has
received a lot of attention in topology. A family U of open subsets of topological space X is called
an open cover of X if ∪U = X. A topological space X is called compact if every open cover of X
has a finite subcover. More specifically, it has became very essential to explore the structure of
compactness and its generalized versions for topological spaces.

https://doi.org/10.15826/umj.2023.2.002
mailto:balprasenjit177@gmail.com
mailto:debjanirakshit88@gmail.com
mailto:susmitamsc94@gmail.com
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The star operator was introduce by E.K. van Douwen in 1991 [15] as

St (A,U) =
⋃

{U ∈ U : U ∩A 6= ∅}

where A is a subset of space X and U is a family of subsets of X. Using star operator the
concept of compactness has been generalized in many ways and has been studied by many authors
extensively [2–6]. In our study we make an attempt to expand this region with the help of Ideal.

In recent days sequential compactness via ideal has been introduced by Singha and Roy [22]
under the name of I-compactness, and I-compactness module via an ideal defined on X has also
been studied by Gupta and Kaur [18] under the same name.

The purpose of our study is to explore the concept of compactness via ideal of natural number N.
We also establish a relation between sequential I-compactness and I–compactness.

2. Preliminaries

Throughout the paper a space X means a topological space with the corresponding topology τ ,
‘∴’ stands for ‘therefore’ and for other symbols and notions we follow [16].

Definition 1 [16]. A topological space X is called a compact space if every open cover of X
has a finite subcover, i.e., if for every open cover {Us}s∈S of the space X there exists a finite set

{s1, s2, ..., sk} ⊂ S such that X = Us1 ∪ Us2 ∪ ... ∪ Usk .

Definition 2 [16]. A topological space X is called a Lindelöf space if every open cover of X
has a countable subcover.

It is known that every compact space is Lindelöf but the converse is not true.

Definition 3 [16]. A topological space (X, τ) is called a countably compact space if every count-

able open cover of X has a finite sub-cover.

Every compact space is countably compact. But the space W0 of all countable ordinals is
countably compact but not compact [16]. The space N of all natural numbers equipped with
discrete topology is Lindelöf but it is not countably compact.

Definition 4 [16]. A topological space (X, τ) is said to be sequentially compact space if every

sequence in X has a convergent subsequence.

Definition 5 [15]. A topological space (X, τ) will be called a star compact space (in short St-
compact) if for every open cover U of X, there exists a finite subset U ′ = {Uk : k = 1, 2, 3, . . . ,m}
such that

St
(

m
⋃

n=1

Un,U
)

= X.

Definition 6 [8]. A topological space (X, τ) will be called a statistical compact (in short s-
compact) space if for every countable open cover U = {Un : n ∈ N} of X, there exists a sub-cover

V = {Umk
: k ∈ N} of U such that δ

(

{mk : Umk
∈ V}

)

= 0.
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3. Compactness via ideal

Definition 7. Let I be a non-trivial ideal defined on N. A topological space (X, τ) will be

called an I-compact space if for every countable open cover U = {An : n ∈ N} of X, there exists a

sub-cover V = {Ank
: k ∈ N} such that {nk : Ank

∈ V} ∈ I.

Remark 1. Countable compactness is equivalent to Ifin-compactness where Ifin indicates the
ideal of all finite subsets of N.

Proposition 1. Every Ifin-compact space is a s-compact space.

P r o o f. Let (X, τ) be an Ifin-compact space and U = {An : n ∈ N} be a countable open
cover of X. Therefore there exists a sub-cover V = {Ank

: k ∈ N} of U with {nk : nk ∈ V} ∈ Ifin.
i.e. V = {Ank

: k ∈ N} is a finite sub-cover of X. But the finite set of indices {nk : Ank
∈ V} has

natural density zero, i.e. δ({nk : Ank
∈ V}) = 0, ∴ X is a s-compact space. �

Example 1. Converse of Proposition 1 may not be true. Indeed there exists a s-compact space
which is not Ifin-compact.

Let X = (−1, 1) and τ = {(−α,α) : α ∈ [0, 1]}. Clearly (X, τ) is a topological space. Consider
a countable open cover U = {Un : n ∈ N} of X. If X ∈ U , then X = Up for some p ∈ N and
V = {Up} is a sub-cover of U with δ({k : Uk ⊂ V}) = δ({p}) = 0 and we are done.

Now let X /∈ U and U = {Un : n ∈ N} is a non-trivial countable open cover of X. We consider
the sub-cover U ′ = {Unk

: k ∈ N}, where

Unk
=

{

Uk, k = 1,
⋃

n≤nk
Un, when

⋃

n≤nk
Un becomes a superset of Unk−1

for k > 1.

Now, {Unk
: k ∈ N} is an increasing sequence of open sets by means of inclusion (⊆) and is

an open cover of X. It also has a sub-cover V = {Un
k2

: k ∈ N} with δ({nk2 : Un
k2

∈ V}) = 0.
Moreover V is a subset of U , ∴ X is a s-compact space.

Again suppose that (X, τ) is Ifin-compact and consider the countable open cover

W =
{

Wn =
(

− 1 +
1

n
, 1−

1

n

)

: n ∈ N

}

.

Since X is Ifin-compact there exists a sub-cover of W, say W ′ = {Wnk
: k = 1, 2, ..., q} with

{nk : Wnk
∈ W ′} ∈ Ifin.

Suppose nkmax
= max{nk : nk ∈ W ′} then we have

∴
⋃

W ′ =
(

− 1 +
1

nkmax

, 1−
1

nkmax

)

6= X,

which is a contradiction. So X is not Ifin-compact.

Corollary 1. Every Lindelöf Ifin-compact space is a compact space.

P r o o f. By Lindelöfness, every open cover has a countable sub-cover. By Ifin-compactness,
that countable sub-cover will have a finite sub-cover. Hence it will be a compact space. �
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Theorem 1. Every closed subspace of an I-compact space is an I-compact.

P r o o f. Let (A, τA) be an arbitrary closed subspace of a I-compact space (X, τ) and
U = {Un : n ∈ N} be a countably infinite cover of (A, τA). Then there exists a countable sequence
V = {Vn : n ∈ N} ∈ τ such that Un = Vn ∩A.

Now consider a countably infinite sequence W = {(X \ A) ∪ Vn : n ∈ N}, which is a cover
of X. Since (X, τ) is I-compact space, ∴ ∃ a sub-cover W ′ = {(X \ A) ∪ Vnk

: k ∈ N} of W with
{nk : (X \ A) ∪ Vnk

∈ W ′} ∈ I. Again, ∪Vnk
⊇ A then

A ∩ (∪Vnk
) = A =⇒ ∪(A ∩ Vnk

) = A =⇒ ∪(Unk
) = A, ∴ ∪Unk

⊆ ∪Un = U

and U is a countably infinite cover of (A, τA). So {∪Unk
: k ∈ N} is a countably sub-cover of (A, τA)

with {nk : Unk
∈ U} ∈ I.

Therefore (A, τA) is the I-compact space. �

Theorem 2. Let (X, τ) be a I-compact space and (Y, σ) be a topological space. If f : (X, τ) →
(Y, σ) is the open continuous surjection mapping, then (Y, σ) is also the I-compact space.

P r o o f. Let f : (X, τ) → (Y, σ) be an open continuous surjection mapping and (X, τ) is
I-compact space.

Let {Un : n ∈ N} be a countable open cover of Y . So,

∪{Un : n ∈ N} = Y =⇒ f−1
{

∪ {Un : n ∈ N}
}

= f−1(Y ) =⇒ ∪{f−1(Un) : n ∈ N} = X.

Since f is a continuous surjection mapping and Un is a countable open cover of Y then

{f−1(Un) : n ∈ N} = V

is a countable open cover of X. Again (X, τ) is I-compact space then there exists a sub-cover,
{f−1(Un1

), f−1(Un2
), ...} of V where {nk : k ∈ N} ∈ I,

∪{f−1(Unk
) : k ∈ N} = X,

f
[

∪ {f−1(Unk
) : k ∈ N}

]

= f(X) = Y,

∪{Unk
: k ∈ N} = Y, ∵ f [f−1(Unk

)] = Unk
,

∴ {Unk
: k ∈ N} is a countable sub-cover of {Un : n ∈ N} where {nk : k ∈ N} ∈ I, (y, σ) is also

I-compact space. �

Definition 8. Let (X, τ) be a topological space and I be a ideal on N. A subset A ⊆ X will be

called I-compact subset of X if for every countable cover {Un : n ∈ N} of A by elements of τ there

exists a S ∈ I such that A ⊆
⋃

n∈S Un.

Theorem 3. In a regular space (X, τ), if A is countable Ifin-compact subset of X, then for

every closed set B disjoint from A there exists U, V ∈ τ such that A ⊆ U, B ⊆ V and U ∩ V = ∅.

P r o o f. Let A = {xn : n ∈ N} be a countable Ifin-compact subset of a regular space (X, τ)
and B be an arbitrary closed set disjoint from A, ∴ for every xn ∈ A, xn /∈ B. But X is a regular
space. Therefore there exists Un, Vn ∈ τ such that xn ∈ Un, B ⊆ Vn and Un ∩ Vn = ∅ ∀n ∈ N.

It is obvious that {Un : n ∈ N} is a countable open cover of A by the elements of τ . But A is
an Ifin-compact subset of X, ∴ there exist S ∈ Ifin such that A ⊆

⋃

n∈S Un.
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Now S ∈ Ifin is a finite set, ∴ U =
⋃

n∈S Un ∈ τ and V =
⋂

n∈S Vn ∈ τ and A ⊆ U and B ⊆ V .
So we have to show that U ∩ V = ∅. On the contrary suppose U ∩ V 6= ∅ and p ∈ U ∩ V

=⇒ p ∈ (
⋃

n∈S

Un) ∩ (
⋂

n∈S

Vn) =⇒ p ∈
⋃

n∈S

Un and p ∈
⋂

n∈S

Vn

=⇒ p ∈ Uk for some k ∈ S and p ∈ Vk ∀k ∈ S

=⇒ p ∈ Uk and p ∈ Vk for some k ∈ S

=⇒ p ∈ Uk ∩ Vk for some k ∈ S ⊆ N,

which is a contradiction to the fact that

Un ∩ Vn = ∅ ∀n ∈ N, ∴ U ∩ V = ∅.

Hence the theorem is proven. �

Corollary 2. If A is a countable Ifin-compact subset of a Hausdörff space X, then for every

x /∈ A there exist U, V ∈ τ such that A ⊆ U, x ∈ V and U ∩ V = ∅.

P r o o f. In a Hausdörff space, every singleton set {x} is a closed set. So by Theorem 3 the
result follows directly. �

Definition 9. A topological space (X, τ) will be called sequentially I-compact if every sequence

of elements of X has a I-convergent subsequence.

Theorem 4. A separable Ifin-compact space is a st-compact space

P r o o f. Let (X, τ) be a separable Ifin-compact space. Therefore there exists a countable
dense subset A = {xn : n ∈ N} of X and U being an arbitrary open cover of X. Using the elements
of U we construct a sequence of open sets {Un : n ∈ N} where Un =

⋃

{U ∈ U : xn ∈ U} for all
n ∈ N. But A is a dense subset of X, ∴ A ∩ U 6= ∅ ∀U ∈ U .

∴ U ′ = {Un : n ∈ N} is a countable open cover of X. But X is Ifin-compact, ∴ ∃S ∈ Ifin such
that

⋃

nk∈S
Unk

= X. But S = {Un1
, Un2

, ..., Unp} is a finite subset of N. Therefore

n
⋃

k=1

Unk
= X.

But xnk
∈ Unk

∀k = 1, 2, ..., p, therefore F = {xnk
: k = 1, 2, ..., p} is a finite subset of X and

St (F,U ′) ⊇

n
⋃

k=1

Unk
= X,

St (F,U ′) ⊇

n
⋃

k=1

{

⋃

{U ∈ U : xnk
∈ U}

}

= X,

St (F,U) ⊇ St (F,U ′) ⊇ X,

St (F,U) = X,

∴ X is a St-compact space. �

Definition 10. Let I be a ideal on N. A family F = {Fn : n ∈ N} of subsets of a space X is

said to have I-intersection property if F 6= ∅ and
⋂

n∈S Fn 6= ∅ for all S ∈ I.
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Theorem 5. For a topological space (X, τ) and for a non trivial ideal I the following statements

are equivalent :

(1) For a family G = {Gn : n ∈ N} of open sets of X, if for every S ∈ I, GS = {Gnα : nα ∈ S}
fails to cover X, then G can not cover X.

(2) X is an I-compact space.

(3) Every family of countable closed subsets of X with I-intersection property has non-empty

intersection.

(4) For a family F = {Fn : n ∈ N} of closed subsets of X, if
⋂

F = ∅, then there exists at least

one S ∈ I such that
⋂

n∈S Fn = ∅.

P r o o f. (1) ⇔ (2): The statement (1) is the contrapositive statement of the definition of
I-compact space, ∴ statement (1) and (2) are equivalent.

(2) ⇔ (3): Let X be an I-compact space, H = {Hn : n ∈ N} be a arbitrary family of closed
subsets of X having I-intersection property and suppose that

⋂

H = ∅.
Let

G = {Gn = X \Hn : n ∈ N},

then

⋃

G =
⋃

n∈N

(Gn = X \Hn) = X \
⋂

n∈N

Hn = X \∅ = X,

∴ G = {Gn : n ∈ N}

is an countable open cover of X. But X is I-compact. Therefore, there exists a S ∈ I such that

⋃

n∈S

Gn = X,

=⇒
⋃

n∈S

{X \Hn} = X [∵ Gn = X \Hn ∀n ∈ N] =⇒ X \
⋂

n∈S

Hn = X =⇒
⋂

n∈S

Hn = ∅,

which is a contradiction to the fact that H has I-intersection property, ∴
⋂

H 6= ∅.
Conversely let every countable family of closed subsets with I-intersection property has non-

empty intersection.
Let U = {Bn : n ∈ N} is an arbitrary countable open cover of X, ∴ F = {Fn = X \Bn : n ∈ N}

is a family of closed subsets of X and

⋂

F =
⋂

n∈N

X \Bn = X \
⋃

n∈N

Bn = X \X = ∅.

Thus the countable family F of closed subsets of X has empty intersection. So it can not have
I-intersection property by our assumption. Therefore, there exists a S ∈ I such that

⋂

n∈S

Fn = ∅ =⇒
⋂

n∈S

X \Bn = ∅ =⇒ X \
⋃

n∈S

Bn = ∅ =⇒
⋃

n∈S

Bn = ∅,

∴ V = {Bn : n ∈ S} is a sub-cover of U and S ∈ I. Therefore X is an I-compact space.

(3) ⇔ (4): Statement (3) and statement (4) are contrapositive to each other. Therefore,
statement (3) and statement (4) are equivalent. �

Theorem 6. Sequentially Ifin-compactness implies Ifin-compactness.
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P r o o f. Let (X, τ) be an Ifin-compact space. Then for every sequence {xn : n ∈ N} of
elements of X, there exists is a subsequence {xnk

: n ∈ N} which is I-convergent. Let

I − lim
n→∞

xn = ǫ ∈ X.

On the other hand let U = {Un : n ∈ N} be a countable open cover of X. So ∃Um ∈ U such
that ǫ ∈ Um. Also {nk ∈ N : xnk

/∈ Um} ∈ Ifin, suppose {nk1 , nk2 , ..., nkp} = {nk ∈ N : xnk
/∈ Um}.

But U is a open cover of X. Therefore there exist

xnk1
∈ Uq1 ∈ U ,

xnk2
∈ Uq2 ∈ U ,

...

xnkp
∈ Uqp ∈ U .

Now, the collection {Um, Uq1 , Uq2 , ..., Uqp} is a sub-cover of U and {m, q1, q2, ..., qp} is a finite
subset of N, i.e. {m, q1, q2, ..., qp} ∈ Ifin, ∴ (X, τ) is a Ifin-compact space. �

4. Conclusion

The paper reveals that Ifin-compactness is stronger covering property than statistical com-
pactness, closed subspace of an I-compact space is I-compact, open continuous surjection of an
I-compact space is I-compact, a separable I-compact space is a star-compact space. A topologi-
cal space is I-compact if and only if every family of countable closed subsets of the space which
has I-intersection property has non-empty intersection. This study can further be extended for
the covering properties like Mengerness and Rothbergerness in the context of modulo an ideal of
natural numbers.
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3. Bal P., Bhowmik S. On R-star-Lindelöf spaces. Palest. J. Math., 2017. Vol. 6, No. 2. P. 480–486.

4. Bal P., Bhowmik S. Some new star-selection principles in topology. Filomat, 2017. Vol. 31, No. 13.
P. 4041–4050. DOI: 10.2298/FIL1713041B

5. Bal P., Bhowmik S., Gauld D. On Selectively star-Lindelöf properties. J. Indian Math. Soc., 2018.
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Abstract: An integer partition, or simply, a partition is a nonincreasing sequence λ = (λ1, λ2, . . . ) of
nonnegative integers that contains only a finite number of nonzero components. The length ℓ(λ) of a par-
tition λ is the number of its nonzero components. For convenience, a partition λ will often be written in
the form λ = (λ1, . . . , λt), where t ≥ ℓ(λ); i.e., we will omit the zeros, starting from some zero component,
not forgetting that the sequence is infinite. Let there be natural numbers i, j ∈ {1, . . . , ℓ(λ) + 1} such that
(1) λi − 1 ≥ λi+1; (2) λj−1 ≥ λj + 1; (3) λi = λj + δ, where δ ≥ 2. We will say that the partition
η = (λ1, . . . , λi − 1, . . . , λj + 1, . . . , λn) is obtained from a partition λ = (λ1, . . . , λi, . . . , λj , . . . , λn) by an ele-

mentary transformation of the first type. Let λi − 1 ≥ λi+1, where i ≤ ℓ(λ). A transformation that replaces
λ by η = (λ1, . . . , λi−1, λi − 1, λi+1, . . . ) will be called an elementary transformation of the second type. The
authors showed earlier that a partition µ dominates a partition λ if and only if λ can be obtained from µ by
a finite number (possibly a zero one) of elementary transformations of the pointed types. Let λ and µ be two
arbitrary partitions such that µ dominates λ. This work aims to study the shortest sequences of elementary
transformations from µ to λ. As a result, we have built an algorithm that finds all the shortest sequences of
this type.

Keywords: Integer partition, Ferrers diagram, Integer partitions lattice, Elementary transformation.

1. Introduction

Everywhere below, by a graph, we mean a simple graph, i.e., a graph without loops and multiple
edges. We will adhere to the terminology and notation from [6].

An integer partition, or simply a partition, is a nonincreasing sequence λ = (λ1, λ2, . . . ) of
nonnegative integers that contains only a finite number of nonzero components (see [1]). Let sumλ

denote the sum of all components of a partition λ and call it the weight of the partition λ. It is
often said that a partition λ is a partition of the nonnegative integer n = sumλ. The length ℓ(λ)
of a partition λ is the number of its nonzero components. For convenience, a partition λ will often
be written in the form λ = (λ1, . . . , λt), where t ≥ ℓ(λ); i.e., we will omit the zeros, starting from
some zero component, not forgetting that the sequence is infinite.

Let IPL denote the lattice of all (integer) partitions of all nonnegative integers, and let IPL(m)
denote the lattice of all partitions of a given nonnegative integer m. On the lattices IPL and
IPL(m), where m ∈ N, the well-known domination relation is considered [7].

We define two types of elementary transformations (see [2, 3]) of the partition

λ = (λ1, λ2, . . . , λt, 0, 0, . . . ),

where t = ℓ(λ) + 1.
Let there be natural numbers i, j ∈ {1, . . . , t} such that 1 ≤ i < j ≤ ℓ(λ) + 1 and

(1) λi − 1 ≥ λi+1 (or, equivalently, λi > λi+1);
(2) λj−1 ≥ λj + 1 (or, equivalently, λj−1 > λj);
(3) λi = λj + δ, where δ ≥ 2.

https://doi.org/10.15826/umj.2023.2.003
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We will say that the partition η = (λ1, . . . , λi−1, . . . , λj+1, . . . , λn) is obtained from a partition
λ = (λ1, . . . , λi, . . . , λj , . . . , λn) by an elementary transformation of the first type (or a box move-

ment). Conditions (1), (2), and (3) guarantee that a partition again will be obtained. Note that
η differs from λ by precisely two components with numbers i and j. For the Ferrers diagram, this
transformation means moving the top box of i-column to the right to the top of the j-column. We
will use Cartesian notation for the Ferrers diagram: each k-column consists of λk boxes (see [6]).

It should be noted that a box can also be thrown to the zero component with the number
ℓ(λ) + 1. The fact that η is obtained from λ by moving the box will be briefly written in the
form λ ⇁ η. Note that an elementary transformation of the first type preserves the weight of the
partition, while the length of the partition can be preserved or lifted by 1.

We now define elementary transformations of the second type for the partition λ = (λ1, λ2, . . . ).
Let λi−1 ≥ λi+1 (or, equivalently, λi > λi+1), where i ≤ ℓ(λ). A transformation that replaces λ

by η = (λ1, . . . , λi−1, λi − 1, λi+1, . . . ) will be called an elementary transformation of the second

type (or a box removement). As in the previous case, we will briefly write λ ⇁ η. It should be
noted that box removal reduces the weight of the partition exactly by 1, while the length of the
partition can be preserved or lowered by 1.

It was shown in [2, 3] that a partition µ dominates a partition λ if and only if λ can be obtained
from µ by sequentially applying a finite number (possibly a zero one) of elementary transformations
of the pointed types.

Let λ and µ be two arbitrary partitions and λ ≤ µ. The height (µ, λ) of a partition µ over a
partition λ is the number of transformations in a shortest sequence of elementary transformations
transforming µ into λ.

The following theorem was proved in [4].

Theorem 1 [4, Theorem 1]. Let µ ≥ λ in IPL and C = sumµ− sumλ. Then

height (µ, λ) =

∞
∑

j=1, µj>λj

(µj − λj) =
1

2
C +

1

2

∞
∑

j=1

|µj − λj|.

Let µ and λ be some fixed partitions such that µ > λ. Consider sequences of elementary
transformations from µ to λ (both types of elementary transformations are admissible):

µ = ξ(0) ⇁ ξ(1) ⇁ · · · ⇁ ξ(s) = λ.

This paper aims to describe an algorithm (Algorithm 1) for constructing all possible shortest
sequences of this kind. Algorithm 1 generalizes an algorithm constructed in [4] (see Algorithm 2).

2. Main results

Let µ = (µ1, . . . , µt) and λ = (λ1, . . . , λt) be two nonzero partitions, where t is the maximum
length of µ and λ.

Note that if µ ≥ λ, then sumµ ≥ sumλ; i.e., the integer C = sumµ− sumλ is nonnegative.
By definition of the dominance relation, a condition µ ≥ λ is equivalent to the system of

inequalities
µ1 + · · ·+ µk ≥ λ1 + · · · + λk (k = 1, . . . , t).

We write this system of inequalities in the following equivalent form:

k
∑

j=1, µj>λj

(µj − λj) ≥

k
∑

j=1, µj<λj

(λj − µj) (k = 1, . . . , t). (2.1)
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Here and below, in the case when no index satisfies a summation condition, we will assume that
the corresponding sum is equal to 0.

For some integer C ≥ 0, a condition µ ≥ λ is equivalent to the system
{

µ1 + · · ·+ µt = λ1 + · · ·+ λt + C,

µ1 + · · ·+ µk−1 ≥ λ1 + · · ·+ λk−1 (k = 2, . . . , t).
(2.2)

Since the following equalities are true:

µ1 + · · ·+ µk−1 + µk + · · ·+ µt = λ1 + · · ·+ λk−1 + λk + · · ·+ λt + C (k = 2, . . . , t),

system (2.2) is equivalent to the system

{

µ1 + · · · + µt = λ1 + · · ·+ λt + C,

µk + · · ·+ µt ≤ λk + · · ·+ λt + C (k = 2, . . . , t).
(2.3)

Let us rewrite system (2.3) in the equivalent form:



























t
∑

j=1, µj>λj

(µj − λj) =

t
∑

j=1, µj<λj

(λj − µj) + C,

t
∑

j=k,µj>λj

(µj − λj) ≤
t

∑

j=k,µj<λj

(λj − µj) + C (k = 2, . . . , t).

(2.4)

For i = 1, 2, . . . , t, we say that an i-component of a partition µ has an i-hill (or simply a hill)
with respect to the partition λ if µi > λi. In the case when the condition µi > λi is satisfied, we
assume that upper µi−λi boxes of the i-column of the Ferrers diagram of the partition µ form the
i-hill of height µi − λi.

For j = 1, 2, . . . , t, we say that a j-component of a partition µ has a j-pit (or simply a pit) with
respect to the partition λ if µj < λj . In the case when the condition µj < λj is satisfied, we assume
that there is the j-pit of depth λj −µj over the j-column of the Ferrers diagram of the partition µ.

Let us reformulate conditions (2.1) as follows.
For any k = 1, . . . , t, the sum of the heights of all i-hills such that 1 ≤ i ≤ k is greater than or

equal to the sum of the depths of all j-pits such that 1 ≤ j ≤ k.
Respectively, system (2.4) is equivalent to the following statement.
For some nonnegative integer C:

• the sum of the heights of all hills is equal to the integer C plus the sum of the depths of all
pits;

• for any k = 2, . . . , t, the sum of the heights of all i-hills such that i ≥ k does not exceed the
integer C plus the sum of the depths of all j-pits such that j ≥ k.

In what follows, we will assume that µ ≥ λ.
We will say that a j-pit is admissible if µj−1 > µj. Note that the admissibility of a j-pit is a

necessary condition for the possibility of moving the box to the j-column of the partition µ from
some column with a number less than j.

We will call an i-hill of a partition µ open if µi > µi+1. Note that the openness of i-hill is a
necessary condition for the possibility of moving the box from i-column of the partition µ to some
column with a greater number than i or for removal of the box from i-column of the partition µ.

For k = 1, 2, . . . , t, we say that a number k is a separator for the partition µ with respect to
the partition λ if

µ1 + · · ·+ µk = λ1 + · · ·+ λk.
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This means that
k

∑

j=1, µj>λj

(µj − λj) =
k

∑

j=1µj<λj

(λj − µj).

This condition is equivalent to the following statement.
The sum of the heights of all i-hills such that 1 ≤ i ≤ k is equal to the sum of the depths of all

j-pits such that 1 ≤ j ≤ k.
Let us make a simple remark that, for any i-hill, the number i is not a separator for the

partition µ with respect to λ.
Indeed, by the condition µ ≥ λ, we have

µ1 + · · ·+ µi−1 ≥ λ1 + · · ·+ λi−1.

Since µi > λi, it follows µ1+ · · ·+µi > λ1+ · · ·+λi. Consequently, the number i is not a separator.

Lemma 1. Assume that µ ≥ λ, the partition µ has an i-hill with respect to the partition λ,

where 1 ≤ i ≤ t, and a partition µ′ is obtained from the partition µ by applying an elementary

transformation of the second type, which consists in removing the top box from the i-hill. Then

(1) if, for the partition µ, there is a separator k such that i < k ≤ t, then the condition µ′ ≥ λ

is not satisfied ;
(2) if, for the partition µ, there are no separators k such that i < k ≤ t, then the condition µ′ ≥ λ

is satisfied.

P r o o f. 1. A separator k satisfies the condition

µ1 + · · · + µi + · · ·+ µk = λ1 + · · ·+ λi + · · · + λk.

For the partition µ′, we have µ′
i = µi − 1 and µ′

p = µp for p 6= i and p = 1, . . . , k. Hence, we have
the inequality

µ′
1 + · · · + µ′

i + · · ·+ µ′
k < λ1 + · · ·+ λi + · · · + λk.

Therefore, µ′ does not dominate λ, i.e., the condition µ′ ≥ λ is not satisfied.
2. For any number k such that i ≤ k ≤ t, since it is not a separator for the partition µ, the

condition
µ1 + · · ·+ µi + · · ·+ µk > λ1 + · · ·+ λi + · · ·+ λk

is true. Since, for the partition µ′, we have µ′
i = µi − 1 and µ′

p = µp for p 6= i and p = 1, . . . , k, it
follows that

µ′
1 + · · · + µ′

i + · · ·+ µ′
k ≥ λ1 + · · ·+ λi + · · · + λk.

In addition, for any k = 1, . . . , i− 1, the condition

µ′
1 + · · · + µ′

k ≥ λ1 + · · ·+ λk

is true.
Therefore, µ′ dominates λ, i.e., the condition µ′ ≥ λ is true. �

Assume that µ ≥ λ, the partition µ has an i-hill with respect to the partition λ, where 1 ≤ i ≤ t,
and the partition µ′ is obtained from the partition µ by applying an elementary transformation
of the second type, which consists in removing the top box from the i-hill. We will call such an
elementary transformation of the second type proper for a partition µ with respect to a partition λ

if, for a partition µ, there are no separators k such that i < k ≤ t. Lemma 1 states that µ′ ≥ λ

holds if and only if the corresponding elementary transformation of the second type is proper.
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Lemma 2. Assume that µ ≥ λ, the partition µ has an i-hill and a j-pit with respect to the

partition λ, where 1 ≤ i < j ≤ t, and a partition µ′ is obtained from the partition µ by applying an

elementary transformation of the first type, which consists in moving the upper box from the i-hill

to the j-pit. Then

(1) if the partition µ has a separator k such that i < k < j, then the condition µ′ ≥ λ is not

satisfied ;

(2) if, for the partition µ, there are no a separators k such that i < k < j, then the condition

µ′ ≥ λ is satisfied.

P r o o f. 1. It can be proven in exactly the same way as (1) in Lemma 1.

2. Due to the remark made before Lemma 1 and the conditions of this lemma, the numbers k
such that i ≤ k < j are not separators for the partition µ with respect to the partition λ, hence,
for such numbers k, we have

µ1 + · · · + µi + · · ·+ µk > λ1 + · · ·+ λi + · · · + λk.

For the partition µ′, we have µ′
i = µi − 1 and µ′

p = µp for p 6= i and p = 1, . . . , k. Consequently, we
get

µ′
1 + · · · + µ′

i + · · ·+ µ′
k ≥ λ1 + · · ·+ λi + · · · + λk.

Further, we note that the following condition is true for any k = 1, . . . , i− 1:

µ′
1 + · · ·+ µ′

k ≥ λ1 + · · ·+ λk.

For any k ≥ j, the following condition holds:

µ1 + · · ·+ µi + · · ·+ µj + · · · + µk ≥ λ1 + · · ·+ λi + · · · + λj + · · ·+ λk.

Consequently,

µ1 + · · · + (µi − 1) + · · ·+ (µj + 1) + · · ·+ µk ≥ λ1 + · · ·+ λi + · · ·+ λj + · · · + λk.

Hence, we have

µ′
1 + · · ·+ µ′

i + · · ·+ µ′
j + · · · + µ′

k ≥ λ1 + · · ·+ λi + · · · + λj + · · ·+ λk.

Therefore, the condition µ′ ≥ λ is satisfied. �

Assume that µ ≥ λ, the partition µ has an i-hill and has a j-pit with respect to the partition λ,
where 1 ≤ i < j ≤ t, and a partition µ′ is obtained from the partition µ by applying an elementary
transformation of the first type, which consists in moving the upper box from i-hill to the j-pit.
Such an elementary transformation of the first type will be called proper for the partition µ with
respect to the partition λ if, for µ, there are no separators k such that i < k < j. Lemma 2 states
that µ′ ≥ λ holds if and only if the corresponding elementary transformation of the first type is
proper.

Lemma 3. Let µ ≥ λ. Then

(1) for every pit of the partition µ, there is a hill to the left of that pit;

(2) if there is a pit of the partition µ, then also there is an admissible pit.
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P r o o f. Let the partition µ have a j-pit with respect to the partition λ for some j ∈ {1, . . . , t}.

Since µ ≥ λ, by conditions (2.1), there exists an i-hill such that 1 ≤ i < j. We assume that the
i-hill is the nearest hill to the left from the j-pit, where 1 ≤ i < j. Then there are no hills between
that i-hill and the j-pit; i.e., there are no s-hills such that i < s < j.

Then a pit closest to that i-hill on the right is admissible. Indeed, let such a pit be located in
the k-column, i.e., it is a k-pit, where i < k ≤ j. Then µk−1 ≥ λk−1 ≥ λk > µk, i.e., µk−1 > µk. �

Lemma 4. Let µ ≥ λ, and let an i-hill be the nearest hill to the left for an admissible j-pit,

where 1 ≤ j ≤ t. Then this i-hill is open, µi ≥ 2 + µj, and there are no separators k for the

partition µ such that i < k < j.

P r o o f. Note first that µi > λi ≥ λi+1 ≥ µi+1, so µi > µi+1, i.e., the i-hill is open. Moreover,
µi > λi ≥ λj > µj , hence µi ≥ 2 + µj .

Let us show that there are no separators k for the partition µ such that i < k < j.
Consider a number k such that i < k < j. Since λj > µj and there are no s-hills such that

k < s < j, we successively obtain

k
∑

p=1, µp>λp

(µp − λp) =

j
∑

p=1, µp>λp

(µp − λp) ≥

j
∑

p=1, µp<λp

(λp − µp) >
k

∑

p=1, µp<λp

(λp − µp).

Therefore, the condition with the number k from (2.1) is a strict inequality, i.e., the number k is
not a separator for the partition µ. �

Let µ ≥ λ, and let an i-hill be the nearest hill to the left for an admissible j-pit, where 1 ≤ j ≤ t.
Then, by Lemma 4, the following conditions are true:

(1) µi − 1 ≥ µi+1;
(2) µj−1 ≥ µj + 1;
(3) µi ≥ 2 + µi.

This is a necessary condition for a possibility of applying the box movement from i-column to the
j-column of the partition µ.

The corresponding elementary transformation of the first type will be call a moving the upper

box into an admissible pit from the hill closest to it on the left. By Lemma 2, such a transformation
is proper.

Corollary 1. Let µ′ be a partition obtained from a partition µ by moving the upper box into

an admissible pit from the hill closest to it on the left. Then µ′ ≥ λ.

Lemma 5. Assume that µ ≥ λ, the last hill of the partition µ with respect to the partition λ

has a number i, and µ′ is a partition obtained from the partition µ by removing the upper box from

i-hill. If C = sumµ− sumλ > 0, then the last i-hill of the partition µ is open and µ′ ≥ λ.

P r o o f. Note that µi > λi ≥ λi+1 ≥ µi+1; i.e., µi > µi+1, i.e., the i-column of the Ferrers
diagram of the partition µ is open, and, therefore, an elementary transformation of the second type
is applicable, which consists in removing of the upper box from i-hill. Let C > 0.

When passing from µ to µ′ and replacing C by C − 1, the first condition of system (2.4) is
preserved, since the sums decrease by 1 on the left and on the right.

When passing from µ to µ′ and replacing C with C − 1, the second condition of system (2.4)
for k ≤ i is preserved for the same reason.
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Let k > i. Then the partition µ satisfies

0 =
t

∑

j=k,µj>λj

(µj − λj) ≤
t

∑

j=k,µj<λj

(λj − µj) + C.

Since C > 0 and µj = µ′
j for j ≥ k, we get

0 =

t
∑

j=k,µ′

j
>λj

(µ′
j − λj) ≤

t
∑

j=k,µ′

j
<λj

(λj − µ′
j) + (C − 1).

�

Lemmas 1 and 5 imply

Corollary 2. Let µ′ be a partition obtained from a partition µ by removing the top box from

the last hill with number i. Then, for the partition µ, there are no separators k such that i < k ≤ t.

We now fix partitions µ and λ such that µ > λ. Consider sequences of elementary transforma-
tions from µ to λ (both types of elementary transformations are admissible):

µ = ξ(0) ⇁ ξ(1) ⇁ · · · ⇁ ξ(s) = λ. (2.5)

Let us construct now an algorithm for finding all possible shortest sequences of this kind.

Let C = sumµ − sumλ. Since µ > λ, we have C ≥ 0. Obviously, in the sequence (2.5), there
are exactly C elementary transformations of the second type, since elementary transformations of
the second type reduce the weight of the partition by 1, and elementary transformations of the first
type preserve the weight of the partition.

On the other hand, if some sequence of elementary transformations transforms µ into λ, then
each box contained in any of the hills must be removed or moved. Therefore, the number of
elementary transformations in such a sequence is not less than the sum of the heights of all hills.
By (2.4), the sum of the heights of all hills is equal to C plus the sum of the depths of all pits.
It is clear that all pits must be eliminated when passing from µ to λ in accordance with (2.5).
Therefore, in sequence (2.5), there are at least p movements of the boxes to pits, where p is equal
to the total depth of all pits. This implies that s ≥ C + p.

The following algorithm constructs all shortest sequences of length C + p of elementary trans-
formations from µ to λ.

Algorithm 1. Let µ > λ and C = sumµ− sumλ.

1. We set η = µ and C ′ = C.

2. To a current partition η and a number C ′, we apply any of the following proper elementary
transformations for the partition η with respect to the partition λ:

• if η has a pit, then we replace η with the partition obtained from η by moving the upper
box from some open i-hill to some admissible j-pit for which there are no separators k such
that i < k < j;

• if C ′ > 0, then we replace C ′ with C ′ − 1 and replace the partition η with the partition
obtained from η by removing the top box from some i-hill for which there are no separators k
such that i < k ≤ t.
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3. Do step 2 as long as possible. The process will definitely end. The performed transformations
will form the shortest sequence of elementary transformations from µ to λ. Its length is equal
to the sum of the heights of all hills of the partition µ with respect to the partition λ and it
is equal to

C + p =
1

2
C +

1

2

∞
∑

j=1

|µj − λj|.

Theorem 2. Algorithm 1 is correct. Every shortest sequence of elementary transformations of

the form (2.5) can be obtain by appropriate application of this algorithm.

P r o o f. By Lemmas 1 and 2, all the constructed partitions η satisfy the condition η ≥ λ.

If the current partition η satisfies η > λ, then, by Lemma 4 and Corollary 2, step 2 of the
algorithm can be continued. It is clear that the algorithm will complete its work and the shortest
sequence of the form (2.5) will be constructed. Its length is equal to the sum of the heights of all
the hills of the partition µ with respect to the partition λ, i.e., it is equal to C+p. It is not difficult
to see that

C + p =
1

2
C +

1

2

∞
∑

j=1

|µj − λj|.

Let sequence (2.5) be the shortest sequence of length C + p. There are C removals of boxes
in this sequence. It must be eliminated all hills with the total height C + p, where p is equal to
the total depth of all pits. Therefore, that sequence (2.5) consists of exactly C removals of boxes
from hills and exactly p moves of boxes from hills. Because it must be eliminated all pits with the
total depth p, every transformation ξ(k−1) ⇁ ξ(k) (k = 1, . . . , s) consists in removing the box from
a hill or consists in moving a box from a hill to a pit. Due to the conditions ξ(k−1) ≥ ξ(k) ≥ λ

and by Lemmas 1 and 2, every elementary transformation ξ(k−1) ⇁ ξ(k) is a proper elementary
transformation with respect to the partition λ.

Therefore, a simple execution of Algorithm 1 along the shortest sequence (2.5) is correct. �

For applications the following special case of Algorithm 1 is useful which generally speaking
does not construct all shortest sequences of the form (2.5).

Algorithm 2. [4] Let µ > λ and C = sumµ− sumλ.

1. We set η = µ and C ′ = C.

2. Apply any of the following possible elementary transformations to a current partition η and
an integer C ′:

• if η has a pit, then we replace η with the partition obtained from η by moving the upper
box into some admissible j-pit from the hill closest to it on the left;

• if C ′ > 0, then we replace C ′ with C ′ − 1 and replace the partition η with the partition
obtained from η by removing the top box from the last hill.

3. Do step 2 as long as possible. The process will definitely end. The performed transformations
will form the shortest sequence of elementary transformations from µ to λ. Its length is equal
to the sum of the heights of all hills of the partition µ with respect to the partition λ and is
equal to

C + p =
1

2
C +

1

2

∞
∑

j=1

|µj − λj|.
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Example 1. Let µ = (12, 8, 8, 4, 3, 2, 2, 2, 0, 0) and λ = (10, 10, 6, 3, 3, 2, 1, 1, 1, 1). We have
sumµ = 41, sumλ = 38, and C = 3.

Consider the component-wise difference between µ and λ:

µ = (12, 8, 8, 4, 3, 2, 2, 2, 0, 0)3,
λ = (10, 10, 6, 3, 3, 2, 1, 1, 1, 1),

δ = µ− λ = (+2, –2, +2, +1, 0, 0, +1, +1, –1, –1),
∆ = (2, 0, 2, 3, 3, 3, 4, 5, 4, 3).

Here, we have five hills and three pits, t = 10, and the height(µ, λ) is equal to the sum of the
heights of all hills, i.e., it is equal to 7. At the end of the notation of µ at the top, the number 3 is
indicated, which is equal to the number of boxes to be removed when working Algorithm 1.

Here, the sequence ∆ = (∆1,∆2, . . . ,∆10) is given by the condition

∆k = (µ1 + · · ·+ µk)− (λ1 + · · · + λk),

i.e., ∆k = ∆k−1 + δk. It is clear that the condition µ ≥ λ is equivalent to the fact that ∆k ≥ 0 for
any k = 1, 2, . . . , t. The sequence ∆ has only one zero ∆2 = 0. This zero underlined below in ∆.
Hence, there is exactly one separator (the integer 2) for µ with respect to λ.

Note that the 1-hill is open. Using Algorithm 1, we cannot remove boxes from the 1-hill (“move
them across the separator”). We can move boxes from the 1-hill only to the admissible 2-pit.

The 9-pit is admissible but the 10-pit is not. We can move a box from any hills with numbers
3, 4, and 8 to the 9-pit since they are open and there are no separators between these hills and the
9-pit. Note that the 7-hill is not open.

Let us move the box from the open 3-hill to the admissible 9-pit:

µ = (12, 8, 7, 4, 3, 2, 2, 2, 1, 0)3,
λ = (10, 10, 6, 3, 3, 2, 1, 1, 1, 1),

δ = µ− λ = (+2, –2, +1, +1, 0, 0, +1, +1, 0, –1),
∆ = (2, 0, 1, 2, 2, 2, 3, 4, 4, 3).

Note that, after such a transformation, the 10-pit became admissible.

Now let us remove the box from the 3-hill, which remained open:

µ = (12, 8, 6, 4, 3, 2, 2, 2, 1, 0)2,
λ = (10, 10, 6, 3, 3, 2, 1, 1, 1, 1),

δ = µ− λ = (+2, –2, 0, +1, 0, 0, +1, +1, 0, –1),
∆ = (2, 0, 0, 1, 1, 1, 2, 3, 3, 2).

Note that another separator has appeared — the integer 3. In addition, we have replaced the
counter value of the number of boxes to be deleted by 2.

Continuing to apply elementary transformations in the same spirit according to Algorithm 1,
we will find some shortest sequence of elementary transformations of length 7 that transforms µ

into λ.

Note that we can remove a box from an open hill at any step of the algorithm execution if the
value of the counter of deleted boxes is greater than zero; it is only important that there is no any
separator to the right of the hill.

An example of an operation of Algorithm 2 see in [4].
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3. Conclusion

We note that finding the shortest chains of elementary transformations is an important problem
in studying the properties of graphic partitions. The use of Algorithm 2 allowed us to obtain several
interesting properties of graphic partitions (see, for example, [5, 6]). Using Algorithm 1 opens up
more possibilities.
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Abstract: In the literature, I-convergence (or convergence in I) was first introduced in [11]. Later related
notions of I-sequential topological space and I∗-sequential topological space were introduced and studied. From
the definitions it is clear that I∗-sequential topological space is larger(finer) than I-sequential topological space.
This rises a question: is there any topology (different from discrete topology) on the topological space X which
is finer than I∗-topological space? In this paper, we tried to find the answer to the question. We define IK-
sequential topology for any ideals I, K and study main properties of it. First of all, some fundamental results
about IK-convergence of a sequence in a topological space (X , T ) are derived. After that, IK-continuity and
the subspace of the IK-sequential topological space are investigated.

Keywords: Ideal convergence, IK-convergence, Sequential topology, IK-sequential topology.

1. Introduction

The notion of convergence of real or complex valued sequences was generalized using asymptotic
density and was called statistical convergence by Fast [7] and Steinhause [20] in the same year 1951,
independently. After some years P. Kostyrko, T. Šalát, W. Wilczyńki [11] gave a generalization of
statistical convergence and called it as ideal convergence (or converges in ideal). Various fundamen-
tal properties (convergence in I and I∗) were investigated. Later B.K. Lahiri and P. Das in [12]
discussed convergence in I and in I∗ and investigate some additional results related to mentioned
concepts [4, 8–10, 15–17].

The concept of I∗-convergence of functions was extended to IK-convergence by M. Mačaj and
M. Sleziak in [13] in 2011. The authors of [2, 3, 5, 6, 14] gave further properties and results about
IK-convergence.

In first part of this paper we introduce IK-sequential topological (seq.-top.) space, which is a
natural generalization of I∗-seq.-top. space. Later we discuss the IK-continuity of the function and
in last two section we write about IK-subspace and IK-connectedness. We will use further the
abbreviation T.S. for a topological space.

2. Definition and preliminaries

In this part, we give some known definitions and necessary results.

Definition 1 [7, 20]. Let A ⊂ N, and for m ∈ N let the set

Am := {x ∈ A : x < m}

and |Am| stand for the cardinality of Am. Natural density of A is defined by

β(A) := lim
m→∞

|Am|

m

https://doi.org/10.15826/umj.2023.2.004
mailto:hsbehmanush1989@gmail.com
mailto:mkucukaslan@mersin.edu.tr
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whenever the limit exists. A real sequence x̃ = (xi) is said to statistically converges to x0 if for any
ε > 0,

β
(

{n : |xi − x0| > ε}
)

= 0

holds.

Definition 2 [11]. Let I be any subfamily of P(N), with P(N) being the family of all subsets
of N. Then, I is called an ideal on N if the following requirements hold :

(i) finite union of sets in I is again in I;
(ii) any subset of a set in I is in I.

I is admissible if all singleton subsets of N belong to I. The ideal I is non-trivial if I 6= ∅ and
I 6= P(N). A non-trivial ideal I is called proper if N is not in I.

The family of finite subsets of the N is an admissible non-trivial ideal denoted by Fin and the
family of the subsets of N with natural density zero is also an admissible non-trivial ideal denoted
by Iβ. The set of all non-trivial admissible ideals will be denoted as NA throughout the study.

Example 1. [11] Consider the decomposition of N as N =
⋃∞

j=1 βj where all βj are infinite
subsets of N and are mutually disjoint. Take the family

I = {N ⊂ N : N intersect only finite number of β′
js}.

Then, I belongs to NA.

Definition 3 [19]. Assume F ⊂ P(N). The collection F is a filter on N if

(i) a finite intersection of elements of F is in F and
(ii) if C ∈ F ∧ C ⊆ D, then D ∈ F .

If empty set is not in F then F is proper. If I ∈ NA then the collection

F = {N ⊂ N : NC ∈ I}

is a filter on N. It is known as the I-associated filter.

Definition 4 [21]. In a T.S. (X ,T ) a sequence x̃ = (xi) ⊂ X is called to converging in I to a
point x ∈ X if

{i ∈ N : xi ∈ υ} ∈ F(I)

holds for each neighborhood υ of x. The point x is referred to as the ideal limit of the sequence

x̃ = (xi) and it is represented by xi
I
→ x (or I − limxi = x).

Remark 1.

(i) Statistical and Iβ− convergence are coincide.
(ii) Classical convergence and Fin−convergence are coincide.

Lemma 1 [1]. Assume that I,I1 and I2 be ideals on the set N and consider a T.S. (X ,T ),
then

1. If I ∈ NA, then every convergent sequence is I-convergent sequence which converges to same
point.

2. If I1 ⊆ I2 and (xi) ⊆ X is a sequence which xi
I1→ x, then xi

I2→ x.
3. If X the Hausdorff space, then the limit of every convergent sequence is unique.
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3. IK-convergence of sequence

In this part we will investigate some results related to IK-convergence of sequences which is
a generalized form of I∗-convergence of sequences. If we consider Fin instead of K, then we will
have I∗-convergence.

Definition 5 [6]. In a T.S. (X ,T ) a sequence x̃ = (xi) ⊂ X is called to be I∗-converging to
x0 ∈ X if ∃M ∈ F(I) s.t. the sequence

yi :=

{

xi, i ∈ M,
x, i /∈ M

is Fin convergent to x.

That is, for each neighborhood υ of x,

{i ∈ N : yi ∈ υ} ∈ F(Fin),

or
{i ∈ M : yi /∈ υ} ∪ {i ∈ MC : yi /∈ υ} ∈ Fin.

So,
{i ∈ M : xi /∈ υ} ∪ {i ∈ MC : x /∈ υ} ∈ Fin.

This implies that
{i ∈ M : yi /∈ υ} ∈ Fin.

Therefore,
{i ∈ M : yi ∈ υ} ∈ F(Fin).

It is clear that this definition is the same as the definition given in [6]. In the definition of
I∗-convergence of sequence if we consider an arbitrary ideal K instead of the ideal Fin then it
yields the definition of IK-convergence of a sequence. That is, IK-convergence is the generalized
form of I∗-convergence.

Definition 6 [13]. Let I and K stand for the ideals of N and consider a T.S. (X ,T ). The
sequence x̃ = (xi) ⊂ X is IK-convergent to a point x ∈ X if ∃M ∈ F(I) s.t. the sequence

yi =

{

xi, i ∈ M,
x, i /∈ M,

K-converges to x. We represent it as IK − lim(xi) = x or xi
IK

→ x .

Definition 7. Let I and K stand for the ideals of N and (X ,T ) represent a T.S. Consider the
sequences x̃ = (xi) ⊂ X and ỹ = (yi) ⊂ X . Define a relation ∼I as

x̃ ∼I ỹ ⇔ {i : xi 6= yi} ∈ I.

The relation ∼I is an equivalence relation. That is,

1. ∀ x̃ = (xi) ⊂ X , {i : xi 6= xi} = ∅ ∈ I ⇒ x̃ ∼I x̃.
2. Let x̃ ∼I ỹ. Since {i : yi 6= xi} = {i : xi 6= yi} ∈ I, then ỹ ∼I x̃.
3. Let x̃ ∼I ỹ and ỹ ∼I z̃. Then, A := {i : xi = yi} ∈ F(I) and B := {i : yi = zi} ∈ F(I). So,

{i : xi = zi} = A ∩B ∈ F(I). Hence, x̃ ∼I z̃ holds.
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Lemma 2. Let I and K stand for the ideals of N and consider the T.S. (X ,T ) and the sequences

x̃ = (xi) ⊆ X . Assume xi
IK

→ x for any x ∈ X and t̃ = (ti) ⊆ X is a sequence s.t. x̃ ∼I t̃. Then,

the sequence ti
IK

→ x.

P r o o f. Let xi
IK

→ x, then ∃M ∈ F(I) s.t. the following sequence

yi =

{

xi, i ∈ M,
x, i /∈ M

is K-convergent to x. Since (xi) ∼I (ti). So ∀i ∈ M , xi = ti. Therefore, the following sequence

yi =

{

ti, i ∈ M,
x, i /∈ M

is K-convergent to x which shows that ti
IK

→ x holds.
�

The Definition 7 gives the possibility that the definition of IK-convergence of a sequence can
be rewritten as follows:

Definition 8. Let I and K stand for the ideals of N and consider the T.S. (X ,T ). A sequence
x̃ = (xi) ⊂ X is IK-convergent to the point x ∈ X if there exist a sequence t̃ = (ti) ⊂ X s.t. x̃ ∼I t̃

and ti
K
→ x holds.

In the following lemma we demonstrate that Definition 6 and Definition 8 are equivalent for
any ideals I and K and for any T.S. (X ,T ).

Lemma 3. Let I and K stand for the ideals of N and consider the T.S. (X ,T ) and

x̃ = (xi) ⊂ X be a sequence. Then, xi
IK

→ x iff ∃ t̃ = (ti) ⊂ X s.t. x̃ ∼I t̃ and ti
K
→ x hold.

P r o o f. Let xi
IK

→ x holds. Then, ∃M ∈ F(I) s.t. the following sequence

yi =

{

xi, i ∈ M,
x, i /∈ M

is K-convergent to x. Let us chose (ti) = (yi) ∀i ∈ N. Then, the proof will complete if we show
that x̃ ∼I ỹ.

Consider the fact {i ∈ N : xi = yi} = {i ∈ M : xi = yi} ∈ F(I). Hence, x̃ ∼I t̃.

Conversely, let x̃ = (xi) and t̃ = (ti) be sequences s.t. x̃ ∼I t̃ and ti
K
→ x hold. Since x̃ ∼I t̃,

then
M = {i ∈ N : xi = ti} ∈ F(I)

holds. Define a sequence

yi =

{

xi, i ∈ M,
x, i /∈ M.

Since xi = ti hold ∀i ∈ M , then we can write

ti =

{

xi, i ∈ M,
x, i /∈ M.

Because t̃ = (ti) is K-convergent to x, the sequence ỹ = (yi) is also K-convergent to x. Hence, the
sequence x̃ = (xi) is IK-convergent to the point x and this completes the proof. �
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4. IK-seq.-top. space

In this section, we are going to define a new topology on the X using the ideal I and K and
investigate some properties of the new T.S. This topology will be an extended version of the I∗-
seq.-top. space which was discussed in [18]. If we take I = Fin, then IK-seq.-top. space is coincide
with I∗-T.S.

Definition 9. Let I and K stand for the ideals of N and consider the T.S. (X ,T ). Then

1. A set F ⊆ X is IK-closed, if for each (xi) ⊆ F with xi
IK

→ x, then x ∈ F.
2. A set V ⊂ X is IK-open, if its complement V C is IK-closed.

Remark 2. Consider the T.S. (X ,T ). An O ⊂ X is IK-open iff each sequence in X − O has
IK-limit in X −O.

P r o o f. The proof is evident from Definition 9. Therefore, it is omitted here. �

Definition 10. Let I and K stand for the ideals of N and consider the T.S. (X ,T ). For any

subset A ⊆ X define a set A
IK

(it is called IK-closure of A) by

A
IK

:= {x ∈ X : ∃(xi) ⊆ A, xi
IK

→ x}.

It is clear that ∅
IK

= ∅, X
IK

= X , and A ⊆ A
IK

holds ∀A ⊆ X .

Remark 3. A subset C of the T.S. X is IK closed set iff C
IK

= C.

P r o o f. Proof is obvious from the Definition 10. So, it is omitted here. �

Lemma 4. Let I and K stand for the ideals of N and let (X ,T ) represent a T.S. For any
subset A ⊆ X , IK-closure of A is IK-closed.

P r o o f. We must show that

(A
IK

)
IK

= A
IK

.

It is clear that

A
IK

⊂ (A
IK

)
IK

.

Let x ∈ (A
IK

)
IK

. Then, there exist a sequence (xi) ⊂ A
IK

s.t. xi
IK

→ x holds. Since (xi) ⊂ A
IK

,

then there exist sequences (xni ) ⊂ A s.t. xni
IK

→ xi. Therefore there exist the sets Mn ∈ F(I) s.t.

{i ∈ Mn : xni /∈ υn} ∈ K

for each neighborhood υn of xi. Choose m1 the i where x1i is belonging to neighborhood υ1 of
x1, similarly m2 the i where x2i is belonging to neighborhood υ2 of x2. If we continue this process
and take mp the i where xpi is belonging to neighborhood υn of xp. The obtained sequence (xmp

)

belongs to A. The theorem will be proved if we show that xmp

IK

→ x. Since xi
IK

→ x, so ∃M ∈ F(I)
s.t. the sequence

yi =

{

xi, i ∈ M,
x, i /∈ M,

yi
K
→ x.
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So,

{i ∈ M : xi /∈ υ} ∈ K

for each neighborhood υ of x. Now,

{i ∈ M : υn 6⊂ υ} ⊆ {i ∈ M : xi /∈ υ} ∈ K.

Therefore,

{i ∈ M : υn 6⊂ υ} ∈ K

and

{i ∈ M : xmp
/∈ υ} ⊂ {i ∈ M : υn 6⊆ U} ∈ K

hold. So, xmp

IK

→ x and x ∈ A
IK

. �

Definition 11. Let I and K stand for the ideals of N and (X ,T ) represent a T.S. Then, for
A ⊂ X , IK-interior of A is defined as

A◦I
K

:= A− (X −A
IK

).

Proposition 1. Let V be a subset of T.S. X , then V is IK-open iff V◦IK

= V.

P r o o f. Let V be an IK-open set. Then, X − V is IK-closed set and

clIK(X − V) = X − V

holds. So, we have

V◦IK

= V − (X − V) = V.

Conversely assume that

V◦IK

= V

holds. From the definition of IK-interior of V we have

V = V − (X − V
IK

).

Hence,

V ∩ X − V
IK

= ∅.

Consequently

X − V
IK

⊂ X − V.

Thus,

X − V
IK

= X − V

is satisfied. Therefore, X − V is IK-closed and V is IK-open. �

Definition 12 [21]. A sequence (xi) in a T.S. X is I-eventually in a subset A of X if

{i ∈ N : xi ∈ A} ∈ F(I).
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Definition 13. Let I and K stand for the ideals of N and consider the T.S. (X ,T ). A sequence
x̃ = (xi) ⊆ X is IK-eventually in a subset V of X . If there exist a sequence ỹ = (yi) ⊆ X s.t.
ỹ ∼I x̃ and ỹ is K-eventually in V.

In the next theorem, we will provide a sequence characterization of IK− open set.

Theorem 1. Let I and K stand for the ideals of N and consider the T.S. (X ,T ). A subset υ
of X is IK-open iff each IK-convergent sequence to x0 ∈ υ is IK-eventually in υ.

P r o o f. Let υ is IK-open. Then, X − υ is IK-closed and X − υ
IK

= X − υ holds. Let

x̃ = (xi) ⊂ X be a sequence s.t. xi
IK

→ x and x ∈ υ. Then, ∃M ∈ F(I) s.t. the sequence

ti =

{

xi, i ∈ M,
x, i /∈ M

is K-convergent to x. Since υ is a neighborhood of x, then we have

H = {i ∈ N : xi /∈ υ} ∈ K.

If we choose yi = ti, then

{i ∈ N : yi = xi} = {i ∈ N : ti = xi} = M ∈ F(I)

holds. So, (yi) ∼I (xi) holds and (yi) is eventually in υ.
Conversely, let x̃ = (xi) ⊂ X is a sequence which is IK-convergent sequence to a point x ∈ υ and

it is IK-eventually in υ. Assume that υ is not IK-open subset of X . So there exists x0 ∈ X − υ
IK

which x0 /∈ X − υ. This means that there exists a sequence (xi) ⊂ X − υ which is IK-convergence
to x0 ∈ υ. So, (xi) is IK-eventually in υ.

Therefore, ∃ỹ = (yi) ⊂ X which x̃ ∼I ỹ and ỹ is K-eventually in υ. This implies that ỹ is
K-eventually in υ which is not in case. �

Theorem 2. Let I and K stand for the ideals of N and consider the T.S. (X ,T ). A subset
C ⊂ X is IK-closed iff

C = ∩{A : A is IK— closed and C ⊂ A}.

P r o o f. Let
C = ∩{A : A is IK— closed and C ⊂ A}.

Let x be any element of IK-closure of C. Then there exists (xi) ⊂ C s.t. xi
IK

→ x. Let x /∈ C so

x /∈ ∩{A : A is IK— closed and C ⊂ A}.

This implies that ∃ IK-closed subset F of X s.t. x /∈ A, but C is IK-closed and it is a subset of A,
which is a contradiction.

The converse is obvious. �

Theorem 3. Let I and K be ideals of N and (X ,T ) be a T.S. A function clIK : P(X ) → P(X )

defined as clIK(A) = A
IK

is satisfying Kuratowski closure axioms

(K1) clIK(∅) = ∅ and clIK(X ) = X ,
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(K2) A ⊆ clIK(A) ∀A ⊆ X ,
(K3) clIK(A) = clIK(clIK(A) ∀A ⊆ X ,
(K4) clIK(A ∪B) = clIK(A) ∪ clIK(B) ∀A,B ⊆ X .

P r o o f. (K1) and (K2) are clear from the definition of IK-closure function. By Lemma 4,
clIK(A) is closed. So, clIK(clIK(A)) = clIK(A). Therefore, (K3) holds.

To prove (K4), let x ∈ clIK(A) ∪ clIK(B). Then, x ∈ clIK(A) or x ∈ clIK(B). Without lost

of generality assume that x ∈ clIK(A). So, ∃(xi) ⊂ A s.t. xi
IK

→ x. Therefore, ∃(xi) ⊂ A ∪ B s.t.

xi
IK

→ x. So, x ∈ clIK(A) ∪ clIK(B).

Conversely, let x ∈ clIK(A ∪ B). Then, there exist a sequence (xi) ⊂ (A ∪ B) s.t. xi
IK

→ x.
Assume that x /∈ clIK(A) and x /∈ clIK(B). So, neither set A nor set B contains a sequence s.t. IK-
converges to the point x. Consequently, there is not any sequence in the A∪B which is convergent
to x. But x ∈ clIK(A ∪B) which is a contradiction. Hence,

clIK(A ∪B) = clIK(A) ∪ clIK(B)

holds. �

Corollary 1. A subset A of X is IK-closed iff clIK(A) = A and a subset O ⊂ X is IK-open
iff X −O is IK-closed.

Theorem 4. Let I and K stand for the ideals of N and consider the T.S. (X ,T ). Then,

TIK := {A ⊂ X : clIK(X −A) = X −A}

is a topology over the set X .

P r o o f. By (K1), it is clear that X ∈ TIK and ∅ ∈ TIK hold. Let A,B ∈ TIK be arbitrary
sets. To prove A ∪B ∈ TIK we must to prove that

X −A ∪B = clIK(X −A ∪B)

holds. By (K2), we have
X −A ∪B ⊂ clIK(X −A ∪B).

Now, let x ∈ clIK(X − A ∪ B) be an arbitrarily element. Then, ∃(xi) ⊂ X − (A ∪ B) s.t. it
is IK-convergent to x. This implies that (xi) is not subset of A ∪ B. So, (xi) is neither subset of
A nor subset of B. Therefore, (xi) ⊂ X − A or (xi) ⊂ X − B which IK-converges to point x. So,
x ∈ clIK(X −A) or x ∈ clIK(X −B). Since X −A and X −B are closed sets, then

x ∈ (X −A) ∪ (X −B) = X −A ∪B

holds.
Let {Ai} be a collection of IK-open subsets of X . Then, clIK(X − Ai) = X − Ai ∀i ∈ N. By

considering (K2), we have

∩i∈N(X −Ai) ⊆ clIK

(

∩n∈N (X −Ai)
)

.

Let x ∈ clIK ∩n∈N (X − Ai) be an arbitrary element. Then, ∃(xi) ⊂ ∩n∈N(X − Ai) which is
IK-convergent to x. Then, (xi) ⊂ (X −Ai) ∀i ∈ N. Since X −Ai are closed sets, then x ∈ X −Ai

∀i ∈ N. Therefore,
x ∈ ∩i∈N(X −Ai).

Hence, the set TIK is a topology and (X ,TIK) is a T.S. �
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Definition 14. The T.S. (X ,TIK) is called as IK-sequential T.S. For abbreviation we will
show it by IK-seq.-top. An IK-seq.-top. (X ,TIK) is said to be IK-discrete space if TIK = P(X ).

Theorem 5. Let I, K, I1, K1, I2 and K2 stand for ideals of N and (X ,T ) represents a T.S.
Let I1 ⊂ I2 and K1 ⊂ K2. Then,

1. TIK2
≺ TIK1

,
2. TIK

2

≺ TIK
1

.

P r o o f. Let υ be any IK2-open subset of X . Then, X−υ is IK2-closed and clIK2
(X−υ) = X−υ

hold. To prove υ is IK1-open subset ofX , we will show that

clIK1
(X − υ) ⊂ X − υ.

Let x ∈ clIK1
(X − υ) be any point. Then, there exists (xi) ⊂ X − υ s.t. xi

IK1

→ x. Since

K1 ⊂ K2, then by Proposition 3.6 in [13], xi
IK2

→ x. So, x ∈ clIK2
(X − υ). Therefore, x ∈ X − υ.

Hence X − υ is IK2-closed set and υ is IK2-open subset of X .

The second one can be proved by using the fact that if I1 ⊂ I2, then, xi
IK
1→ x implies xi

IK
2→ x,

it easily can be proved. �

Theorem 6. Let I and K stand for the ideals of N and (X ,T ) represent a T.S. Then, every
I∗-open set is IK-open set.

P r o o f. If we take K = Fin then I∗-open set will be IK-open set. �

Theorem 7. Let I and K stand for the ideals of N and (X ,T ) represent a T.S. Then, every
IK-open set is K-open set.

P r o o f. Let υ be an arbitrary IK-open subset of X . Then, X − υ is IK-closed and

clIK(X − υ) = X − υ.

To prove υ is K open, it is sufficient to show that X − υ is K-closed, i.e,

X − υ = X − υ
K
.

It is clear that X − υ ⊂ X − υ
K

. Let x ∈ X − υ
K

be an arbitrary element s.t. ∃(xi) ⊂ X − υ

satisfying xi
K
→ x.

Then, by Lemma 3.5 in [13] we have xi
IK

→ x . So, x ∈ clIK(X −υ) = X −υ. Hence, the theorem
proved. �

Proposition 2. Let I and K stand for the ideals of N and (X ,T ) represent a T.S. Then, the
following statements are true:

1. If K ⊂ I, then, each I-open set is IK-open set.

2. If the space X is a first countable space and the ideal I has additive property with respect to
K (see Definition 3.10 in [13]), then, each IK-open set is I-open set.

3. If I ⊂ K, then every K-open set is IK-open.

P r o o f. The proof is obvious from Proposition 3.7 and Theorem 3.11 of [13]. �
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5. IK-continuity of functions

In this section we will define IK−continuous and sequential IK-continuous functions. We will
prove that in any IK-sequential T.S. these two concepts coincide. Also, we will state some theorems
that give the definition of IK-continuous function in different words and ways. At the end of this
section we will see that the combination of IK-continuous functions is IK-continuous.

Definition 15. Let I and K stand for the ideals of N and (X ,TIK) (Y,T
′

IK) represent IK-
seq.-top. spaces. A function f , from X to Y is said to be

(i) IK-continuous which provides that inverse image of any IK-open subset of Y is IK-open
in X .

(ii) Sequentially IK-continuous which provides that f(xi)
IK

→ f(x) ∀(xi) ⊂ X with xi
IK

→ x.

Theorem 8. Let I and K stand for the ideals of N and (X ,TIK) (Y,T
′

IK) represent IK-seq.-
top. spaces; and f , from X to Y be a function. Then, f is IK-continuous iff it is sequentially
IK-continuous.

P r o o f. Let f be an IK-continuous function. Then, inverse image of any IK-open subset of

Y is IK-open subset in X . Let (xi) ⊂ X be a sequence with xi
IK

→ x. Then, there exists M ∈ F(I)
s.t. the following sequence

ti :=

{

xi, i ∈ M,
x, i /∈ M

is K-convergent to x. That is, for each neighborhood υ of x we have

{i ∈ N : ti ∈ υ} ∈ F(K).

Let V be any IK-open neighborhood of f(x). Then, f−1(V) is IK-open subset of X which contains
the point x. So, it is a neighborhood of x. Therefore,

{i ∈ N : ti ∈ f−1(V)} ∈ F(K),

implies that {i ∈ N : f(ti) ∈ V} ∈ F(K). Hence, the sequence

f(ti) :=

{

f(xi), i ∈ M,
f(x), i /∈ M

is K-convergent to f(x). So, f(xi)
IK

→ f(x). Hence, f is sequentially IK-continuous function.
Conversely, let the function f be sequentially IK-continuous and υ is any IK-open subset of Y.

Assume that f−1(υ) is not IK-open subset of X . Then, X − f−1(υ) is not IK-closed subset of X .
So,

∃(xi) ⊂ X − f−1(υ) s.t. xi
IK

→ x and x /∈ X − f−1(υ),

i.e. xi /∈ f−1(υ) ∀n and xi
IK

→ x which means x ∈ f−1(υ). Since f is IK-sequentially continuous

function then f(xi)
IK

→ f(x). So, f(x) ∈ υ and f(xi) /∈ υ ∀n. This is a contradiction. �

Lemma 5. Let I and K stand for the ideals of N and (X ,TIK) (Y,T
′

IK) represent IK-seq.-
top. spaces and f , from X to Y be an IK-continuous function. If (yi) ⊂ Y be a sequence s.t.

yi
IK

→ y, then f−1(yi)
IK

→ f−1(y).
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P r o o f. Let f be an IK-continuous function. Let yi
IK

→ y then ∃M ∈ F(I) s.t. the sequence

sn =

{

yi, i ∈ M,
y, i /∈ M

is K-convergent to y. So, for each neighborhood υ of Y,

{i ∈ N : yi ∈ υ} ∈ F(K).

Since f is IK-continuous function, then inverse image of any IK− open set in Y is IK-open in X ,
f−1(υ) is open neighborhood of x in X . Then

{i ∈ N : f−1(yi) ∈ f−1(υ)} ∈ F(K).

Therefore,

f−1(sn) =

{

f−1(yi), i ∈ M,
f−1(y), i /∈ M,

is K-convergent to f−1(y) and hence f−1(yi)
IK

→ f−1(y). �

Theorem 9. Let I and K stand for the ideals of N and (X ,TIK) (Y,T
′

IK) represent IK-seq.-
top. spaces. Then the function f , from X to Y is IK-continuous iff

clIK(f−1(B) = f−1(clIK(B)

holds ∀B ⊂ Y.

P r o o f. Assume that function f , from X to Y is IK-continuous function. Let

x ∈ clIK(f−1(B)).

Then, ∃(xi) ⊂ f−1(B) s.t. xi
IK

→ x. Since f is IK-continuous so,

f(xi)
IK

→ f(x).

In another hand (xi) ⊂ B, so f(x) ∈ clIK(B) and x ∈ f−1(clIK(B)).

Now, let x ∈ f−1(clIK(B)), i.e. f(x) ∈ clIK(B). Therefore, ∃(yi) ⊂ B s.t. xi
IK

→ x. Then,

by Lemma 5 there exists (xi) = (f−1(yi) ⊂ f−1(B) s.t. xi
IK

→ x, where x = f−1(y) holds. So,
x ∈ clIK(f−1(B)). Hence,

clIK(f−1(B) = f−1(clIK(B).

Conversely, let
clIK(f−1(B) = f−1(clIK(B), ∀B ∈ P(Y).

Let υ be IK-open subset of Y then

clIK(Y −B) = Y −B.

Let B = Y − υ, then

clIK(f−1(Y − υ)) = f−1(clIK(Y − υ)) = f−1(Y − υ).

This shows that f−1(Y − υ) is IK-closed. Hence, the following equality

f−1(Y − υ) = X − f−1(υ)

implies that X − f−1(υ) is IK-closed. Therefore f−1(υ) is IK-open set. �
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Corollary 2. Let I and K stand for the ideals of N and (X ,TIK) (Y,T
′

IK) represent IK-seq.-
top. spaces. A function f , from X to Y is IK-continuous iff

intIK(f−1(B) = f−1(intIK(B) ∀B ⊂ Y.

Definition 16. Let I and K stand for the ideals of N and (X ,TIK) (Y,T
′

IK) represent IK-seq.-
top. spaces and f , from X to Y be a function. The function f is IK-continuous at a point x ∈ X
if inverse image of any neighborhood of f(x) is a neighborhood of x in X .

Corollary 3. Let I and K stand for the ideals of N and (X ,TIK) (Y,T
′

IK) represent IK-seq.-
top. spaces. Then, the function f , from X to Y is IK-continuous iff it is IK-continuous at every
point x ∈ X .

Definition 17. Let I and K stand for the ideals of N and (X ,TIK) (Y,T
′

IK) represent IK-
seq.-top. spaces and f , from X to Y be a function, f is said to be IK-closure preserving if

f(clIK(A)) = clIK(f(A) ∀A ⊂ X .

Theorem 10. The function f , from X to Y is IK-continuous iff it is IK-closure preserving.

P r o o f. Let f : X → Y be an IK-continuous function. Then, for any subset B of Y

clIK(f−1(B) = f−1(clIK(B)

holds. Consider a set A ⊂ X s.t. f(A) is subset of Y. So,

clIK(f−1(f(A)) = f−1(clIK(f(A))

holds and it implies that f(clIK(A)) = clIK(f(A)) ∀A ⊂ X holds.

Conversely, let f be IK-closure preserving function, then

f(clIK(A)) = clIK(f(A)) ∀A ⊂ X .

Let υ be any subset of Y, then f−1(υ) is subset of X and

f(clIK(f−1(υ))) = clIK(f(f−1(υ) = clIK(υ)

holds. So

clIK(f−1(υ) = f−1(clIK(υ)

and by Theorem 9 the function f is IK-continuous. �

Theorem 11. Let X ,Y and Z be IK-seq.-top. spaces. Let f , from X to Y and g, from Y to
Z be IK-continuous functions. Then g ◦ f : X → Z is IK-continuous functions.

P r o o f. Let υ be any IK-open subset of Z. Since g is IK-continuous function then g−1(υ)
is IK-open subset of Y and because f is IK-continuous function therefore f−1(g−1(υ)) is IK-open
subset of X hence (g ◦ f)−1(υ) is IK-open subset of X . �
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6. Subspace of IK-seq.-top. space

In this section subspaces of the IK-seq.-top. space and its properties under an IK-continuous
function will be discussed.

Definition 18. Let (X ,TIK) be an IK-seq.-top. space and Y ⊂ X . Then

CY : P(Y) → P(Y), CY (A) = Y ∩ clIK(A)

is a Kuratowsky operator. Define a T.S. as (Y,T Y
IK), where

T Y
IK = {U ∩ Y, Y ∈ TIK} ⊂ P(Y).

This T.S. is called IK-subspace of X .

Lemma 6. Let Y be an IK-subspace of IK-seq.-top. space X . If set A is IK-open subset of Y
and Y is an IK-subset of X . Then A is IK-open subset of X .

P r o o f. Let A be IK-open subset of Y. Then ∃U ∈ TIK s.t. A = Y ∩ U . Since Y is an
IK-open subset of X . Then A ∈ TIK. �

Proposition 3. Let (X ,TIK) and (Y,T
′

IK) be IK-sequential spaces, f : X → Y be IK-
continuous function and A ⊂ X is IK-subspace of X . Then f/A : A → Y, the restriction f

over A is IK-continuous function.

P r o o f. Let U be an IK-open subset of Y. Since f is IK-continuous function then f−1(U) is
IK-open subset of X . That is f−1(U) ∈ TIK.

In other hand f−1
/A (U) = A ∩ f−1(U). So f−1

/A (U) is IK-open subset of subspace A. Hence f/A

is IK-continuous function. �

Lemma 7. If A is IK-subspace of IK-sequential T.S. X . Then the inclusion map j : A → X
is IK-continuous.

P r o o f. If U is IK-open in X then j−1(U) = U ∩ A is IK-open in subspace Y hence j is
IK-continuous. �

Proposition 4. Let (X ,TIK) and (Y,T
′

IK) be IK-sequential spaces, B ⊂ Y be subspace of Y
and f : X → B be IK-continuous function. Then, h : X → Y obtained by expanding the range of
f is IK-continuous.

P r o o f. To show h : X → Y is IK-continuous function, if B as subspace of Y then note that
h is the composition of the map f : X → B and j : B → Y. �
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7. Conclusion

In this article we defined the notion of IK-closed (resp. IK-open) set in a T.S. (X ,T ) and
established some important results concerning this notion. Furthermore, we defined the IK-seq.-
top., which is a generalized form of the I∗-sequential space. We also talked about IK-continuity of
functions and saw that in IK-seq.-top. space the notion of continuity and sequential continuity are
the same. And in the last section of the paper, subspace of IK-sequential space have been studied
and some important results established.
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Abstract: This research delves into the dynamics of a retrial queueing system featuring heterogeneous
servers with intermittent availability, incorporating feedback and working vacation mechanisms. Employing
a matrix geometric approach, this study establishes the steady-state probability distribution for the queue
size in this complex heterogeneous service model. Additionally, a range of system performance metrics is
developed, alongside the formulation of a cost function to evaluate decision variable optimization within the
service system. The Artificial Bee Colony (ABC) optimization algorithm is harnessed to determine service rates
that minimize the overall cost. This work includes numerical examples and sensitivity analyses to validate the
model’s effectiveness. Also, a comparison between the numerical findings and the neuro-fuzzy results has been
examined by the adaptive neuro fuzzy interface system (ANFIS).

Keywords: Retrial queue, Working vacation, MGA, ANFIS, ABC Optimization.

1. Introduction

In our modern, fast-paced society, it is crucial to prioritize the optimization of service systems
due to the ever-changing needs and demands of diverse customers. Although traditional queueing
models are valuable, they often fail to address the complexities of modern service environments.
This research presents a queueing model that effectively addresses these challenges. This model
fundamentally recognizes that service tasks can vary in nature and importance. It acknowledges
the significance of selecting the appropriate service provider for a particular task. The concept of
’heterogeneous servers’ is relevant here. Some servers specialize in handling routine requests, while
others are particularly skilled at addressing complex issues.

Furthermore, we recognize that servers are not able to be available around the clock. Instead,
they alternate between performing routine tasks and dedicating their attention to more specialized,
secondary jobs. Intermittent availability optimizes resource allocation by ensuring that highly
skilled servers are readily available when they are most needed. Finally, we have implemented a
“working vacation” feature to guarantee uninterrupted service during periods of downtime. This
feature ensures that customers are not left unattended, minimizing disruptions in service even
when servers are on a break. This research goes beyond being a mere theoretical innovation; it
tackles the actual challenges that service industries encounter in the real world. Our model provides
a practical and competitive advantage in the dynamic landscape of modern service provision by
enhancing efficiency, boosting customer satisfaction, and optimizing resource utilization.

The novelty of this work lies in its pioneering approach to designing service systems that can
adapt to the multifaceted demands of contemporary industries. Unlike traditional queueing models,
which rely on uniform servers and predictable service patterns, our model introduces heterogeneity,
recognizing that not all service tasks are equal, which is shown in Fig. 1.

https://doi.org/10.15826/umj.2023.2.005
mailto:divya.k2020@vitstudent.ac.in
mailto:kindhira@vit.ac.in
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The remaining sections of this research paper: Section 2 outlines the model’s development
and the quasi-birth-death process framework. Moving on to Section 3, we delve into the matrix
geometric approach, demonstrating the process of compute steady-state probabilities. In Section 4,
we explore various performance metrics derived from the model and their practical implications.
Section 5 is dedicated to a comprehensive discussion of sensitivity analysis and a cost assessment
for the considered paradigm. Section 6 offers graphical representations of ANFIS and presents the
numerical outcomes. The subsequent Section 7, delves into cost optimization strategies. Finally,
Section 8 serves as the conclusion, where we summarize our investigation by highlighting the notable
characteristics and real-world applications of our study.

1.1. Survey of literature

Our model incorporates two types of servers: one that handles routine tasks (server 1) and
another that periodically shifts (server 2) its focus to secondary, more specialized tasks. The
presence of heterogeneity enables a service delivery that is more customized and effective. In this
heterogeneous queueing model, the servers provide service at a different rate. Morse [14] was the first
to propose the notion of service heterogeneity. A queueing model with two classes and two servers
is being discussed. A non-preemptive priority structure that is heterogeneous has been studied by
Leemans [12]. According to [3], a heterogeneous two-server queueing system with feedback, reverse
balking, and reneging and retaining renege customers can be analyzed. Markovian queueing model
with discouraged arrivals, reneging customers, and retention of reneged customers was studied
by [11] based on two heterogeneous servers finite capacities. A study presents an investigation
of the heterogeneous queueing system M/M/2 with two types of server failures and catastrophes,
along with their respective restoration processes, as conducted by the [16]. A queueing model with
MAP arrivals and heterogeneous phase-type group services was researched by [4].

Agarwal [1] initially introduced the concept of a server with intermittent availability, where
server 1 is consistently accessible while server 2 is periodically accessible. In this scenario, server 2
is responsible for executing a range of peculiar and unconventional tasks. Service interruptions may
occur for a variable duration, but they are limited to instances when the ongoing task has been
completed. This particular service is referred to as an intermittently available service. Sharda [19]
investigated a queuing issue involving a server that is intermittently accessible, with entries and
exits occurring in batches of varying sizes.

In recent times, queueing systems featuring server vacations have become increasingly pop-
ular. These “vacations” can arise from server outages or when the server is tasked with other
responsibilities. Our model acknowledges the critical importance of maintaining continuous ser-
vice, even during these working vacation periods. It is designed to ensure that customers are never
left unattended, thus minimizing any disruptions in the quality of service provided. A recent trend
in vacation queues has been working vacation, where service is provided at a lower rate during
vacation periods than it is normally provided; i.e., while on vacation, the server provides service
at a slower rate instead of ceasing completely. An initial proposal for a working vacation model
has been made by Servi and Finn [13]. Madhu Jain [7] conducted a study on a single server work-
ing vacation queueing model that incorporates multiple types of server breakdowns. Sudhesh et
al. [21] investigated the time-dependent dynamics of a single server queueing model featuring slow
service. The researchers examined the effects of both single and multiple working vacations, as
well as customers’ impatience during periods of slow service. Krishnamoorthy et al. [9] discussed a
queueing system with two heterogeneous servers. One server is always accessible, while the other
takes vacations when no users are waiting. Laxmi et al. [23] examined a queuing system with
several working vacations, incorporating elements of renewal input, balking, reneging, and hetero-
geneous servers. Two types of Working Vacations (WVs) and impatient clients were handled with
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in a multi-server queueing system by Yohapriyadharsini et al. [25]. Kumar et al. [10] examined a
unreliable Markovian queueing model with two stage service, incorporating hybrid vacation.

The Matrix Geometric Method is a key technique in queueing theory. It simplifies the anal-
ysis of systems with varying service rates and transitions by using matrices, providing efficient
solutions for steady-state probabilities and performance metrics. Initially introduced by Neuts [8],
matrix-geometric models are the basis for stochastic computations. Recently, Divya [5] conducts
an investigation on a Markovian queueing model that incorporates heterogeneous, intermittently
available servers with feedback, operating under a hybrid vacation policy. ANFIS is an Adaptive
Neuro Fuzzy Inference System. This ANFIS computer model uses fuzzy logic and neural networks
to analyze and make decisions. ANFIS is famous for tackling complicated issues in numerous in-
dustries because it provides a foundation for building hybrid systems that can learn and adapt
from data. ANFIS was established in the early 1980s by Professor Lotfi A. Zadeh [26]. Ahuja et
al. [2] presented a comprehensive analysis of a single server queueing model with multiple stage ser-
vice and functioning vacation, focusing on transient behavior. Additionally, they employed ANFIS
computing techniques to enhance their analysis. Sethi et al. [17] conducted a study on the applica-
tion of ANFIS in analyzing the performance of an unreliable M/M/1 queueing system. The study
specifically focused on the impact of customers’ impatience under N-policy. The ANFIS concept
has garnered attention from a multitude of researchers in diverse fields of study [6], [18], [20], [22].
Wu and Yang [24] conducted optimization of a bi-objective queueing model that incorporates a
two-phase heterogeneous service.

2. Model description and assumptions

Figure 1. Model diagram.

1. Arrival process. In the RQ system, customers arrive according to a Poisson process with
a rate of ω.

2. Service process. Server 1 is always obtainable, server 2 is intermittently obtainable. The
servers provide service to customers with service rates of γ1 and γ2, respectively. The retrieval
capacity time on server 2 follows an exponential distribution with a rate of β.
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3. Retrial process. The retrial queuing mechanism enables customers to opt to orbit in the
event that the servers are occupied upon their arrival. After a constant retrial rate φ, indi-
viduals may make another attempt to receive service following an exponentially distributed
time.

4. Vacation process. A queuing system with working vacation is analyzed, If there are no
customers in the orbits when the server 2 finishes servicing, it goes on a working vacation,
where the server 2 serves customers with a reduced service rate γv during such periods, which
follow an exponential distribution. When a vacation ends and there are customers waiting
for service, the server 2 switches to regular service with retrieval rate τ . If there are no
customers waiting, the server 2 retains in the same working vacation.

5. Feedback rule. During WV there are two possible outcomes for customers receiving ser-
vice during working vacation: they may receive satisfactory service with probability p or
unsatisfactory service with complementary probability p(1 − p). In the event of unsatisfac-
tory service, customers must undergo supplementary service, which follows an exponential
distribution.

All stochastic processes in the system are independent of one another. The structure of the models
transition diagram is depicted in the below Fig. 2. At time t, let χ(t) be the state of the server,
which is defined as

χ(t) =























0, the server 2 is in WV & it’s free,

1, the server 2 is in WV & it’s busy,

2, the server 2 is in busy,

3, the server 2 is in intermittently obtainable

and φ(t) be the number of customers in the system. The bi-variate process {(φ(t), χ(t)), t ≥ 0}
that operates on a state space of {0, 1, 2, . . . } × {0, 1, 2, 3}.

Υ(t) = {(l,m)|l ≥ 0, m = 0, 1, 2, 3}.

The state space of a Markov process is arranged in a lexicographical manner, as described below.

Ω = {(0, 0)
⋃

{(l,m)|l ≥ 0,m = 0, 1, 2, 3}.

2.1. Steady-state equation

To solve this problem and obtain effective and mathematically accurate model solutions, we
employ the matrix-geometric method described in the following section. The matrix-geometric
method is an effective method for obtaining steady-state probabilities when the state-space expands
very quickly.

pγvπ0,0 = ωπ0,1, (2.1)

(φ+ pγv)πl,0 = pγvπl−1,1 + ωπl,1, l = 1, 2, 3 . . . , (2.2)

(2ω + ξ + pγv)π0,1 = pγvπ0,0 + φπ1,0 + γ1π1,1, (2.3)

(2ω + γ1 + τ + pγv)πl,1 = ωπl−1,1pγvπl,0 + φπl+1,0 + γ1πl+1,1, l = 1, 2, 3 . . . , (2.4)

ωπ0,2 = (γ1 + γ2)π1,2 + βπ0,3 + τπ0,1, (2.5)

ωπl,2 = ωπl−1,2 + τπl,1 + (γ1 + γ2)πl+1,2 + βπl,3, l = 1, 2, 3 . . . , (2.6)

(β + ω)π0,3 = γ1π1,3, (2.7)

(γ1 + β + ω)πl,3 = ωπl−1,3 + γ1πl+1,3, l = 1, 2, 3. . . . (2.8)
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Figure 2. Transition diagram of the model.

3. Matrix-geometric solution

To calculate the steady-state probabilities of the model using the matrix-geometric approach,
we utilize a system of equations denoted as (2.1) to (2.8). These equations help determine the
probabilities at a steady state. The transition rate matrix Q, which represents the Markov chain
in this model, is structured as a block tridiagonal matrix. The matrix Q is subdivided into sub
matrices.

Q =





















S0 T0

U0 V0 T0

U0 V0 T0

U0 V0 T0

. . .
. . .

. . .

. . .
. . .

. . .





















S0 =









−ω ω 0 0
pγv −(ω + γv + τ) τ 0
0 0 −ω 0
0 0 β −(ω + β)









;

T0 =









0 0 0 0
pγv ω 0 0
0 0 ω 0
0 0 0 ω









; U0 =









0 φ 0 0
0 γ1 0 0
0 0 γ1 + γ2 0
0 0 0 γ1









;

V0 =









−(ω + φ) ω 0 0
pγv −(ω + γ1 + τ + γv) τ 0
0 0 −(ω + γ1 + γ2) 0
0 0 β −(ω + β + γ1)









.

The steady-state probability vector Π for Q is partitioned as Π = (Π0,Π1,Π2, . . .), where the
sub-vectors Πl = {πl,0, πl,1, πl,2, πl,3}, l ≥ 0.



Heterogeneous Server Retrial Queueing Model with Feedback and Working Vacation 65

3.1. Stability criteria

Theorem 1. The inequality

ρ =
γ1 + γ2

ω
< 1

is the necessary and sufficient condition for the system to be stable.

P r o o f. Let us define the matrix E = T0 + V0 + U0 given by

E =









−ξ1 ξ1 0 0
γv −ξ2 τ 0
0 0 0 0
0 0 β −β









.

Where ξ1 = (ω + φ); ξ2 = (τ + γv). There exists a stationary probability Π = [Π0,Π1,Π2,Π3] of E
such that

ΠE = 0, Πe = 1, (3.1)

where e = [1, 1, 1, 1]T . Using Theorem 3.1.1 of Netus [8], the necessary and sufficient condition for
the stability of the system is as follows:

ΠT0e < ΠU0e. (3.2)

Solving (3.1) and (3.2), we get

γ1 + γ2
ω

< 1. (3.3)

�

3.2. Stationary probability distribution

Let Πlm be the steady-state probability that the process is in state (l,m), which is defined as
follows:

Πlm = lim
t→0

Pr
[

φ(t) = l, χ(t) = m
]

, l = 0, 1, 2, 3 . . . and m = 0, 1, 2, 3.

We denote the steady state probability vector of Q by Π = (Π0,Π1,Π2, . . .). Where
Πl =

(

πl,1, πl,1, πl,2, πl,3
)

for l ≥ 0. Under the stability condition (3.3). The steady-state equations
can be expressed in matrix form as follows,

ΠQ = 0. (3.4)

Equation (3.4) can be written as

Π0S0 +Π1U0 = 0,

Π0T0 +Π1V0 +Π2U0 = 0,

...

Πi−1T0 +ΠiV0 +Πi+1U0 = 0, i = 1, 2, 3, . . . .
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Based on the matrix-geometric method [8, 15], we obtain

Πi = Π0R
i for i ≥ 1 (3.5)

and Π0 satisfies the set of equations

Π0 (S0 +RU0) = 0. (3.6)

Where R is referred to as the rate matrix which satisfies

T0 +RV0 +R2U0 = 0,

and 0 denotes a zero squared matrix of an appropriate order.
The rate matrix can be approximate iteratively by considering one sequence with initialization

R0 = 0 and calculating

Ri+1 = −
(

T0 +R2
iU0

)

V −1
0 , i = 1, 2, . . . .

Thus, limi→∞ Ri is an approximate solution of the rate matrix R. From the normalization condi-
tion, we obtain the following:

∞
∑

i=0

Πe =

∞
∑

i=0

Π0R
ie = Π0 (I −R)−1 e = 1.

Combining (3.6) with the normalization condition yields

Π0 = [π0,0, π0,1 . . .].

Once the steady-state probability vector Π0 is available, then Πi (i ≥ 1) can be determined us-
ing (3.5).

4. Performance measures

4.1. Performance measures

Based on the steady-state probabilities, we give numerous performance metrics for the model
under evaluation.

• Prob that the servers are in idle

Pi = π0,0.

• Prob that the server is in busy state

Pb = P [m = 2] =
∞
∑

l=1

πl,2.

• Prob that the server 2 is in WV state

Pwv = P [m = 0] + P [m = 1] = π0,0 +

∞
∑

l=0

πl,1.

• Prob that the server 2 is in IO state

PIo = P [m = 3] =

∞
∑

l=0

πl,3.
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• Average system length

ASL =
∞
∑

l=0

lπl,1 +
∞
∑

l=0

lπl,0 +
∞
∑

l=0

lπl,2 +
∞
∑

l=0

lπl,3.

• Average queue length

AQL =

∞
∑

l=0

l − 1πl,1 +

∞
∑

l=0

l − 1πl,0 +

∞
∑

l=0

l − 1πl,2 +

∞
∑

l=0

l − 1πl,3.

4.2. Practical application

The proposed queueing model is applicable to a semi-attended self-checkout system in retail
stores.

Server 1 – Always Available (Self-Checkout Machine): This server is designed to operate contin-
uously and is accessible to customers at all times, similar to the self-checkout machines commonly
found in retail shops. Customers have the freedom to use it at any time without any interruptions.

Server 2, also known as the Intermittently Obtainable (Human Billing Counter), functions
similarly to a human cashier at a retail store. The service is available intermittently, which means
that it serves customers but may take breaks or go on working vacations. A working vacation
refers to planned breaks or vacations for server 2, during which it is temporarily unavailable to
serve customers. For instance, a cashier may take a lunch break or have a scheduled time off
during their shift. There are numerous systems similar to the queueing model, such as call centers,
healthcare triage, banking services, online customer support, and restaurant service.

5. Sensitivity and cost analysis

5.1. Sensitivity analysis

Here, we provide numerical examples to demonstrate the influence of various system settings
on three distinct efficiency metrics (ω, γ1, and γ2) are applied to the following scenarios:
Case 1: γ1 = 0.5, γ2 = 1, and vary the value of ω from 0.1 to 0.4.
Case 2: ω = 0.05, γ2 = 2, and vary the value of γ1 from 0.5 to 1.2.
Case 3: ω = 0.06, γ1 = 0.5, and vary the value of γ2 from 1 to 3.

All values assigned to the system parameters in our numerical analysis satisfy the stability
condition as described by (3.3). The curves depicting the performance measures against the pa-
rameters are illustrated in Fig. 3 to 5. Table 1 presents numerical results showing that increasing
arrival rate (ω) corresponds to increasing system size (ASL), queue size (AQL) and server busy
state probability (Pb). leads to, decreases the probabilities of other states. Similarly, as we increase
the service rates (γ1 and γ2), the server busy probability (Pb), queue size (AQL), and system size
(ASL) decreases, the probabilities of other states increase.

6. ANFIS implementation and results

An Adaptive Neuro-Fuzzy Inference System (ANFIS) is a computational model that combines
the principles of neural networks and fuzzy logic to perform complex tasks, such as pattern recogni-
tion and system modeling. ANFIS utilizes a hybrid approach that blends the adaptability of neural
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(a) ω V s. ASL (b) ω V s. AQL

Figure 3. The curves depicting the performance measures against the parameter ω.

(a) γ1 V s. ASL (b) γ1 V s. AQL

Figure 4. The curves depicting the performance measures against the parameter γ1.

(a) γ2 V s. ASL (b) γ2 V s. AQL

Figure 5. The curves depicting the performance measures against the parameter γ2.
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Table 1. Various performance measures by varying ω, γ1, γ2, γv.

p ω γ1 γ2 γv ASL AQL Pb

0.4 0.1 0.5 1 0.5 0.0707 0.0042 1.0007
0.2 0.1535 0.0202 0.9995
0.3 0.2500 0.0500 1.0000
0.4 0.3622 0.0957 1.0000

0.6 0.1 0.0717 0.0049 1.0010
0.2 0.1534 0.0202 0.9995
0.3 0.2499 0.0499 1.0000
0.4 0.3610 0.0947 0.9998

0.4 0.05 0.0202 0.0003 0.9999
0.7 0.0187 0.0003 0.9981
0.9 0.0174 0.0003 0.9954

0.6 0.5 0.0379 0.0004 1.0009
0.7 0.0384 0.0013 0.9980
0.9 0.0432 0.0040 0.7762

0.4 0.06 0.5 0.0417 0.0017 1.0000
1.5 0.0307 0.0008 0.9999
2 0.0244 0.0005 0.9999
2.5 0.0204 0.0004 1.0000
3 0.0171 0.0002 0.9952

0.6 1 0.0417 0.0017 1.0000
1.5 0.0309 0.0009 1.0000
2 0.0246 0.0006 1.0000
2.5 0.0204 0.0004 1.0000
3 0.0173 0.0003 0.9955

networks with the interpretability of fuzzy logic. It consists of a layered architecture where input
data is passed through a series of nodes, each representing a fuzzy membership function. These
nodes calculate membership values based on the input data’s similarity to predefined linguistic
terms. ANFIS learns and adjusts its parameters using a combination of gradient descent and least-
squares methods. This enables it to fine-tune the strengths of its fuzzy rules and the connection
weights between nodes to accurately model intricate relationships within the data. The model is
particularly useful when dealing with non-linear and uncertain data, making it suitable for appli-
cations in various fields, including control systems, prediction, and optimization. By incorporating
both neural networks and fuzzy logic, ANFIS provides a balance between the strengths of both
approaches, offering a powerful tool for researchers and practitioners to tackle complex problems
effectively.

Table 2. Values of the MF for the linguistics based on input parameters.

Input parameters
No. of membeship
function

Linguistic
Values

p, ω, γ1, γ2 5
Very Low, Low, Medium,
High, Very High
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Figure 6. Membership function for ω.

(a) (b)

Figure 7. (a) ANFIS Structure and (b) Rules.

ANFIS was founded in the first few years of the 1980s by Professor Lotfi A. Zadeh [26]. The
architecture of a two-input (p, ω, γ1, γ2), one-output (ASL) Adaptive Neuro-Fuzzy Inference System
(ANFIS) model with five rules is illustrated in Fig. 7. Five fuzzy rules were created and the
resulting Gaussian-shaped membership functions (MFs) of the inputs are displayed in Fig. 6. It is
noteworthy to emphasize that each colored MF depicted in the curve represents a distinct cluster
inside the input space. In ANFIS methodology, the parameters p, ω, γ1, γ2 and ASL are regarded
as linguistic variables and subjected to training for a total of ten epochs. Three linguistic values
have been utilized for the variables p, ω, γ1, γ2 and ASL, namely very low, low, medium, high, and
very high. Gaussian membership functions were employed to represent the linguistic variables, as
illustrated in Table 2.

Fig. 8 displays the analytical results using continuous lines, while the results acquired using
ANFIS for ω, γ1, and γ2 are shown by a dotted marker point. Furthermore, it was observed that the
analytical and ANFIS outcomes had a high degree of concurrence, displaying a significant overlap
in their respective trends. Based on the data presented, it can be noted that there is a positive
correlation between the system length (ASL) and the arrival rate (ω) while considering different
values of p. As the arrival rate increases, the system length also increases. Conversely, the system
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(a) ω V s. ASL

(b) γ1 V s. ASL

(c) γ2 V s. ASL

Figure 8. Comparison of 2D numerical and ANFIS values for different values of p.
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length lowers as the service rates (γ1 and γ2) decrease, while considering different values of p.

7. Cost model and optimization

The suggested queueing model has the potential to be implemented in both self-checkout sys-
tems and retail stores with human cashiers. In such scenarios, the primary objective of the manager
is to minimize operational expenses. An essential consideration related to the self-checkout process
pertains to the determination of the appropriate quantity of self-checkout machines for the service.
Another crucial matter to consider is the necessity of upholding a satisfactory service rate in order
to ensure the quality of service and customer satisfaction. It is feasible to improve the calibre of
service rendered by the staff through comprehensive training. Moreover, it is not possible. To
ascertain the customer’s familiarity with the operation of a particular system. Self-checkout ma-
chines. Therefore, we proceed to formulate a cost function per unit of time in a manner that aligns
with our expectations.

F = F (γ1, γ2) = Fh ·ASL+ Fb · Pb + Fv · Pwv + Fi · PIo + F1 · γ1 + F2 · γ2. (7.1)

The variables in the equation are defined as follows: Fh represents the holding cost for each
customer in the system, Fv represents the cost per unit of time when the server 2 in the working
vacation service, Fb represents the cost per unit of time when server 2 is busy, Fi represents the
cost per unit of time when server 2 is intermittently obtainable, F1 represents the cost of providing
a mean service rate γ1 through server 1, and F2 represents the cost of providing a mean service
rate γ2 through server 2. It is noteworthy to mention that (7.1) represents a mathematical function
that depends on two continuous decision variables, denoted as γ1 and γ2. We set the cost elements
as given in Table 3.

Table 3. Cost set values for various cost aspects.

Cost set Fh Fb Fv Fi F1 F2

I 60 50 40 30 25 15
II 50 45 35 20 20 10

7.1. Artificial bee colony optimization

ABC optimization, also known as Artificial Bee Colony optimization, is a meta-heuristic algo-
rithm inspired by the foraging behavior of honey bees. It is a swarm-based optimization technique
that can be applied to solve various optimization problems. The ABC optimization technique,
initially introduced by Karaboga in 2005, has garnered significant recognition and acclaim in the
field of optimization. The system employs worker bees, observer bees, and scout bees to explore
the search space, exchange information, and discover improved solutions. The historical effect
in ABC ensures that the algorithm strategically priorities regions of the search space that have
demonstrated favorable outcomes, thus leveraging past successes. This enables ABC to efficiently
converge towards optimal solutions and effectively address complex optimization problems.

In order to optimize ABC, the following default values are taken into account: ω = 3, γ1 = 1.5,
γ2 = 0.6, γv = 0.5, φ = 0.05, τ = 0.5, β = 0.5, p = 0.4, p1 = 0.6 with a colony size of 100, a
maximum of 100 iterations, an acceleration coefficient upper and lower bound are 1 and 5, and
number of Onlooker bee 50, an abandonment limit parameter of 60.
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Table 4 show the effect of cost elements Fh, Fb, Fv, Fi, F1 and F2 on the optimal service rates
(γ∗1 , γ

∗
2) and optimal total cost (F∗) for all two cost sets. The pseudo code of ABC algorithm is

given in Table 1.

(a) Iteration Vs. Best Cost (b) F∗ vs. Cost set I

(c) Iteration Vs. Best Cost (d) F∗ vs. Cost set II

Figure 9. 2D and 3D visualization of ABC optimization.

7.2. Convergence

Convergence is a crucial aspect of meta-heuristic optimization algorithms. It signifies the pro-
cess of gradually refining the candidate solutions toward an optimal or near-optimal solution. The
convergence behavior of an algorithm is indicative of its ability to effectively search the solution
space and approach the global optimum. In ABC, particles move towards the best-known solution,
converging when their movements become limited and the best solution stabilizes. Fig. 9 (a) and
(c) shows that ABC reach optimal cost convergence, Fig. 9 (b) and (d) shows the convexity and
optimal of the cost function with respect to cost sets which are considered in the optimization
analysis.

8. Conclusion

In this research has tackled the complexities of a retrial queueing system with heterogeneous
servers, intermittent availability, feedback, and working vacation mechanisms. Employing a ma-
trix geometric approach, we established the steady-state probability distribution and formulated



74 Divya K. and Indhira K.

Table 4. The estimated optimal solutions (γ∗

1
, γ∗

2
) and their corresponding expected cost F∗

(ω, γ1, γ2) γ∗
1 γ∗

2 F∗ Iterations CPU time(in Sec)
Cost set I

(3,1.5,0.6) 1.1619 1.6258 80.7970 11 12.50e−6

(3,1.5,1) 1.1640 1.0003 72.0522 15 16.90e−6

(3,3.5,0.6) 1.0349 1.0190 69.4773 24 20.60e−6

(3,3.5,1) 1.0131 1.2647 72.4869 14 15.60e−6

(5,1.5,0.6) 1.0119 1.0079 67.7305 20 21.00e−6

(5,1.5,1) 1.0533 2.0517 84.8465 14 15.60e−6

(5,3.5,0.6) 2.6079 1.0745 108.0219 18 19.70e−6

(5,3.5,1) 1.0526 1.0593 69.7106 30 30.40e−6

Cost set II
(3,1.5,0.6) 1.0116 1.4552 58.6088 13 16.80e−6

(3,1.5,1) 1.0066 1.0265 54.5188 13 17.60e−6

(3,3.5,0.6) 1.1555 1.1191 57.9891 12 13.60e−6

(3,3.5,1) 1.0008 1.0089 54.2473 11 13.50e−6

(5,1.5,0.6) 1.0102 1.0084 53.4592 10 11.90e−6

(5,1.5,1) 1.3133 1.4153 64.3520 19 22.30e−6

(5,3.5,0.6) 1.1714 1.0394 57.4689 12 12.70e−6

(5,3.5,1) 1.0068 1.0198 53.5026 21 23.40e−6

Algorithm 1 Artificial Bee Colony

Input: Objective function F(γ1, γ2), Maximum number of iterations
Output: The best solution found
Initialization;
Initialize employed bees with random solutions;
Evaluate the fitness of each solution;
Set the best solution as the solution with the best fitness;
while Termination condition not met do

for each employed bee do

Select a solution randomly from the population;
Generate a new solution by modifying the selected solution;
Evaluate the fitness of the new solution;
If the new solution is better, replace the old solution;

end for

Update the best solution if a better solution is found;
end while

return The bestsolution found;

performance metrics and a cost function. Leveraging the Artificial Bee Colony optimization algo-
rithm, we optimized service rates effectively. Furthermore, we compared our numerical findings
with ANFIS results, highlighting the potential synergy between traditional methods and advanced
machine learning approaches in queueing theory research. In future, it is possible to expand the
proposed model to include additional factors such as different server vacations, server breakdowns,
and customer impatience.
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STABILIZATION FOR A SYSTEM WITH AFTEREFFECT1
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Abstract: For optimal stabilization of an autonomous linear system of differential equations with aftereffect
and impulse controls, the formulation of the problem in the functional state space is used. For a system with
aftereffect, approximating systems of ordinary differential equations proposed by S.N. Shimanov and J. Hale are
used. A method for constructing approximations for optimal stabilizing control of an autonomous linear system
with aftereffect and impulse controls is proposed. Matrix Riccati equations are used to find approximating
controls.

Keywords: Differential equation with aftereffect, Canonical approximation, Optimal stabilization, Impulse
control.

1. Introduction

The control object is described as an autonomous linear system of differential equations with
aftereffect and impulse control

dx(t)

dt
=

0
∫

−τ

[dsη(s)]x(t + s) +Bu. (1.1)

Here, t ∈ R
+ = (0,+∞), x : [−τ,+∞) → R

n, τ > 0, B is a constant matrix of dimension n× r, the
matrix function η has bounded variation on [−τ, 0], and η(0) = 0. Impulse controls are generalized
functions defined by the formulas

u(t) =
dv(t)

dt
, t ∈ R

+,

in which control impulses v : [0,+∞) → R
r have bounded variations on any finite interval

and v(0) = 0.
For any initial function ϕ ∈ H, there is a unique solution x(t, ϕ), t ≥ −τ, to equation (1.1)

satisfying the condition x(t, ϕ) = ϕ(t), −τ ≤ t ≤ 0, and the integral equation

x(t) = ϕ(0) +

t
∫

0

(

0
∫

−τ

[dξη(ξ)]x(s + ξ)

)

ds+B (v(t)− v(+0)) , t ∈ R
+.

Here, H = L2([−τ, 0),R
n)× R

n is a Hilbert space of functions with the scalar product

〈ϕ,ψ〉H = ψ⊤(0)ϕ(0) +

0
∫

−τ

ψ⊤(ϑ)ϕ(ϑ)dϑ.

1This work was supported by the Russian Science Foundation (project no. 22-21-00714).
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Solutions to the integral equation are functions with bounded variations on any finite interval of
the positive semi-axis [0,+∞). They define generalized solutions to the differential equation (1.1).

Need to find an impulse control formed according to the feedback principle, which ensures stable
operation of system (1.1) and minimizes a given criterion for the quality of transient processes

J =

+∞
∫

0

(

x⊤(t)Cxx(t) + v⊤(t)Cvv(t)
)

dt, (1.2)

where Cx and Cv are positive definite matrices.
The problems of optimal stabilization of autonomous linear systems of differential equations

with aftereffects for non-impulse controls have been studied quite well [5, 8, 10, 11]. For impulse
controls, they were studied in [1, 6, 21]. Constructive procedures for constructing optimal stabilizing
controls are associated with finite-dimensional approximations of differential equations with afteref-
fects. In control problems and the theory of differential games for finite-dimensional approximations
of equations with aftereffects, systems of ordinary differential equations proposed by Krasovskii are
widely used. Approximations of optimal nonimpulse controls are constructed [4, 8, 12, 15]. An es-
timate of the accuracy of these approximations in the optimal stabilization problem for differential
equations with concentrated delay was obtained by Bykov and Dolgii [2]. In [7], for the problem
of optimal impulse stabilization, finite-dimensional approximations to a differential equation with
aftereffect proposed by Krasovskii were used.

Canonical approximations were used in the problem of optimal stabilization of systems of dif-
ferential equations with aftereffect and non-impulse controls in the works of Krasovskii and Os-
ipov [13, 17], Markushin and Shimanov [16], Pandolfi [18, 19], Bykov and Dolgii [3]. In this work,
when constructing approximations for optimal impulse stabilizing control, we use canonical approx-
imations to the differential equation with aftereffect.

2. Stabilization problem in a Hilbert state space

When solving the problem, it is convenient, following Krasovskii [14, p. 162], to move from a
finite-dimensional to an infinite-dimensional formulation, introducing functional elements

xt(ϑ) = x(t+ ϑ), ϑ ∈ [−τ, 0], t ≥ 0,

belonging to a separable Hilbert space H for solutions of system (1.1).
System (1.1) is associated with the differential equation

dxt

dt
= Axt +Bu, t ∈ R

+. (2.1)

Here, A : H → H is an unbounded operator with the domain

D(A) =
{

x ∈ H : x ∈ W
1
2([−τ, 0],R

n)
}

defined by the formulas

(Ax)(ϑ) =
dx(ϑ)

dϑ
, ϑ ∈ [−τ, 0), (Ax)(0) =

0
∫

−τ

[dsη(s)]x(s).

A bounded operator B : Rr → H is defined by the formulas

(Bu)(ϑ) = 0, ϑ ∈ [−τ, 0), (Bu)(0) = Bu.
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The quality criterion for transient processes corresponding to (1.2) has the form

J =

+∞
∫

0

(

〈Cxxt,xt〉H + v⊤(t)Cvv(t)
)

dt, (2.2)

where a bounded self-adjoint nonnegative operator Cx : H → H is defined by the formulas

(Cxx)(ϑ) = 0, ϑ ∈ [−τ, 0), (Cxx)(0) = Cxx(0).

Using the complexification of the space H, we will consider the scalar product

〈x,y〉H = y∗(0)x(0) +

0
∫

−τ

y∗(ϑ)x(ϑ) dϑ.

The eigenvalues of the operator A coincide with the roots of the characteristic equation

δ(λ) = det∆(λ) = 0, λ ∈ C, (2.3)

where (see [14, p. 164])

∆(λ) = λIn −

0
∫

−τ

[dsη(s)] exp(λs), λ ∈ C.

We will consider the nondegenerate case when the characteristic equation has a countable
number of roots λk, k ∈ N. To simplify further calculations, we will restrict ourselves to describing
the canonical expansion procedure only for differential equations (2.1), all roots of the characteristic
equations of which are simple. For any α ∈ R, a finite number of roots of equation (2.3) lie in the
half-plane

{λ ∈ C : Re (λ) > α}.

Consequently, they can be numbered in descending order of their real parts, and the numbers of
complex conjugate roots must differ by one. The sequence of roots of the characteristic equation
satisfies the condition Re (λn) → −∞ as n → +∞. For the general case, the theory of canonical
expansion is described in [9, 20].

Choose a positive integer N that satisfies requirement (A):

Re (λn) < 0, n > N.

Let H
N be the linear span of the eigenfunctions of the operator A corresponding to its eigen-

values belonging to the set

σN = {λ1, . . . , λN} ⊂ σ(A),

where λk ∈ C, k = 1, N , and σ(A) is the set of eigenvalues of the operator A. The projector
PN

(

PNH = H
N
)

defines the canonical decomposition of the space H into a direct sum, in which an
element x ∈ H uniquely defines the elements xN ∈ H and zN ∈ (I −PN )H such that x = xN +zN .

When constructing canonical approximations to the stabilization problem, the projection
method scheme is used. We use the complexification of state space elements x ∈ H and controls
u ∈ C

r. Applying the projector PN to equation (2.1) and taking into account the equalities

PNA = APN = AP2
N , xN = PNx,
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we obtain the approximating equation

dxN
t

dt
= ANxN

t +BNu, t ∈ R
+, (2.4)

where finite-dimensional operators AN : HN → H
N and BN : Cr → H

N are defined by the formulas
AN = APN and BN = PNB.

The new quality criterion corresponding to (2.2) has the form

JN =

+∞
∫

0

(

〈Cxx
N
t ,x

N
t 〉H + v∗(t)Cvv(t)

)

dt. (2.5)

3. Finite-dimensional optimal stabilization problem

The subspace H
N is topologically equivalent to the finite-dimensional Hilbert space C

N with
the inner product z∗y, where y, z ∈ C

N . Let the topological isomorphism be given by the mapping

πN : HN → C
N , xN = πNxN , xN ∈ H

N , xN ∈ C
N .

Using the mapping πN , we replace equation (2.4) in the spaces HN with an equivalent equation in
the space C

N

dxN

dt
= ANx

N +BNu, t ∈ R
+, (3.1)

where finite-dimensional operators AN : CN → C
N and BN : Cr → C

N are defined by the formulas

AN = πNANπ
−1
N , BN = πNBN .

The equivalent quality criterion corresponding to (2.5) has the form

JN =

+∞
∫

0

(

xN∗(t)CN
x x

N (t) + v∗(t)Cvv(t)
)

dt, (3.2)

where a finite-dimensional operator CN
x : CN → C

N is defined by the formula

CN
x = π−1∗

N Cxπ
−1
N .

Using the substitutions

u(t) =
dv(t)

dt
, yN (t) = xN (t)−BNv(t), t ∈ R

+, (3.3)

we replace the finite-dimensional problem of optimal impulse stabilization (3.1), (3.2) with the finite-
dimensional problem of optimal nonimpulse stabilization. It is posed for the system of differential
equations

dyN

dt
= ANy

N +ANBNv, t ∈ R
+, (3.4)

with new nonimpulse controls v and quality criterion corresponding to (3.2) of the form

ĴN =

+∞
∫

0

(

yN∗(t)CN
yyy

N (t) + 2yN∗(t)CN∗

yv v
N (t) + v∗(t)CN

vvv(t)
)

dt, (3.5)
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where
CN
yy = CN

x , CN
yv = CN

x BN , CN
vv = Cv +B∗

NC
N
x BN .

Assume that, for the problem of optimal non-impulse stabilization (3.4), (3.5) the matrix Riccati
equation,

KNAN +A∗

NK
N +CN

x −
(

KNAN +CN
x

)

C̃N
vv

(

A∗

NK
N + CN

x

)

= 0,

C̃N
vv = BN

(

CN
vv

)−1
B∗

N ,
(3.6)

has a unique positive definite solution KN . Then the optimal stabilizing control of prob-
lem (3.4), (3.5) is defined by the formula

vNo[yN ] = −
(

CN
vv

)−1
B∗

N

(

A∗

NK
N + CN

x

)

yN , yN ∈ C
N . (3.7)

Using formula (3.7), we find optimal stabilizing impulse controls of problem (3.1), (3.2).

Theorem 1. Let the matrix Riccati equation (3.6) have a unique positive definite solution KN

and
det

(

Cv −B∗

NA
∗

NK
NBN

)

6= 0.

Then the optimal stabilizing impulse control of problem (3.1), (3.2) is defined by the formula

uNo[t, xN0 , x
N ] = −

(

CN
vv

)−1
B∗

N

(

A∗

NK
N + CN

x

) (

xN0 δ(t) +ANx
N
)

, xN ∈ C
N , (3.8)

where δ(·) is the Dirac function.

P r o o f. Using formulas (3.7) and (3.3), we obtain

vN (t) = −
(

CN
vv

)−1
B∗

N

(

A∗

NK
N +CN

x

) (

xN (t)−BNv
N (t)

)

, t ∈ R
+, xN ∈ C

N ,

or
(

Ir −
(

CN
vv

)−1
B∗

N

(

A∗

NK
N + CN

x

)

BN

)

vN (t) =

−
(

CN
vv

)−1
B∗

N

(

A∗

NK
N + CN

x

)

xN (t), t ∈ R
+, xN ∈ C

N .

Taking into account the equality

IN −
(

CN
vv

)−1
B∗

N

(

A∗

NK
N + CN

x

)

BN =
(

CN
vv

)−1 (
Cv −B∗

NA
∗

NK
NBN

)

and the condition
det

(

Cv −B∗

NA
∗

NK
NBN

)

6= 0,

we get

vN (t) = −
(

Cv −B∗

NA
∗

NK
NBN

)−1
B∗

N

(

A∗

NK
N + CN

x

)

xN (t),

t ∈ R
+, vN (0) = 0, xN ∈ C

N .

The control vN is differentiable on the positive semi-axis R+ and has a unique discontinuity point
of the first kind t = 0 with a limit value

vN (+0) = −
(

Cv −B∗

NA
∗

NK
NBN

)−1
B∗

N

(

A∗

NK
N + CN

x

)

xN0 .

As a result, the impulse control of problem (3.1), (3.2) is defined by the formula

uN (t) = −
(

Cv −B∗

NA
∗

NK
NBN

)−1
B∗

N

(

A∗

NK
N + CN

x

)

(

xN0 δ(t) +
dxN (t)

dt

)

, t ≥ 0, xN ∈ C
N .

Using (3.1), we obtain the equality

uN (t) = −
(

Cv −B∗

NA
∗

NK
NBN

)−1
B∗

N

(

A∗

NK
N + CN

x

) (

xN0 δ(t) +ANx
N (t) +BNu

N (t)
)

,

t ≥ 0, xN ∈ C
N .

This explains the validity of formula (3.8), which completes the proof of the theorem. �
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4. Stabilizing impulse control of a system of differential equations with

aftereffect

Using formula (3.8) and the connection between elements of the spaces HN and C
N , we find a

stabilizing control for an autonomous linear system of differential equations with aftereffect.

Theorem 2. Let requirement (A) and the conditions of Theorem 1 be satisfied. Then the
control

uNo[t, ϕ,xt] = −
(

CN
vv

)−1
B∗

N

(

A∗

NK
N + CN

x

)

(πNϕδ(t) +ANπNxt) , ϕ,xt ∈ H, t > 0, (4.1)

is stabilizing for the system of differential equations with aftereffect (1.1).

P r o o f. For control (4.1), the differential equation (2.1) takes the form

dxt

dt
= (A−DNANπ)xt −DNπϕδ(t), t ∈ R

+.

Here

(DNv) (ϑ) = 0, ϑ ∈ [−τ, 0), (DNv) (0) = BN

(

CN
vv

)−1
B∗

N

(

A∗

NK
N + CN

x

)

v, v ∈ C
N .

Using the canonical expansion of the space H, we obtain the system of differential equations

dxN
t

dt
= (APN − PNDNANπ)x

N
t − PNDNπϕδ(t),

dzNt
dt

= A (I − PN ) zNt − (I − PN )DNANπx
N
t − (I − PN )DNπϕδ(t), t ≥ 0

with the initial conditions
xN
0 = PNϕ, zN0 = (I − PN )ϕ.

The control used guarantees exponential boundedness of the solutions of the first subsystem
with negative exponents. The evolutionary operator TN (t), t ∈ R

+, of the homogeneous part of
the first subsystem is exponentially bounded with a negative exponent, according to the chosen
canonical expansion [9, p. 170].

The solution of the second subsystem is defined by the formula [9, p. 185]

zNt = TN (t) (I − PN )ϕ−

t
∫

0

TN (t− s) (I − PN )DN

(

ANπx
N
s − πϕδ(s)

)

ds

= TN (t) (I − PN ) (ϕ−DNπϕ)−

t
∫

0

TN (t− s) (I − PN )DNANπx
N
s ds, t ∈ R

+.

This implies that the solutions of the second subsystem with negative exponents are exponentially
bounded, which completes the proof of the theorem. �

Let us consider the eigenfunctions ϕi, i = 1, N, corresponding to the eigenvalues λi, i = 1, N,
of the operator A. Due to their linear independence, they define the basis of the subspace HN . The
eigenfunctions of the operator A are defined by the formulas

ϕk(ϑ) = exp(λkϑ)ϕ̂
k, ϑ ∈ [−τ, 0],
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where ϕ̂k are nontrivial solutions to the algebraic system

(

λkIN −

0
∫

−τ

[dsη(s)] exp(λks)

)

ϕ̂k = 0, k = 1, N.

To find a coordinate representation of the projector PN in the selected basis, it is necessary to
consider for it a biorthogonal system of functions {ψj}Nj=1. The unbounded operator A has a dense
domain in the space H. Therefore, there is an unbounded conjugate operator A∗ : H → H with the
domain

D(A∗) =
{

y ∈ H : ỹ ∈ W
1
2([−τ, 0],C

n), ỹ(ϑ) = y(ϑ) − η⊤(ϑ)y(0),

ϑ ∈ [−τ, 0], ỹ(−τ) + η⊤(−τ)y(0) = 0
}

.

It is defined by the formulas

(A∗y)(ϑ) = −
dỹ(ϑ)

dϑ
, ϑ ∈ [−τ, 0), (A∗y)(0) = ỹ(0).

The eigenfunctions of the operator A∗ corresponding to its eigenvalues λ̄k, k ∈ N, are defined by
the formulas

ψk(ϑ) = exp(−λ̄kϑ)

(

λ̄kIN −

0
∫

ϑ

[dsη
⊤(s)] exp(λ̄ks)

)

ψ̂k,

ϑ ∈ [−τ, 0), ψk(0) = ψ̂k,

where ψ̂k are nontrivial solutions to the algebraic system

(

λ̄kIN −

0
∫

−τ

[dsη
⊤(s)] exp(λ̄ks)

)

ψ̂k = 0, k = 1, N.

The requirement of simplicity of the eigenvalues of the operator A imposed above generates the
biorthogonality of the system of eigenfunctions {ψj}Nj=1 of the operator A∗ with respect to the

system of eigenfunctions {ϕi}Ni=1 of the operator A. For the fulfilment of the conditions 〈ϕi, ψj〉H =
δij , where δij , i, j = 1, N, is the Kronecker symbol, it is necessary that

1 = 〈ϕi, ψi〉H = ψ̂i∗

(

In −

0
∫

−τ

[dsη
⊤(s)]s exp(λis)

)

ϕ̂i, i = 1, N.

These normalization conditions can be ensured by freedom in choosing the vectors ψ̂i, i = 1, N.
Let us define a coordinate representation of the projector PN by the formulas

PNx =

N
∑

k=1

ykϕ
k = xN =

N
∑

k=1

〈xN , ψk〉Hϕ
k, x ∈ H, xN ∈ H

N , {yk}
N
k=1 = yN ∈ C

N .

The topological isomorphism πN : HN → C
N is defined by the formulas

πNxN = {〈xN , ψk〉H}Nk=1 = yN , π−1
N yN =

N
∑

k=1

ykϕ
k = xN , x ∈ H, xN ∈ H

N , yN ∈ C
N .
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We have the estimates

‖πN‖ ≤

( N
∑

k=1

‖ψk‖2
)1/2

, ‖π−1
N ‖ ≤ λmax,

where λmax is the spectral radius of the matrix {〈ϕk, ϕm〉H}Nk,m=1.

Theorem 3. If the conditions of Theorem 2 hold, then the stabilizing controls for the system
of differential equations with aftereffect (1.1) are defined by the formulas

uNo[t, ϕ,xt] = −
(

CN
vv

)−1
B⊤

N
∑

i,j=1

ψ̂i
(

λ̄iK
N
ij + ϕ̂i∗Cxϕ̂

j
) (

〈ϕ,ψj〉Hδ(t) + λj〈xt, ψ
j〉H

)

,

ϕ,xt ∈ H, t > 0,

(4.2)

where

CN
vv = Cv +B⊤

N
∑

i,j=1

ψ̂iϕ̂i∗Cxϕ̂
jψ̂j∗B.

P r o o f. Using the coordinate representations of the projector PN and the topological iso-
morphism πN , we find the following coordinate representations for the operators:

ANxN = APNxN =
N
∑

i=1

〈xN , ψi〉HAϕi =
N
∑

i=1

λi〈x
N , ψi〉Hϕ

i, xN ∈ H
N ,

ANyN = πNANπ
−1
N yN = πN

N
∑

i=1

λi〈

N
∑

k=1

ykϕ
k, ψi〉Hϕ

i =

N
∑

i=1

λiyiπNϕ
i

=

N
∑

i=1

λiyi{〈ϕ
i, ψk〉H}Nk=1 = {λkyk}

N
k=1, yN ∈ C

N ,

BNu = πNBNu = πNPNBu = πN

N
∑

i=1

ψ̂i∗BuπNϕ
i

=

N
∑

i=1

ψ̂i∗Bu{〈ϕi, ψk〉H}Nk=1 = {ψ̂k∗Bu}Nk=1, u ∈ C
r,

CN
x yN = π−1∗

N Cxπ
−1
N yN =

{

〈Cxπ
−1
N yN , ϕi〉H

}N

i=1

=
{

ϕ̂i∗
(

Cxπ
−1
N yN

)

(0)
}N

i=1
=

{

N
∑

k=1

ϕ̂i∗Cxϕ̂
kyk

}N

i=1
, yN ∈ C

N .

Using these formulas, from (4.1) we obtain (4.2), which completes the proof of the theorem. �

As the positive integer N increases, the constructed stabilizing controls approximate the optimal
impulse controls for the autonomous linear system of differential equations with aftereffect (1.1).

5. Conclusion

Approximations to an optimal impulse stabilizing control for an autonomous linear system of
differential equations with aftereffect have been constructed. Evaluating the accuracy of approxi-
mations to an optimal impulse stabilizing control is a challenging problem.
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Abstract: This paper studies the inverse problem of determining a multidimensional kernel function of an
integral term which depends on the time variable t and (n− 1)-dimensional space variable x′ = (x1, . . . , xn−1)
in the n-dimensional diffusion equation with a time-variable coefficient at the Laplacian of a direct problem
solution. Given a known kernel function, a Cauchy problem is investigated as a direct problem. The integral
term in the equation has convolution form: the kernel function is multiplied by a solution of the direct problem’s
elliptic operator. As an overdetermination condition, the result of the direct question on the hyperplane xn = 0
is used. An inverse question is replaced by an auxiliary one, which is more suitable for further investigation.
After that, the last problem is reduced to an equivalent system of Volterra-type integral equations of the second
order with respect to unknown functions. Applying the fixed point theorem to this system in Hölder spaces, we
prove the main result of the paper, which is a local existence and uniqueness theorem.

Keywords: Inverse problem, Resolvent, Integral equation, Fixed point theorem, Existence, Uniqueness.

1. Introduction

The constitutive relations for a linear nonhomogeneous heat propagation and diffusion processes
in a medium with memory contain a time- and space-dependent kernel in an integral term of time
variable convolution type [11, 14–16, 19]. Often, in practical applications, these kernels are unknown
functions, and it is required to determine them. Memory function determination problems in heat
equations have been the object of study since the end of the last century. The nonlinear inverse
source and linear inverse coefficient problems with different types of over-determination conditions
can be mostly found in the literature (see, for example, [1–3, 8, 10, 12, 13, 17, 20, 21] and the
references therein). The authors of these researches argued solutions by the special solvability and
stability estimates as well as the numerical outlook for solving this type of problems.

Among works devoted to finding the kernel depending on one time variable (one-dimensional
inverse problem), we note [4, 14, 16, 19]. Multidimensional inverse problems, when a kernel, in
addition to the time variable, also depends on all or a part of spatial variables, are few studied. In
this direction, we observe [4, 5, 7, 9, 16]. In [7], the problem of determining a kernel depending on
a time variable t and an (n− 1)−dimensional spatial variable x′ = (x1, . . . , xn−1) was investigated.
The principal part of the integrodifferential equation in [7] is an n-dimensional heat conduction
operator and the integral part has a form of time-convolution with respect to unknown functions:

https://doi.org/10.15826/umj.2023.2.007
mailto:durdiev65@mail.ru
mailto:j.zafarovich@mail.ru
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the solutions of direct and inverse problems. However, in applications, the study of kernel deter-
mination problems is of great interest when the kernel in a convolution type integral is multiplied
by an elliptic operator of a solution to the direct problem (see [12]). The present paper considers
this kind of parabolic integrodifferential equations, for which the inverse problem will be studied.

Consider the problem of determining functions u(x, t) and k(x′, t), x = (x′, xn) =
(x1, . . . , xn−1, xn) , t > 0, from the equations

ut = a(t)∆u−

t
∫

0

k(x′, t− τ)a(τ)∆u(x, τ)dτ, (x, t) ∈ R
n
T , (1.1)

u(x, 0) = ϕ(x), x ∈ R
n, (1.2)

u(x′, 0, t) = f(x′, t), (x′, t) ∈ R
n−1
T , f(x′, 0) = ϕ(x′, 0), (1.3)

where ∆ is the Laplace operator with respect to spatial variables x = (x1, . . . , xn),

R
n
T =

{

(x, t)| x = (x′, xn) ∈ R
n, 0 < t < T

}

is a strip of thickness T, T > 0 is an arbitrary fixed number, a(t) ∈ C2[0, T ], 0 < a0 ≤ a(t) ≤
a1 <∞, and a0 and a1 are given numbers.

Our investigations were devoted to the results of [4, 5, 7, 9] under the condition of the integrod-
ifferential heat equation of parabolic type with a variable coefficient and a particular convolution
integral.

In this paper, we use the Hölder space Hα with exponent α, where α is a positive integer, for
functions depending only on spatial variables. We also use the space Hα,α/2 with exponents α and
α/2 for functions depending on both time and spatial variables.

Throughout this paper, we require that

ϕ(x) ∈ H l+8 (Rn) , ϕ(x) ≥ ϕ0 = const > 0, f(x′, t) ∈ H l+6,(l+6)/2
(

R̄
n−1
T

)

,

R̄
n−1
T =

{

(x′, t)|x′ ∈ R
n−1, 0 ≤ t ≤ T

}

.

The spaces H l(Q) and H l,l/2(QT ) and their norms are defined in [6, p. 16–27]. In what follows, we

denote by | · |
l,l/2
T the norm of functions in the space H l,l/2(QT ) (in the particular cases QT = R

n
T or

QT = R
n−1
T ) depending on time and spatial variables and by | · |l the norms of functions depending

only on spatial variables (for Q = R
n or Q = R

n−1).
The paper is organized as follows. In Section 2, we reduce the inverse problem (1.1)–(1.3) to

an auxiliary problem with the additional unknown k outside the integral. In Section 3, using the
Poisson formula, we reduce the auxiliary problem to an equivalent system of integral equations
with respect to unknown functions. In Section 4, we study the inverse problem as the problem of
determining functions k(t) from problem (1.1)–(1.3) using the contraction mapping principle.

2. Preliminaries. Auxiliary problem

Lemma 1. Let {k(t), r(t)} ∈ C[0, T ], and let k(t) and r(t) satisfy the integral equation

r(t) = k(t) +

t
∫

0

k(t− τ)r(τ)dτ, t ∈ [0, T ].

Then a solution of the integral equation

ϕ(t) =

t
∫

0

k(t− τ)ϕ(τ)dτ + f(t), f(t) ∈ C[0, T ],
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is defined by the formula

ϕ(t) =

t
∫

0

r(t− τ)f(τ)dτ + f(t).

P r o o f. We can prove this assertion using a resolvent kernel method for linearly integral
equations (see, for example [6]).

Let u(x, t) be the classical solution to the Cauchy problem (1.1)–(1.2). We solve equation (1.1)
with respect to a(t)∆u and obtain

a(t)∆u =

t
∫

0

k(x′, t− τ)a(τ)∆u(x, τ)dτ + ut. (2.1)

Then, applying Lemma 1 to (2.1), we obtain for every fixed x ∈ R
n

ut − a(t)∆u = −

t
∫

0

r(x′, t− τ)uτ (x, τ)dτ. (2.2)

The function r(x′, t) in (2.2) is related to k(x′, t) as follows:

r(x′, t) = k(x′, t) +

t
∫

0

k(x′, t− τ)r(x′, t)dτ, (x, t) ∈ R
n
T . (2.3)

We study the question of finding functions u(x, t) and r(x′, t) that satisfy equations (2.2), (1.2),
and (1.3). To solve this problem, we first will find k(x′, t) from (2.3).

Consider a new function ϑ(1)(x, t) = uxnxn
(x, t). Differentiating equations (2.2) and (1.2) twice

with respect to xn, we obtain the following relation for ϑ(1)(x, t):

ϑ
(1)
t − a(t)∆ϑ(1) = −

t
∫

0

r(x′, t− τ)ϑ(1)τ (x, τ)dτ, (2.4)

ϑ(1)(x, 0) = ϕxnxn
(x). (2.5)

We obtain an overdetermination condition as follows. Introduce the term a(t)uxnxn
into the ex-

pression a(t)∆u of (2.2) and set xn = 0. Then, taking into account that a(t)uxnxn
= a(t)ϑ(1) and

using (1.2), we get

ϑ(1)(x′, 0, t) =
1

a(t)
ft(x

′, t)−
n−1
∑

i=1

fxixi
(x′, t) +

1

a(t)

t
∫

0

r(x′, t− τ)fτ (x
′, τ)dτ. (2.6)

For the continuity of the function ϑ(1)(x, t) for xn = t = 0, x ∈ R
n−1, we require the following

matching condition:

ϕxnxn
(x′, 0) =

1

a(0)
ft(x

′, 0)−

n−1
∑

i=1

fxixi
(x′, 0). (2.7)

We understand the values of the functions a(t) and f(x′, t) and of their derivatives at t = 0 as the
limit as t→ +0.
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Consider another transformation of the question. Let ϑ(2)(x, t) be the derivative of ϑ(1)(x, t)

with respect to t, i.e., let ϑ(2)(x, t) := ϑ
(1)
t (x, t), and let h(x′, t) := rt(x

′, t). From (2.4)–(2.6), we
get

ϑ
(2)
t − a(t)∆ϑ(2) = a′(t)∆ϑ(1) − r(x′, 0)ϑ(2) −

t
∫

0

h(x′, t− τ)ϑ(2)(x, τ)dτ, (2.8)

ϑ(2)(x, 0) = a(0)∆ϕxnxn
(x), (2.9)

ϑ(2)(x′, 0, t) =
a′(t)

a2(t)
ft(x

′, t) +
1

a(t)
ftt(x

′, t)−
n−1
∑

i=1

ftxixi
(x′, t)

−
a′(t)

a2(t)

t
∫

0

r(x′, t− τ)fτ (x
′, τ)dτ +

1

a(t)

t
∫

0

h(x′, τ)fτ (x
′, t− τ)dτ +

1

a(t)
r(x′, 0)ft(x

′, t).

(2.10)

Here, we are obtained the initial condition (2.8) using (2.4) by setting t = 0 and (2.5). The
unknown function r(x′, 0) is a term of equations (2.8) and (2.10). One can define this function as
follows. Similarly to obtaining equality (2.7), we need the continuity of the function ϑ(2)(x, t) for
xn = t = 0, x ∈ R

n−1. Then, (2.9) and (2.10) give some equation, solving which with respect to
r(x′, 0) leads to

r(x′, 0) =
1

ft(x′, 0)

[

a2(0)∆ϕxnxn
(x′, 0)−

a′(0)

a(0)
ft(x

′, 0) − ftt(x
′, 0) + a(0)

n−1
∑

i=1

ftxixi
(x′, 0)

]

. (2.11)

In the following calculations, we assume that r(x′, 0) is known.

Let ϑ(x, t) := ϑ
(2)
t (x, t). Then, we obtain the main problem of determining ϑ(x, t) and h(x′, t)

satisfying the equations

ϑt − a(t)∆ϑ = 2a′(t)∆ϑ(2) + a′′(t)∆ϑ(1)

−r(x′, 0)ϑ − h(x′, t)a(0)∆ϕxnxn
(x)−

t
∫

0

h(x′, τ)ϑ(x, t − τ)dτ,
(2.12)

ϑ(x, 0) = Ψ(x), (2.13)

ϑ(x′, 0, t) = F (x′, t) +

(

2
(a′(t))2

a3(t)
−
a′′(t)

a2(t)

)

t
∫

0

r(x′, t− τ)fτ (x
′, τ)dτ

−2
a′(t)

a2(t)

t
∫

0

h(x′, τ)fτ (x
′, t− τ)dτ −

1

a(t)

t
∫

0

h(x′, τ)ftt(x
′, t− τ)dτ +

1

a(t)
h(x′, t)ft(x

′, 0),

(2.14)

where
Ψ(x) = a2(0)∆2ϕxnxn

(x) + a′(0)∆ϕxnxn
(x)− r(x′, 0)a(0)∆ϕxnxn

(x),

and therefore we get

F (x′, t) =

(

a′′(t)

a2(t)
−

(a′(t))2

a3(t)

)

ft(x
′, t) +

1

a(t)
fttt(x

′, t)−
n−1
∑

i=1

fttxixi
(x′, t)

−2
a′(t)

a2(t)
r(x′, 0)ft(x

′, t) +
1

a(t)
r(x′, 0)ftt(x

′, t).
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Equation (2.12) contains 2a′(t)∆ϑ(2) + a′′(t)∆ϑ(1) on the right-hand side. Taking into consid-

eration ϑ
(1)
t = ϑ(2) and using (2.4), we replace it by ϑ(2):

a′′(t)∆ϑ(1) =
a′′(t)

a(t)
ϑ(2) +

a′′(t)

a(t)

t
∫

0

r(x′, t− τ)ϑ(2)(x, τ)dτ. (2.15)

Similarly, from (2.4) and (2.8), we obtain

2a′(t)∆ϑ(2) = 2 (ln a(t))′
[

ϑ− (ln a(t))′
(

ϑ(2) +

t
∫

0

r(x′, t− τ)ϑ(2)(x, τ)dτ
)

−r(x′, 0)ϑ(2) −

t
∫

0

h(x′, t− τ)ϑ(2)(x, τ)dτ

]

.

(2.16)

Further, we will deduce that the relation 2a′(t)∆ϑ(2)+a′′(t)∆ϑ(1) in equation (2.12) is eliminated
with the help of (2.15) and (2.16).

In case (2.7) and (2.11), it does not bring difficulties following out the inverse changes to derive
the equations (1.1)–(1.3) from (2.8), (2.9), and (2.12)–(2.14) [7]. So, the inverse problem (1.1)–(1.3)
is similar to problem (2.8), (2.9), and (2.12)–(2.14) of determining the functions ϑ(2)(x, t), ϑ(x, t),
h(x′, t), and r(x,′ t). �

3. Reduction of the auxiliary problem

The following statement is the main result of this section.

Lemma 2. The auxiliary problems (2.8)–(2.9), (2.12)–(2.13), and the equality h(x′, t) :=
rt(x

′, t), are equivalent to the problem of finding the functions ϑ(2)(x, t), ϑ(x, t), h(x′, t), and r(x,′ t)
from the following system of integral equations:

ϑ(2)(x, t) =

∫

Rn

a(0)∆ϕξnξn(ξ)G (x− ξ, θ(t)) dξ +

θ(t)
∫

0

dτ

a(θ−1(τ))

×

∫

Rn

[

(

ln a(θ−1(τ))
)′
(

ϑ(2)
(

ξ, θ−1(τ)
)

+

θ−1(τ)
∫

0

r(ξ′, θ−1(τ)− α)ϑ(2)(ξ, α)dα
)

−r(ξ′, 0)ϑ(2)
(

ξ, θ−1(τ)
)

−

θ−1(τ)
∫

0

h(ξ′, θ−1(τ)− α)ϑ(2)(ξ, α)dα

]

G (x− ξ, θ(t)− τ) dξ,

(3.1)

ϑ(x, t) =

∫

Rn

Ψ(ξ)G(x− ξ, θ(t))dξ +

θ(t)
∫

0

dτ

a(θ−1(τ))

∫

Rn

[

(a′′(θ−1(τ))

a(θ−1(τ))

−2((ln a(θ−1(τ)))′)2
)

ϑ(2)(ξ, θ−1(τ)) +
(

2(ln a(θ−1(τ)))′ − r(ξ′, 0)
)

ϑ(ξ, θ−1(τ))
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−

θ−1(τ)
∫

0

h(ξ′, α)ϑ(ξ, θ−1(τ)− α)dα +
(a′′(θ−1(τ))

a(θ−1(τ))
+ 2(ln a(θ−1(τ)))′

−2((ln a(θ−1(τ)))′)2
)

θ−1(τ)
∫

0

r(ξ′, θ−1(τ)− α)ϑ(2)(ξ, α)dα ++2(ln a(θ−1(τ)))′

×

θ−1(τ)
∫

0

h(ξ′, θ−1(τ)− α)ϑ(2)(ξ, α)dα − h(ξ′θ−1(τ))a(0)∆ϕξnξn(ξ)

]

G(x− ξ, θ(t)− τ)dξ,

(3.2)

h(x′, t) =
a(t)

ft(x′, 0)

[
∫

Rn

Ψ(ξ)G(x′ − ξ′, ξn, θ(t))dξ − F (x′, t)

]

+
a(t)

ft(x′, 0)

[

θ(t)
∫

0

dτ

a(θ−1(τ))

∫

Rn

(

[a′′(θ−1(τ))

a(θ−1(τ))
− 2((ln a(θ−1(τ)))′)2

]

ϑ(2)(ξ, θ−1(τ))

+
[

2(ln a(θ−1(τ)))′ − r(ξ′, 0)
]

ϑ(ξ, θ−1(τ)) −

θ−1(τ)
∫

0

h(ξ′, α)ϑ(ξ, θ−1(τ)− α)dα

+
[a′′(θ−1(τ))

a(θ−1(τ))
+ 2(ln a(θ−1(τ)))′ − 2((ln a(θ−1(τ)))′)2

]

θ−1(τ)
∫

0

r(ξ′, τ − α)ϑ(2)(ξ, α)dα

+2(ln a(θ−1(τ)))′
θ−1(τ)
∫

0

h(ξ′, θ−1(τ)− α)ϑ(2)(ξ, α)dα − h(ξ′, θ−1(τ))a(0)∆ϕξnξn(ξ)

)

×G(x′ − ξ′, ξn, θ(t)− τ)dξ

]

− ft(x
′, 0)(2((ln(a(t))′)2 −

a′′(t)

a(t)
)

t
∫

0

r(x′, t− τ)fτ (x
′, τ)dτ+

+2ft(x
′, 0)(ln(a(t))′

t
∫

0

h(x′, τ)fτ (x
′, t− τ)dτ + ft(x

′, 0)

t
∫

0

h(x′, τ)ftt(x
′, t− τ)dτ,

(3.3)

r(x,′ t) = r(x′, 0) +

t
∫

0

h(x′, τ)dτ. (3.4)

P r o o f. To prove Lemma 2, we use the formula [3]

p(x, t) =

∫

Rn

ϕ(ξ)G(x − ξ; θ(t))dξ +

θ(t)
∫

0

dτ

a(θ−1(τ))

∫

Rn

F (ξ, θ−1(τ))G(x − ξ; θ(t)− τ)dξ, (3.5)

which provides a solution to the following Cauchy problem for the heat equation with a time-variable
coefficient of thermal conductivity:

pt − a(t)∆p = F (x, t), x ∈ R
n, t > 0,

p(x, 0) = ϕ(x), x ∈ R.
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In (3.5),

θ(t) =

t
∫

0

a(τ)dτ

and θ−1(t) is the inverse function of θ(t);

G(x− ξ; θ(t)− τ) =
1

(2
√

π(θ(t)− τ))n
e−|x−ξ|2/4(θ(t)−τ)

is the fundamental solution related to the operator of heat with the coefficient of thermal conduc-
tivity that depends on time:

∂

∂t
− a(t)∆, ξ = (ξ1, . . . , ξn), ξ′ = (ξ1, . . . , ξn−1), dξ = dξ1 · · · dξn, |x|2 = x21 + · · ·+ x2n.

Equations (3.1) and (3.2) follow from the Cauchy problems (2.8), (2.9) and (2.12), (2.13)
with (3.5), independently. In (3.2), we set xn = 0 and use another case of (2.14). After that,
we get equation (3.3). Equality (3.4) is clear.

We add to the equations (3.1)–(3.4) the integral equation. It can be gained from relations (2.2)
and (1.2). First, we use formula (3.5) after integrating by parts in the integral on the right-hand
side of (2.2). In conclusion, we get the following equivalent integral equation for u(x, t):

u(x, t) =

∫

Rn

ϕ(ξ)G(x − ξ; θ(t))dξ +

θ(t)
∫

0

dτ

a(θ−1(τ))

∫

Rn

[

r(ξ′, θ−1(τ))ϕ(ξ)

−r(ξ′, 0)u(ξ, θ−1(τ))−

θ−1(τ)
∫

0

h(ξ′, θ−1(τ)− α)u(ξ, α)dα
]

G(x− ξ; θ(t)− τ)dξ.

(3.6)

�

4. Existence and uniqueness

In this section, we show that a solution to the system of integral equations (3.1)–(3.4), (3.6)
exists and is unique. To this end, we use the well-known Banach’s principle [18, pp. 87–97]. Our
goal is to set the integral equations like a system with a nonlinear operator for unknown functions
ϑ(2)(x, t), ϑ(x, t), h(x′, t), and r(x′, t), and show that an operator of this type is a contraction
mapping operator. The uniqueness and existence then follow straight away.

Recall that F is a contraction mapping operator in a closed set Ω, which is a subset of a Banach
space, if it satisfies the following two properties:

(1) if y ∈ Ω, then Fy ∈ Ω (i.e., F maps Ω into itself);
(2) if y, z ∈ Ω, then ‖Fy − Fz‖ ≤ ρ ‖y − z‖ with ρ < 1 (ρ is a constant independent of y and z).

Right now, we introduce the primary result of this research.

Theorem 1. Suppose that all cases of Section 1 on regard to the drawn functions a(t), ϕ(x),
and f(x′, t) and the matching cases (1.3) and (2.7) are fulfilled except |ft(x

′, 0)| > f0 = const > 0,
f0 is a fixed number. Then there is a sufficiently small number T > 0 such that the unique answer

to the inverse question (1.1)–(1.3) exists in the class of functions u(x, t) ∈ H l+2,(l+2)/2
(

R̄
n
T

)

and

k(x′, t) ∈ H l,l/2
(

R̄
n−1
T

)

.
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P r o o f. The system of equations (3.1)–(3.4), (3.6) is a closed system of unknown functions
ϑ(2)(x, t), ϑ(x, t), h(x′, t), r(x,′ t), and u(x, t) in R

n
T . It can be written as a nonlinear operator

equation

ψ = Aψ; (4.1)

here ψ = (ψ1, ψ2, ψ3, ψ4, ψ5)
∗ =

(

ϑ(2)(x, t), ϑ(x, t), h(x′, t), r(x,′ t), u(x, t)
)∗
, where ∗ is

the transposition symbol. According to equations (3.1)–(3.4) and (3.6), the operator
Aψ = [(Aψ)1, (Aψ)2, (Aψ)3, (Aψ)4, (Aψ)5] has the form

(Aψ)1 = ψ01(x, t) +

θ(t)
∫

0

dτ

a(θ−1(τ))

∫

Rn

[

(ln a(θ−1(τ)))′
(

ψ1(ξ, θ
−1(τ))

+

θ−1(τ)
∫

0

ψ4(ξ
′, θ−1(τ)− α)ψ1(ξ, α)dα

)

− r(ξ′, 0)ψ1(ξ, α)

−

θ−1(τ)
∫

0

ψ3(ξ
′, θ−1(τ)− α)ψ1(ξ, α)dα

]

G(x− ξ, θ(t)− τ)dξ,

(4.2)

(Aψ)2 = ψ02(x, t) +

θ(t)
∫

0

dτ

a(θ−1(τ))

∫

Rn

([a′′(θ−1(τ))

a(θ−1(τ))
− 2((ln a(θ−1(τ)))′)2

]

ψ1(ξ, θ
−1(τ))

+
[

2(ln a(θ−1(τ)))′ − r(ξ′, 0)
]

ψ2(ξ, θ
−1(τ))−

θ−1(τ)
∫

0

ψ3(ξ
′, α)× ψ2(ξ, θ

−1(τ)− α)dα

+
[a′′(θ−1(τ))

a(θ−1(τ))
+ 2(ln a(θ−1(τ)))′ − 2((ln a(θ−1(τ)))′)2

]

θ−1(τ)
∫

0

ψ4(ξ
′, θ−1(τ)− α)ψ1(ξ, α)dα

+2(ln a(θ−1(τ)))′
θ−1(τ)
∫

0

ψ3(ξ
′, θ−1(τ)− α)

×ψ1(ξ, α)dα − ψ3(ξ
′, θ−1(τ))a(0)∆ϕξnξn(ξ)

)

G(x− ξ, θ(t)− τ)dξ,

(4.3)

(Aψ)3 = ψ03(x
′, t) +

a(t)

ft(x′, 0)

[

θ(t)
∫

0

dτ

a(θ−1(τ))

∫

Rn

(

[a′′(θ−1(τ))

a(θ−1(τ))

−2((ln a(θ−1(τ)))′)2
]

ψ1(ξ, θ
−1(τ)) +

[

2(ln a(θ−1(τ)))′ − r(ξ′, 0)
]

ψ2(ξ, θ
−1(τ))

−

θ−1(τ)
∫

0

ψ3(ξ
′, α)ψ2(ξ, θ

−1(τ)− α)dα +
[a′′(θ−1(τ))

a(θ−1(τ))
+ 2(ln a(θ−1(τ)))′

−2((ln a(θ−1(τ)))′)2
]

θ−1(τ)
∫

0

ψ1(ξ
′, θ−1(τ)− α)ψ1(ξ, α)dα + 2(ln a(θ−1(τ)))′×
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×

θ−1(τ)
∫

0

ψ3(ξ
′, θ−1(τ)− α)ψ1(ξ, α)dα − ψ3(ξ

′, θ−1(τ))a(0)∆ϕξnξn(ξ)

)

×G(x′ − ξ′, ξn, θ(t)− τ)dξ

]

− ft(x
′, 0)(2((ln(a(t))′)2 −

a′′(t)

a(t)
)

t
∫

0

ψ4(x
′, t− τ)fτ (x

′, τ)dτ

+2ft(x
′, 0)(ln(a(t))′

t
∫

0

ψ3(x
′, τ)fτ (x

′, t− τ)dτ + ft(x
′, 0)

t
∫

0

ψ3(x
′, τ)ftt(x

′, t− τ)dτ,

(4.4)

(Aψ)4 = ψ04(x
′, t) +

t
∫

0

ψ3(x
′, τ)dτ, (4.5)

(Aψ)5 = ψ05(x, t) +

θ(t)
∫

0

dτ

a(θ−1(τ))

∫

Rn

[

ψ4(ξ
′, θ−1(τ))ϕ(ξ)

−r(ξ′, 0)ψ5(ξ, θ
−1(τ))−

θ−1(τ)
∫

0

ψ3(ξ
′, θ−1(τ)− α)ψ5(ξ, α)dα

]

G(x− ξ; θ(t)− τ)dξ.

(4.6)

In (4.2)–(4.6), we introduced the notation:

ψ01(x, t) =

∫

Rn

a(0)∆ϕξnξn(ξ)G(x − ξ, θ(t))dξ,

ψ02(x, t) =

∫

Rn

Ψ(ξ)G(x − ξ, θ(t))dξ,

ψ03(x
′, t) =

a(t)

ft(x′, 0)

[

∫

Rn

Ψ(ξ)G(x′ − ξ′, ξn, θ(t))dξ − F (x′, t)
]

,

ψ04(x
′, t) = r(x′, 0), ψ05(x, t) =

∫

Rn

ϕ(ξ)G(x − ξ; θ(t))dξ.

Define
|ψ|

l,l/2
T = max

(

|ψ1|
l,l/2
T , |ψ2|

l,l/2
T , |ψ3|

l,l/2
T , |ψ4|

l,l/2
T , |ψ5|

l,l/2
T

)

,

fix T0 such that T0 > T , and consider in the space H l,l/2 (Rn
T ) the set S(T ) of functions ψ(x, t)

satisfying the inequality

|ψ − ψ0|
l,l/2
T ≤ |ψ0|

l,l/2
T0

, (4.7)

where ψ0 = (ψ01, ψ02, ψ03, ψ04, ψ05) and

|ψ0|
l,l/2
T0

= max
(

|ψ01|
l,l/2
T0

, |ψ02|
l,l/2
T0

, |ψ03|
l,l/2
T0

|ψ04|
l,l/2
T0

, |ψ05|
l,l/2
T0

)

.

For a sufficiently small T , the operator A is a contraction mapping operator in S(T ). Then the
uniqueness and existence theorem follows right away from the contraction mapping principle.

First, it is seen that A has the first property of a contraction mapping operator. Let ψ ∈ S(T ),
T < T0. Then, from relation (4.7), we have

|ψi|
l,l/2
T ≤ 2 |ψ0|

l,l/2
T0

, i = 1, 2, 3, 4, 5.
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Define

a1 := ‖a‖C2[0,T ], a2 := max
t∈[0,T ]

|(ln a(t))′|

r1 = |r(x′, 0)|l, f1 := |f(x′, t− τ)|l+6,(l+6)/2, ϕ1 := |ϕ(x)|l+6.

It is not hard to see that

|(Aψ)1 − ψ01|
l,l/2
T =

∣

∣

∣

θ(t)
∫

0

dτ

a(θ−1(τ))

∫

Rn

[

(ln a(θ−1(τ)))′
(

ψ1(ξ, θ
−1(τ))

+

θ−1(τ)
∫

0

ψ4(ξ
′, θ−1(τ)− α)ψ1(ξ, α)dα

)

− r(ξ′, 0)ψ1(ξ, α)

−

θ−1(τ)
∫

0

ψ3(ξ
′, θ−1(τ)− α)ψ1(ξ, α)dα

]

G(x− ξ, θ(t)− τ)dξ
∣

∣

∣

l,l/2

T

≤

θ(t)
∫

0

dτ

|a(θ−1(τ))|T

∫

Rn

[

|(ln a(θ−1(τ)))′|T

×
(

ψ1(ξ, θ
−1(τ))|

l,l/2
T +

θ−1(τ)
∫

0

|ψ4(ξ
′, θ−1(τ)− α)|lT |ψ1(ξ, α)|

l
T dα

)

+ |r(ξ′, 0)|l|ψ1(ξ, α)|
l,l/2
T

+

θ−1(τ)
∫

0

|ψ3(ξ
′, θ−1(τ)− α)|

l,l/2
T |ψ1(ξ, α)|

l,l/2
T dα

]

G(x− ξ, θ(t)− τ)dξ

≤ |ψ0|
l,l/2
T0

2T 2

a0

(

a2 + 2Ta2|ψ0|
l,l/2
T0

+ r1 + 2T |ψ0|
l,l/2
T0

)

:= |ψ0|
l,l/2
T0

β1.

In the same way, we obtain

|(Aψ)2 − ψ02|
l,l/2
T ≤ |ψ0|

l,l/2
T0

[

2T 2

a0

(a1
a0

+ 2a22 + 2a2 + r1 + 2T |ψ0|
l,l/2
T0

)

+2T |ψ0|
l,l/2
T0

(a2
a0

+ 2a2 + 2a22

)

+ 4Ta2|ψ0|
l,l/2
T0

+ a1ϕ1

]

:= |ψ0|
l,l/2
T0

β2,

|(Aψ)3 − ψ03|
l,l/2
T ≤ |ψ0|

l,l/2
T0

(

2
T 2

f1

[a1
a0

+ 2a22 + 2a2 + r1 + 2T |ψ0|
l,l/2
T0

+2T |ψ0|
l,l/2
T0

(a1
a0

+ 2a2 + 2a22

)

+ 4T |ψ0|
l,l/2
T0

a2 + a1ϕ1

]

+ Tf21

(a1
a0

+ 2a22 + 2a2 + 1
)

)

:= |ψ0|
l,l/2
T0

β3

|(Aψ)4 − ψ04|
l,l/2
T ≤ 2T |ψ0|

l,l/2
T0

:= |ψ0|
l,l/2
T0

β4,

|(Aψ)5 − ψ05|
l,l/2
T ≤ |ψ0|

l,l/2
T0

·
2T 2

a0

(

ϕ1 + r1 + 2T |ψ0|
l,l/2
T0

)

:= |ψ0|
l,l/2
T0

β5,

where βi(T ) → 0 as T → 0, i = 1, 2, 3, 4, 5. Accordingly, if we take T (T < T0) such that the
following relation holds:

β := max {β1, β2, β3, β4, β5} < 1,
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then the operator A has the first property of a contraction operator of mapping, i.e., Aψ ∈ S(T ).
Next, let us think about the second property of a contraction mapping operator for A. Let

ψ(1) =
(

ψ
(1)
1 , ψ

(1)
2 , ψ

(1)
3 , ψ

(1)
4 , ψ

(1)
5

)

∈ S(T ), ψ(2) =
(

ψ
(2)
1 , ψ

(2)
2 , ψ

(2)
3 , ψ

(2)
4 , ψ

(2)
5

)

∈ S(T ).

Based on the inequalities

∣

∣ψ
(1)
2 ψ

(1)
1 − ψ

(2)
2 ψ

(2)
1

∣

∣

l,l/2

T
=

∣

∣

∣

(

ψ
(1)
2 − ψ

(2)
2

)

ψ
(1)
1 + ψ

(2)
2

(

ψ
(1)
1 − ψ

(2)
1

)

∣

∣

∣

l,l/2

T

≤ 2
∣

∣ψ(1) − ψ(2)
∣

∣

l,l/2

T
max

(

∣

∣ψ
(1)
1

∣

∣

l,l/2

T
,
∣

∣ψ
(2)
2

∣

∣

l,l/2

T

)

≤ 4 |ψ0|
l,l/2
T

∣

∣ψ(1) − ψ(2)
∣

∣

l,l/2

T
,

we evaluate the difference

|((Aψ)(1) −Aψ)(2))1|
l,l/2
T ≤

θ(t)
∫

0

dτ

|a(θ−1(τ))|T

∫

Rn

[

|(ln a(θ−1(τ)))′|T |
(

(ψ
(1)
1 (ξ, θ−1(τ))

−ψ
(2)
1 (ξ, θ−1(τ)))|

l,l/2
T +

θ−1(τ)
∫

0

|
[

ψ
(1)
4 (ξ′, θ−1(τ)− α)ψ

(1)
1 (ξ, α)

−ψ
(2)
4 (ξ′, θ−1(τ)− α)ψ

(2)
1 (ξ, α)

]

|
l,l/2
T dα

)

+ |r(ξ′, 0)|l|(ψ
(1)
1 (ξ, α)− ψ

(2)
1 (α))|

l,l/2
T

+

θ−1(τ)
∫

0

|
[

ψ
(1)
3 (ξ′, θ−1(τ)− α)ψ

(1)
1 (ξ, α)− ψ

(2)
3 (ξ′, θ−1(τ)

−α)ψ
(2)
1 (ξ, α)

]

|
l,l/2
T dα

]

G(x− ξ, θ(t)− τ)dξ

≤ |ψ(1) − ψ(2)|
l,l/2
T0

T 2

a0
(a2 + 4Ta2|ψ0|

l,l/2
T0

+ r1 + 4T |ψ0|
l,l/2
T0

) := |ψ(1) − ψ(2)|
l,l/2
T0

µ1.

For other components of A, we can write

|((Aψ)(1) −Aψ)(2))2|
l,l/2
T ≤ |ψ(1) − ψ(2)|

l,l/2
T0

(

T 2

a0

(a1
a0

+ 2a22 + 2a2 + r1 + 4T |ψ0|
l,l/2
T0

)

+4T |ψ0|
l,l/2
T0

(a1
a0

+ 2a2 + 2a22

)

+ 8Ta2|ψ0|
l,l/2
T0

+ a1ϕ1

)

:= |ψ(1) − ψ(2)|
l,l/2
T0

µ2,

|((Aψ)(1) −Aψ)(2))3|
l,l/2
T ≤ |ψ(1) − ψ(2)|

l,l/2
T0

(T 2

f1

[a1
a0

+ 2a22 + 2a2 + r1 + 4T |ψ0|
l,l/2
T0

+4T |ψ0|
l,l/2
T0

(a1
a0

+ 2a2 + 2a22

)

+ 8T |ψ0|
l,l/2
T0

a2 + a1ϕ1

]

+Tf21

(a1
a0

+ 2a22 + 2a2 + 1
))

:= |ψ(1) − ψ(2)|
l,l/2
T0

µ3,

|((Aψ)(1) −Aψ)(2))4|
l,l/2
T ≤ |ψ(1) − ψ(2)|

l,l/2
T0

T := |ψ(1) − ψ(2)|
l,l/2
T0

µ4,

|((Aψ)(1) −Aψ)(2))5|
l,l/2
T ≤ |ψ(1) − ψ(2)|

l,l/2
T0

T 2

a0
(ϕ1 + r1 + 4T |ψ0|

l,l/2
T0

) := |ψ(1) − ψ(2)|
l,l/2
T0

µ5.

Hence,
∣

∣

∣

(

Aψ(1) −Aψ(2)
)
∣

∣

∣

l,l/2

T
< µ

∣

∣

∣
ψ(1) − ψ(2)

∣

∣

∣

l,l/2

T

if T satisfies the condition
µ := max {µ1, µ2, µ3, µ4, µ5} < 1.
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It is not difficult to see that if we set T0 = min (β, µ) , then, for any T ∈ (0, T0), the operator
A has the two properties of a contraction mapping operator, i.e., A takes the set S(T ) onto itself.
Therefore, by the Banach theorem (see, for example, [22, pp. 87–97]), there is a unique fixed point
of A in S(T ); i.e., there exists only one solution to (4.1). �

5. Conclusion

In this paper, we have considered the problem of finding the functions u(x, t) and k(x′, t) from
the (1.1)–(1.3). First, the above problem has been reduced to an auxiliary problem. The equivalence
of the auxiliary problem to Volterra-type integral equations has been shown. The existence and
uniqueness of a solution to the problem have been obtained using the fixed point principle.
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Abstract: A control system can be treated as a mapping that maps a control to a trajectory (output)
of the system. From this point of view, the reachable set, which consists of the ends of all trajectories at a
given time, can be considered an image of the set of admissible controls into the state space under a nonlinear
mapping. The paper discusses some properties of such abstract reachable sets. The principal attention is paid
to the description of the set boundary.

Keywords: Reachable set, Nonlinear mapping, Control system, Extremal problem, Maximum principle.

1. Introduction

The paper explores the issue of describing the boundary of the reachable set of a nonlinear
control system. A reachable set consists of all state vectors that can be reached along trajectories
generated by admissible controls. For a system with geometric (point-wise) constraints, it is known
that control steering the trajectory to the boundary of the set satisfies Pontryagin’s maximum
principle [13, 16]. Many algorithms for computing reachable sets are established based on solving
optimal control problems and (or) use of the maximum principle [2, 5, 12, 14, 17]. For systems
with integral constraints, some properties of reachable sets and algorithms for their construction
are given in [6, 7, 15].

For integral quadratic constraints, it was shown in [8, 10] that any admissible control leading to
the reachable set boundary provides a local extremum in some optimal control problem. Therefore,
this control satisfies the maximum principle. This result was generalized in [11] for several mixed
integral constraints in which the integrands depend on both control and state variables. In [9]
(see, also [1]), we proposed to consider the reachability problem in terms of nonlinear mappings
of Banach spaces. With this approach, the reachable set is treated as the image of the set of all
admissible controls under the action of a nonlinear mapping. In the present paper, we extend
the results of [9] to a broader class of abstract control systems. These systems are determined by
differentiable maps of Banach spaces with different types of constraints on controls. The paper
weakens the conditions of [9], which makes it possible to consider the problem with constraints
specified by nonsmooth functionals. The use of nonsmooth analysis constructions allowed us to
consider problems with multiple constraints within the framework of a unified scheme.

2. Single constraint control systems

Let us consider the system

ẋ(t) = f1(t, x(t)) + f2(t, x(t))u(t), x(t0) = x0, u(·) ∈ U, (2.1)

https://doi.org/10.15826/umj.2023.2.008
mailto:gmi@imm.uran.ru
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on a time interval [t0, t1]. Here, x(t) ∈ R
n, u(t) ∈ R

r, and U is a given set in the space Lp, p > 1.
Functions f2 : Rn+1 → R

n×r are considered to have continuous Fréchet derivatives in x and
satisfying the conditions:

‖f1(t, x)‖ ≤ l1(t)(1 + ‖x‖), ‖f2(t, x)‖n×r ≤ l2(t), t0 ≤ t ≤ t1, x ∈ R
n.

Here, l1(·) ∈ L1 and l2(·) ∈ L2, where L1 and L2 denote the spaces of summable and square
summable functions, respectively.

For any u(·) ∈ L1, there is a unique absolutely continuous solution x(t, u(·)) to system (2.1)
such that x(t0) = x0.

A reachable set G(t1) of system (2.1) at time t1 under the constraint u(·) ∈ U ⊂ L1 is defined
as follows:

G(t1) =
{

y ∈ R
n : y = x(t1, u(·)), u(·) ∈ U

}

.

This definition of a reachable set fits into the framework of the following abstract construction.
Let X and Y be real Banach spaces, and let U ⊂ X be a given set. We will call a map F : U → Y
an abstract control system. Here, u ∈ U is called a control and the set U is called a constraint.
The reachable set G of this system is

G =
{

y ∈ Y : y = F (u), u ∈ U
}

.

Thus, G = F (U) is an image of the set U under the mapping F .
Further, we set

U =
{

u ∈ X : ϕ(u) ≤ µ
}

,

so U is a level set of a continuous function ϕ : X → R; µ > 0 is a given number. In control problems
for system (2.1), one can take X = Lp, p > 1, including p = ∞, as the space X and Y = R

n.
The mapping F in this case is determined as

F (u) = F (u(·)) = x(t1, u(·)). (2.2)

With standard requirements on system (2.1) (see, for example, [10]), F (u(·)) is a single-valued
mapping having a continuous Fréchet derivative F ′(u(·)) : L2 → R

n:

F ′
u(u(·))∆u(·) = ∆x(t1).

Here, ∆x(t) is a solution to system (2.1) linearized around (x(t, u(·)), u(t)),

∆̇x(t) = A(t)∆x(t) +B(t)∆u(t), ∆x(t0) = 0,

A(t) =
∂f1
∂x

(t, x(t)) +
∂

∂x

[

f2(t, x(t))u(t)
]

, B(t) = f2(t, x(t)),
(2.3)

corresponding to the control ∆u(t). If system (2.3) is controllable on [t0, t1], then ImF ′(u(·)) = R
n.

Let us consider the geometric constraints on controls that are standard for control theory:

u(t) ∈ Ω, a.e. t ∈ [t0, t1].

In many cases, the set Ω can be represented as

Ω = {v ∈ R
r : ‖Qv‖ ≤ 1},

where Q is a matrix and ‖ · ‖ is some norm in R
m. It is clear that we can take here X = L∞ and

ϕ(u(·)) = ess sup
t0≤t≤t1

‖Qu(t)‖.
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Such a functional is obviously continuous in the space L∞.

Another example of control constraints is an integral constraint. In this case, X = Lp, p > 1,
and

ϕ(u(·)) =

∫ t1

t0

‖u(t)‖p dt.

We call the joint constraints on both control and state variables of the form

ϕ(u(·)) :=

∫ t1

t0

(

Q(t, x(t)) + u⊤(t)R(t, x(t))u(t)
)

dt ≤ µ, u(·) ∈ L2,

the isoperimetric constraints.

Let BX(x, r) and BY (y, r) be the balls of radius r centered at x ∈ X and y ∈ Y , respectively.
Further analysis is based on a well-known Lyusternik’s theorem.

Theorem 1 [4, Theorem 2]. Let a mapping F from a Banach space X to a Banach space Y
be continuously Fréchet differentiable at a point û and such that ImF ′(û) = Y . Then there are a
neighborhood V of the point û and a number s > 0 such that, for any BX(u, r) ⊂ V,

BY (F (u), sr) ⊂ F (BX(u, r)).

The condition ImF ′(û) = Y is called the Lyusternik (regularity) condition. If this condition is
met, F is said to be regular at the point û.

Using this theorem we get the following statement.

Theorem 2. Let W be some neighborhood of the set U, let F : W → Y be a mapping con-
tinuously Fréchet differentiable at a point û ∈ U, and let ImF ′(û) = Y. To x̂ = F (û) ∈ ∂G, it is
necessary that û be a local extremum in the problem

ϕ(u) → min, F (u) = x̂, (2.4)

and ϕ(û) = µ.

P r o o f. The proof is by contradiction. Assume that ϕ(û) < µ. Since ϕ(u) is continuous at the
point û, there is a neighborhood V1 of û such that ϕ(u) < µ ∀u ∈ V1. Let us choose a neighborhood
V and a number s whose existence follows from Theorem 1. Then, for any ball BX(û, r) ∈ V

⋂

V1,
we have

BX(û, r) ⊂ U,

BY (x̂, sr) = BY (F (û), sr) ⊂ F (BX(û, r)) ⊂ F (U) = G,

which contradicts the condition x̂ ∈ ∂G. Hence, ϕ(û) = µ.

Let us again choose V and s from Theorem 1. Assume that û is not a local minimum in (2.4).
Then there is ū ∈ V such that F (ū) = x̂ and ϕ(ū) < ϕ(û) = µ. Let us choose r > 0 such that
BX(ū, r) ⊂ V . Then, by Theorem 1,

BY (x̂, sr) = BY (F (ū), sr) ⊂ F (BX(ū, r)) ⊂ F (U) = G

contrary to the condition x̂ ∈ ∂G. This completes the proof. �
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Let us write down the necessary extremum condition for problem (2.4), assuming that ϕ(u) is
continuously differentiable at û. Since the constraint F (u) = x̂ is regular at the point û, there is a
Lagrange multiplier y∗ ∈ Y ∗ such that

ϕ′(û) + F ′∗(û)y∗ = 0. (2.5)

Here, F ′∗(û) denotes the operator conjugate to the continuous linear operator F ′(û).

If ϕ′(û) 6= 0, then equality (2.5) implies that y∗ 6= 0. If we divide both sides of equality (2.5)
by ‖y∗‖, then it takes the form

F ′∗(û)y∗ + λϕ′(û) = 0, (2.6)

where ‖y∗‖ = 1 and λ > 0. Since ϕ(û)− µ = 0, we also have the equality

λ(ϕ(û)− µ) = 0. (2.7)

It is easy to see that relations (2.6) and (2.7) also give the necessary optimality conditions for
the problem

〈y∗, F (u)〉 → min, ϕ(u) ≤ µ, (2.8)

where 〈·, ·〉 denotes a bilinear form establishing the duality of the spaces Y and Y ∗. Here, equal-
ity (2.6) means that the derivative of the Lagrange function

L(u, λ) = 〈y∗, F (u)〉 + λ(ϕ(u) − µ)

in u is equal to zero, and equality (2.7) is a complementary slackness condition. Thus, the following
statement is true.

Theorem 3. Assume that F (û) = x̂ ∈ ∂G, u ∈ U, F (u) is regular, and ϕ(u) is continuously
differential at the point û and ϕ(û) 6= 0. Then, there is y∗ ∈ Y ∗, ‖y∗‖ = 1, such that û satisfies the
necessary extremum conditions (2.6) and (2.7) in problem (2.8).

As it is easy to see, problem (2.8) can be rewritten in the equivalent form

〈z∗, y〉 → max, y ∈ G.

where z∗ = −y∗. The latter is the problem of calculating the support function of G. Recall that a
support function ψG(z

∗) is defined on Y ∗ by the equality

ψG(z
∗) = sup

y∈G

〈z∗, y〉.

The point at which the supremum is reached is called the support point. Since the reachable set G
in the nonlinear case is not necessarily convex, the boundary point x̂ is not necessarily a support
point. But it meets the necessary optimality conditions as if it would be a support point.

Next, we will consider the case when ϕ is not continuously differentiable but is Lipschitz con-
tinuous at the point û. For simplicity, we will assume also that Y = R

n.

Denote by ∂Cf(u) the Clarke subdifferential of a function f at a point u. If f is Lipschitz
continuous in some neighborhood of u, then ∂Cf(u) 6= ∅ is a convex weakly* compact set [3].

Let L be a Lagrange function

L(u, λ, y∗) = λϕ(u) + 〈y∗, F (u)− x̂〉,

where λ ≥ 0 and y∗ ∈ Y ∗ = R
n are Lagrange multipliers.
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Assume that û is a local solution to problem (2.4) and ϕ(u) is Lipschitz continuous at the
point û. Then, there exist λ ≥ 0 and y∗ ∈ R

n, λ+ ‖y∗‖ 6= 0, such that

0 ∈ ∂CL(û, λ, y
∗) = λ∂Cϕ(û) + F ′∗(û)y∗, (2.9)

where ∂CL is taken with respect to u (see, for example, [3, Theorem 6.1.1]). Let us show that
λ > 0. Indeed, if λ = 0, then ‖y∗‖ 6= 0 and F ′∗(û)y∗ = 0. This contradicts the regularity of F at
the point û.

Without loss of generality, we set λ = 1. Suppose that 0 /∈ ∂Cϕ(û). Then F ′∗(û)y∗ 6= 0 and
condition (2.9) takes the form

−F ′∗(û)y∗ ∈ ∂Cϕ(û). (2.10)

Let us show that this inclusion is a necessary extremum condition in problem (2.8). Let

L(u, α, β) = α〈y∗, F (u)〉 + β(ϕ(u) − µ)

be the Lagrange function for problem (2.8). If û is a local minimum point in problem (2.8), then
there are α ≥ 0 and β ≥ 0, α+ β 6= 0, such that

0 ∈ ∂CL(û, α, β). (2.11)

Note that if 0 /∈ ∂Cϕ(û), then α > 0 and β > 0. Indeed, if α = 0, then β > 0 and 0 ∈ ∂Cϕ(û). If
β = 0, then αF ′∗(û)y∗ = 0 and α > 0, which is impossible due to the regularity condition. Divide
both sides of inclusion (2.11) by β and take αy∗/β as a new vector y∗. Then inclusion (2.11) takes
the form (2.10).

As a result, we get the following statement.

Theorem 4. Assume that F (û) = x̂ ∈ ∂G, û ∈ U, F (u) is regular, and ϕ(u) is Lipschitz
continuous at the point û and 0 /∈ ∂Cϕ(û). Then there is y∗ ∈ Y ∗, ‖y∗‖ = 1, such that û satisfies
the necessary extremum condition (2.10) in problem (2.8).

Remark 1. If ϕ(u) is convex, then ∂Cϕ(u) = ∂ϕ(u) is a subdifferential of a convex function.
The condition 0 /∈ ∂Cϕ(û) in this case is equivalent to Slater’s condition: there is ū such that
ϕ(ū) < ϕ(û).

Remark 2. If a mapping F is defined by formula (2.2) and ϕ(u(·)) is an integral quadratic
in u functional, then Theorem 2 implies the necessary extremum conditions [10] in the form of
Pontryagin’s maximum principle.

Note that, under integral quadratic constraints, the relations of the maximum principle follow
directly from the extremum conditions (2.10). Below we present its proof. Assume that X = L2,
Y = R

n, the mapping F is defined by formula (2.2), and ϕ(u(·)) = 1/2 〈u(·), u(·)〉 is an integral
quadratic functional. In this case, ∂ϕ(u(·)) = {ϕ′(u(·))} = {u(·)} and the equality ϕ(û(·)) = µ
implies that ϕ′(û(·)) 6= 0. Therefore, (2.10) takes the following equivalent form:

F ′∗(û)z∗ = û, z∗ = −y∗, z∗ 6= 0.

Recall that F ′(u) = F ′(u(·)) is defined by the equality F ′(u(·))∆u(·) = ∆x(t1), where x(t) is the
solution of (2.3). Let us represent this solution in the integral form

∆x(t1) =

∫ t1

t0

X(t1, τ)B(τ)∆u(τ) dτ,
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where X(t, τ) is the Cauchy matrix. For any z∗ ∈ R
n, we have

(

z∗, F ′(u(·))∆u(·)
)

=
〈

F ′∗(u(·))z∗,∆u(·)
〉

= z∗⊤
∫ t1

t0

X(t1, τ)B(τ)∆u(τ)dτ

=

∫ t1

t0

p⊤(τ)B(τ)∆u(τ)dτ,

where p(τ) = X⊤(t1, τ)z
∗ satisfies the adjoint equation

ṗ(t) = −A⊤(t)p(t), p(t1) = z∗.

Thus, we have

F ′∗(u(·))z∗ = B⊤(·) p(·) = û(·),

which implies that

û(t) = B⊤(t)p(t), t0 ≤ t ≤ t1.

Finally, we obtain a system of relations of the maximum principle for the boundary control û(t)
(see [10])

ẋ(t) = f1(t, x(t)) + f2(t, x(t))B(t)p(t), x(t0) = x0, (2.12)

ṗ(t) = −A⊤(t)p(t), p(t) 6= 0, û(t) = B(t)p(t), (2.13)

A(t) =
∂f1
∂x

(t, x(t)) +
∂

∂x
[f2(t, x(t))û(t)], B(t) = f2(t, x(t)).

Now suppose that the constraints have the form

γ(u(t)) ≤ µ, a.e. in [t0, t1],

where γ(u) is a convex function in R
r (for example, a norm in R

r). In this case, we can take
X = L∞ and

ϕ(u(·)) = ess sup
t0≤t≤t1

γ(u(t)).

Such a functional is obviously convex and continuous in the space X. Assume that there is ū ∈ R
r

such that γ(ū) < µ. As before, we believe that Y = R
n. Since ϕ(u(·)) is convex, we can substitute

∂Cϕ(û(·)) by a subdifferential of the convex function ∂ϕ(û(·)).

If F (û(·)) ∈ ∂G, then ϕ(û(·)) = µ and hence 0 /∈ ∂ϕ(û(·)). Thus,

F ′∗(û(·))z∗ ∈ ∂ϕ(û(·))

for some z∗ ∈ R
n, z∗ 6= 0. Here, the point F ′∗(û(·))z∗ belongs to the space L

∗
∞. Similar to the

previous case, it can be proven that F ′∗(û(·))z∗ = B⊤(·)p(·), where p(t) 6= 0 is a solution to the
adjoint system.

From the properties of ∂ϕ(û(·)), we get

ϕ(u(·)) − ϕ(û(·)) ≥ 〈F ′∗(û(·))z∗, u(·) − û(·)〉

for every u(·) ∈ L∞. From this inequality, for every u(·) such that ϕ(u(·)) ≤ µ, we have

0 ≥

∫ t1

t0

p⊤(τ)B(τ)(u(τ) − û(τ))dτ. (2.14)
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Choose a point τ ∈ (t0, t1) and a vector v ∈ R
r such that γ(v) ≤ µ, and sufficiently small ε > 0.

Let

u(t) =

{

û(t), t /∈ [τ, τ + ε],

v, t ∈ [τ, τ + ε].

Then, (2.14) implies the inequality

1

ε

∫ τ+ε

τ

p⊤(t)B(t)û(t)dt ≥
1

ε

∫ τ+ε

τ

p⊤(t)B(t)vdt.

Passing here to the limit, we get

p⊤(τ)B(τ)û(τ) ≥ p⊤(τ)B(τ)v

for almost every τ ∈ [t0, t1] and every v such that γ(v) ≤ µ. So, we have

p⊤(τ)B(τ)û(τ) = max
γ(v)≤µ

p⊤(τ)B(τ)v,

ṗ(τ) = −A(τ)p(τ), p(·) 6= 0.

Introducing the Hamiltonian

H(t, x, p, u) = p⊤(f1(t, x) + f2(t, x)u),

we can write the last relations in the standard form of the maximum principle:

H(τ, x(τ), p(τ), û(τ)) = max
γ(v)≤µ

H(τ, x(τ), p(τ), v), a.e. τ ∈ [t0, t1], (2.15)

ṗ(τ) = −A(τ)p(τ) = −
∂H

∂x
(τ, x(τ), p(τ), û(τ)), τ ∈ [t0, t1]. (2.16)

3. Multiple constraints on the control

In this section, we consider constraints specified by the inequalities

ϕi(u) ≤ µi, i = 1, . . . , k. (3.1)

Here, ϕi : X → R are functionals and µi, i = 1, . . . , k, are given positive numbers.
One can assume without loss of generality that µi = 1, i = 1, . . . , k. Then (3.1) can be replaced

by the single constraint ϕ(u) ≤ 1 by setting

ϕ(u) = m(ϕ1(u), . . . , ϕk(u)), m(x) = m(x1, . . . , xk) = max
1≤i≤k

xi.

Since m(x) is a continuous function, the functional ϕ(u) is obviously continuous at a point of
continuity of all functionals ϕi(u). Therefore, for describing the reachable set boundary, we can
use Theorem 2, which leads to the following statement.

Corollary 1. Let W be a neighborhood of the set U, and let F : W → Y be a mapping
continuously Fréchet differentiable at the point û ∈ U such that ImF ′(û) = Y . Assume that

G = {F (u) : ϕi(u) ≤ 1, i = 1, . . . , k},

where ϕi(u) are continuous at the point û. To x̂ = F (û) ∈ ∂G, it is necessary that û be a local
extremum in the problem

ϕ(u) = m(ϕ1(u), . . . , ϕk(u)) → min, F (u) = x̂,

and ϕ(û) = 1.
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The derivation of extremum conditions in this problem is more complicated than before because
the function m(x) is not differentiable. However, the superposition ϕ(u) = m(ϕ1(u), . . . , ϕk(u)) is
locally Lipschitz at the point û if such are the functions ϕi(u). Moreover, if each of the functions
ϕi(u) is either convex or continuously differentiable at the point û, then

∂Cϕ(û) = co
⋃

i∈I(û)

∂Cϕi(û), (3.2)

where I(û) = {i : ϕi(û) = ϕ(û)} and coA denotes a convex hull of A [3].

Let the conditions of Corollary 1 be satisfied. Let initially all functionals ϕi be continuously
differentiable at û. Then ∂Cϕi(û) = {ϕ′

i(û)} and, taking into account (3.2), we get

∂Cϕi(û) =
{

∑

i∈I(û)

αiϕ
′
i(û) :

∑

i∈I(û)

αi = 1, αi ≥ 0
}

=
{

∑

1≤i≤k

αiϕ
′
i(û) :

∑

1≤i≤k

αi = 1, αi ≥ 0, αi(ϕi(û)− 1) = 0, i = 1, . . . , k
}

.

Here, the condition 0 /∈ ∂Cϕi(û) takes the form

∑

1≤i≤k

αi = 1, αi ≥ 0, αi(ϕi(û)− 1) = 0, i = 1, . . . , k ⇒
∑

1≤i≤k

αiϕ
′

i(û) = 0.

In particular, it is satisfied if the vectors ϕi(û) form a positive linear independent set. If this
condition is met, we can write down the necessary condition for the inclusion F (û) ∈ ∂G as follows:

F ′∗(û)z∗ =
∑

1≤i≤k

αiϕ
′
i(û),

∑

1≤i≤k

αi = 1, αi ≥ 0, αi(ϕi(û)− 1) = 0, i = 1, . . . , k.

Using the previous scheme, we can also write this condition in the form of Pontryagin’s maxi-
mum principle [16] (see also [11]).

Let us next consider a system with double control constraints. We will assume that one of
the constraints is specified by a convex differentiable functional ϕ1(u) and the second by a convex
functional ϕ2(u). An example of such a problem is system (2.1) with integral quadratic and
geometric constraints. If ϕ2(û) < ϕ1(û), then ∂Cϕ(û) = {ϕ′

1(û)}; if ϕ1(û) < ϕ2(û), then ∂Cϕ(û) =
{∂ϕ2(û)}; and, finally, if ϕ1(û) = ϕ2(û), then ∂Cϕ(û) = co({ϕ′

1(û)} ∪ ∂ϕ2(û)).

Lemma 1. Let a ∈ X, and let B ⊂ X be a convex set. Then

co({a} ∪B) = C :=
⋃

0≤λ≤1

(λa+ (1− λ)B).

P r o o f. Obviously, C ⊂ co({a} ∪B). To prove the lemma, it suffices to prove the convexity
of C. Let

c1 = λ1a+ (1− λ1)b1, c2 = λ2a+ (1− λ2)b2, b1, b2 ∈ B.

Let us choose α, β ≥ 0, α+ β = 1, and show that

c3 = αc1 + βc2 ∈ λ3a+ (1− λ3)B

for some λ3 ∈ [0, 1]. To this end, we try to find numbers α1, β1 ≥ 0, α1 + β1 = 1, such that

αc1 + βc2 = α(λ1a+ (1− λ1)b1) + β(λ2a+ (1− λ2)b2) = λ3a+ (1− λ3)(α1b1 + β1b2).
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Equating the coefficients at the vectors a, b1, and b2 on both sides of the equality, we obtain

λ3 = αλ1 + βλ2, α(1 − λ1) = α1(1− λ3), β(1− λ2) = β1(1− λ3).

This implies the inequality 0 ≤ λ3 ≤ 1. For 0 ≤ λ3 < 1, we have

α1 =
α(1− λ1)

1− λ3
, β1 =

β(1 − λ2)

1− λ3
;

so, α1, β1 ≥ 0 and α1 + β1 = 1. If λ3 = 1, then either αλ1 = 1 or βλ2 = 1. In both of these cases,
we get c3 = a. This completes the proof. �

Let us further assume that Slater’s condition is satisfied: there exists ū such that ϕi(ū) < 1,
i = 1, 2. Then the condition 0 /∈ ∂Cϕ(û) is satisfied. Indeed, suppose on the contrary that
0 ∈ ∂Cϕ(û). Then, it follows from Lemma 1 that there is λ ∈ [0, 1] such that

0 ∈ λϕ′
1(û) + (1− λ)∂ϕ2(û) = ∂(λϕ1 + (1− λ)ϕ2)(û).

For the convex function λϕ1 + (1 − λ)ϕ2, the last condition is necessary and sufficient for the
minimum at û. Thus,

(λϕ1 + (1− λ)ϕ2)(û) ≤ (λϕ1 + (1− λ)ϕ2)(ū),

which contradicts Slater’s condition.
Let further X = L∞ and

ϕ1(u(·)) = c/2〈u(·), u(·)〉 = c/2

∫ t1

t0

u⊤(t)u(t)dt, ϕ2(u(·)) = ess sup
t0≤t≤t1

γ(u(t)). (3.3)

The constant c > 0 is chosen here such that to write down the constraints in the form ϕi(u(·)) ≤ 1,
i = 1, 2. Since ϕ′

1(u(·)) = cu(·), the optimality conditions F ′∗(û(·))z∗ ∈ ∂ϕ(û(·)) take the form

F ′∗(û(·))z∗ − λcû(·) ∈ (1− λ)∂ϕ2(û(·))

for some λ ∈ [0, 1].
For λ = 0, we get a maximum principle of the form (2.15), (2.16).
For λ = 1, we get (2.12), (2.13).
Finally, for 0 < λ < 1, we get

F ′∗(û(·))w∗ − σcû(·) ∈ ∂ϕ2(û(·)),

where w∗ = z∗/(1− λ) and σ = λ/(1 − λ). Introducing the Hamiltonian

H(t, x, p, σ, u) = −σcu+ p⊤(f1(t, x) + f2(t, x)u),

we can write these relations in the form of maximum principle:

H(τ, x(τ), p(τ), σ, û(τ)) = max
γ(v)≤µ

H(τ, x(τ), p(τ), σ, v), a.e. τ ∈ [t0, t1],

ṗ(τ) = −A(τ)p(τ) = −
∂H

∂x
(τ, x(τ), p(τ), σ, û(τ)), τ ∈ [t0, t1].

Thus, we arrive at the following statement.

Corollary 2. Let functionals ϕi(u(·)) : L∞ → R, i = 1, 2, be given by equalities (3.3), and let
F (u(·)) = x(t1), where x(t) is a solution to system (2.1). Let

G =
{

F (u(·)) : ϕi(u(·)) ≤ 1, i = 1, 2
}

.

If F (û(·)) ∈ ∂G and system (2.1) linearized around û(·) is controllable, then there exist a function
p(·) 6= 0 and a number σ ≥ 0 such that the relations of maximum principle are satisfied.
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4. Conclusion

The paper proposes a unified scheme for studying extremal properties of the reachable set
boundary. Within the framework of this approach, the reachable set is treated as the image of the
set of admissible controls under a nonlinear mapping of a Banach space. The proposed scheme is
based on the results of nonlinear and nonsmooth analysis and is equally applicable to systems with
integral and geometric control constraints, including multiple constraints.

REFERENCES

1. Ananyev B. I., Gusev M. I., Filippova T. F. Upravlenie i ocenivanie sostoyanij dinamicheskikh sistem s
neopredelennost’yu [Control and Estimation of Dynamical Systems States with Uncertainty]. Novosi-
birsk: Izdatel’stvo SO RAN, 2018. 193 p. (in Russian)

2. Baier R., Gerdts M., Xausa I. Approximation of reachable sets using optimal control algorithms. Numer.
Algebra Control Optim., 2013. Vol. 3, No. 3. P. 519–548. DOI: 10.3934/naco.2013.3.519

3. Clarke F.H. Optimization and Nonsmooth Analysis. New York: J. Willey and Sons Inc., 1983. 308 p.

4. Dmitruk A.V., Milyutin A. A., Osmolovskii N. P. Lyusternik’s theorem and the theory of extrema.
Russian Math. Surveys, 1980. Vol. 35, No. 6. P. 11–51. DOI: 10.1070/RM1980v035n06ABEH001973

5. Gornov A.Yu., Finkel’shtein E.A. Algorithm for piecewise-linear approximation of the reachable set
boundary. Autom. Remote Control, 2015. Vol. 76, No. 3. P. 385–393. DOI: 10.1134/S0005117915030030

6. Guseinov Kh.G. Approximation of the attainable sets of the nonlinear control systems with integral
constraint on controls. Nonlinear Anal. Theory, Methods Appl., 2009. Vol. 71, No. 1–2. P. 622–645.
DOI: 10.1016/j.na.2008.10.097

7. Guseinov K.G., Ozer O., Akyar E., Ushakov V.N. The approximation of reachable sets of control systems
with integral constraint on controls. Nonlinear Differ. Equ. Appl., 2007. Vol. 14, No. 1–2. P. 57–73.
DOI: 10.1007/s00030-006-4036-6

8. Gusev M. I. On reachability analysis of nonlinear systems with joint integral constraints. In: Lec-
ture Notes in Comput. Sci., vol. 10665: Large-Scale Scientific Computing (LSSC 2017). Lirkov I.,
Margenov S. (eds.). Cham: Springer, 2018. P. 219–227. DOI: 10.1007/978-3-319-73441-5 23

9. Gusev M. I. Computing the reachable set boundary for an abstract control problem. AIP Conf. Proc.,
2018. Vol. 2025, No. 1. Art. no. 040009. DOI: 10.1063/1.5064893

10. Gusev M. I., Zykov I.V. On extremal properties of the boundary points of reachable sets for con-
trol systems with integral constraints. Proc. Steklov Inst. Math., 2018. Vol. 300, Suppl. 1. P. 114–125.
DOI: 10.1134/S0081543818020116

11. Gusev M. I., Zykov I. V. On the geometry of reachable sets for control systems with
isoperimetric constraints. Proc. Steklov Inst. Math., 2019. Vol. 304, Suppl. 1. P. S76–S87.
DOI: 10.1134/S0081543819020093

12. Kurzhanski A.B., Varaiya P. Dynamics and Control of Trajectory Tubes. Theory and Computation.
Systems Control Found. Appl., vol. 85. Basel: Birkhäuser, 2014. 445 p. DOI: 10.1007/978-3-319-10277-1
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Abstract: In this paper, we consider the following L-difference equation

Φ(x)LPn+1(x) = (ξnx+ ϑn)Pn+1(x) + λnPn(x), n ≥ 0,

where Φ is a monic polynomial (even), deg Φ ≤ 2, ξn, ϑn, λn, n ≥ 0, are complex numbers and L is either
the Dunkl operator Tµ or the the q-Dunkl operator T(θ,q). We show that if L = Tµ, then the only symmetric
orthogonal polynomials satisfying the previous equation are, up a dilation, the generalized Hermite polynomials
and the generalized Gegenbauer polynomials and if L = T(θ,q), then the q2-analogue of generalized Hermite

and the q2-analogue of generalized Gegenbauer polynomials are, up a dilation, the only orthogonal polynomials
sequences satisfying the L-difference equation.
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1. Introduction

The classical orthogonal polynomials (Hermite, Laguerre, Bessel, and Jacobi) have a lot of use-
ful characterizations: they satisfy a Hahn’s property, that the sequence of their monic derivatives
is again orthogonal (see [1, 8, 14, 16]), they are characterized as the polynomial eigenfunctions of
a second order homogeneous linear differential (or difference) hypergeometric operator with poly-
nomial coefficients [4, 15, 16], their corresponding linear functionals satisfy a distribution equation
of Pearson type (see [11, 13, 15]).

Another characterization was established by Al-Salam and Chihara in [1], in particular they
showed that the sequences Hermite, Laguerre and Jacobi are the only monic orthogonal polynomial
sequences {Pn}n≥0 that satisfy an equation of the form:

π(x)P ′
n+1(x) = (anx+ bn)Pn+1 + cnPn(x), n ≥ 0, (1.1)

where π is a monic polynomial, deg π ≤ 2.
Recently, Datta and J. Griffin [9] studied the q-analogue of (1.1). More precisely they studied

a q-difference equation of the form:

π(x)DqPn+1(x) = (anx+ bn)Pn+1 + cnPn(x), n ≥ 0, (1.2)

where π is a monic polynomial, deg π ≤ 2 and Dq is the Hahn operator defined by

Dqf(x) = (f(qx)− f(x))/(q − 1)x, f ∈ P.

In particular they showed that the only orthogonal polynomials satisfying (1.2) are the Al-Salam-
Carlitz I, the little and big q-Laguerre, the little and big q-Jacobi and the q-Bessel polynomials.
The aim of this paper is to study the equation of the form:

Φ(x)LPn+1(x) = (ξnx+ ϑn)Pn+1(x) + λnPn(x), n ≥ 0, (1.3)
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where Φ is a monic polynomial (even), deg Φ ≤ 2 and L ∈ {Tµ, T(θ,q)}.
This paper is organized as follows. In Section 2, we introduce the basic background and some

preliminary results that will be used in what follows. In Section 3, we show that the only symmetric
orthogonal polynomials satisfying (1.3), are, up a dilation, the generalized Hermite polynomials
and the generalized Gegenbauer polynomials if L = Tµ and the q2-analogue of generalized Hermite
polynomials and the q2-analogue of generalized Gegenbauer polynomials if L = T(θ,q).

2. Preliminaries and notations

Let P be the vector space of polynomials with coefficients in C and let P ′ be its dual. We
denote by 〈u, f〉 the action of u ∈ P ′ on f ∈ P. In particular, we denote by (u)n = 〈u, xn〉 , n ≥ 0,
the moments of u. For any form u, any polynomial f and any a ∈ C \ {0}, let fu and hau, be the
forms defined by duality:

〈fu, p〉 = 〈u, fp〉 , 〈hau, p〉 = 〈u, hap〉 , p ∈ P,

where hap(x) = p(ax).
Let {Pn}n≥0 be a sequence of monic polynomials (MPS, in short) with degPn = n, n ≥ 0. The

dual sequence associated with {Pn}n≥0 is the sequence {un}n≥0, un ∈ P ′ such that 〈un, Pm〉 = δn,m,
n, m ≥ 0, where δn,m is the Kronecker symbol [14].

The linear functional u is called regular if there exists a MPS {Pn}n≥0 such that (see [8, p. 7]):

〈u, PmPn〉 = rnδn,m, n, m ≥ 0, rn 6= 0, n ≥ 0.

Then the sequence {Pn}n≥0 is said to be orthogonal with respect to u. In this case, we have

un =
(
〈u0, P

2
n〉
)−1

Pnu0, n ≥ 0.

Moreover, u = λu0, where (u)0 = λ 6= 0 [17].
In what follows all regular linear functionals u will be taken normalized i.e., (u)0 = 1. Therefore,

u = u0.
A polynomial set {Pn}n≥0 is called symmetric if

Pn(−x) = (−1)nPn(x), n ≥ 0.

According to Favard’s theorem [8], a sequence of monic orthogonal polynomials {Pn(x)}n≥0 (MOPS,
in short) satisfies a three-term recurrence relation

{
P0(x) = 1, P1(x) = x,
Pn+2(x) = (x− βn+1)Pn+1(x)− γn+1Pn(x), n ≥ 0, γn+1 6= 0, n ≥ 0.

(2.1)

with

βn =
〈u0, xP

2
n〉

〈u0, P 2
n〉

, γn+1 =
〈u0, P

2
n+1〉

〈u0, P 2
n〉

, n ≥ 0.

A dilatation preserves the property of orthogonality. Indeed, the sequence {P̃n(x)}n≥0 defined by

P̃n(x) = a−nPn(ax), n ≥ 0, a ∈ C \ {0},

satisfies the recurrence relation [16]

{
P̃0(x) = 1, P̃1(x) = x− β̃0,

P̃n+2(x) = (x− β̃n+1)P̃n+1(x)− γ̃n+1P̃n(x), n ≥ 0,
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where

β̃n =
βn
a
, γ̃n+1 =

γn+1

a2
, n ≥ 0. (2.2)

Moreover, if {Pn}n≥0 is a MOPS with respect to the regular form u0, then {P̃n}n≥0 is a MOPS
with respect to the regular form ũ0 = ha−1u0.

Theorem 1 [8]. Let {Pn}n≥0 be a MOPS satisfying (2.1) and orthogonal with respect to a
linear functional u. The following statements are equivalent :

(i) the sequence {Pn}n≥0 is symmetric;
(ii) (u)2n+1 = 0, n ≥ 0;
(iii) βn = 0, n ≥ 0.

Next, we introduce the Dunkl operator Tµ defined on P by [10, 18]

(Tµf)(x) = f ′(x) + µH−1f(x), µ > −
1

2
, f ∈ P,

where

(H−1f)(x) =
f(x)− f(−x)

2x
.

For the Dunkl operator, we have the property [6]

Tµ(fg)(x) = (Tµf)(x)g(x) + f(x)(Tµg)(x) − 4µx(H−1f)(x)(H−1g)(x), f, g ∈ P.

In particular,

Tµ(xPn+1) =
(
1 + 2µ(−1)n+1

)
Pn+1(x) + x(TµPn+1)(x), n ≥ 0. (2.3)

We define the operator Tµ from P ′ to P ′ as follows:

〈Tµu, f〉 = −〈u, Tµf〉, f ∈ P, u ∈ P ′.

In particular,
(Tµu)n = −µn(u)n−1, n ≥ 0,

with the convention (u)−1 = 0, where

µn = n+ µ(1− (−1)n), n ≥ 0.

We introduce also the q-Dunkl operator T(θ,q) defined on P by [2, 5, 7]

(T(θ,q)f)(x) =
f(qx)− f(x)

(q − 1)x
+ θH−1f(x), f ∈ P, θ ∈ C.

Remark 1. Note that when q → 1, we again meet the Dunkl operator.

From the last definition, it is easy to prove that

T(θ,q)(fg) = (T(θ,q)f)g + (hqf)(T(θ,q)g) + θ(h−1f − hqf)H−1g, f, g ∈ P.

In particular,

Tµ(xPn+1) =

(
1 + θ − θ(q + 1)

1 − (−1)n+1

2

)
Pn+1(x) + qx(T(θ,q)Pn+1)(x), n ≥ 0. (2.4)
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We define the operator T(θ,q) from P ′ to P ′ as follows:

〈T(θ,q)u, f〉 = −〈u, T(θ,q)f〉, f ∈ P, u ∈ P ′.

In particular,
(T(θ,q))n = −θn,q(u)n−1, n ≥ 0,

where (u)−1 = 0 and

θn,q = [n]q + θ
1− (−1)n

2
, n ≥ 0, (2.5)

here [n]q, n ≥ 0, denotes the basic q-number defined by

[n]q =
1− qn

1− q
= 1 + q + ...+ qn−1, n ≥ 1, [0]q = 0.

According to the definitions of Tµ and T(θ,q), we have

Tµ(x
n) = µnx

n−1, T(θ,q)(x
n) = θn,qx

n−1.

3. The main results

In this section, we will look for all symmetric MOPS satisfying (1.3). We distinguish two cases.
The first case is when L = Tµ and the second one is when L = T(θ,q).

3.1. First case: when L = Tµ

Theorem 2. The only symmetric MOPS satisfying a Tµ-difference equation of the form

Φ(x)TµPn+1(x) = (ξnx+ ϑn)Pn+1(x) + λnPn(x), n ≥ 0, (3.1)

where Φ is a monic polynomial (even), degΦ ≤ 2, are, up a dilation, the generalized Hermite
polynomials and the generalized Gegenbauer polynomials.

P r o o f. Let {Pn}n≥0 be a symmetric MOPS satisfying (3.1). Since Φ is a monic, even and
degΦ ≤ 2, then we distinguish two cases: Φ(x) = 1 and Φ(x) = x2 + c.

Case 1. Φ(x) = 1, then (3.1) becomes

TµPn+1(x) = (ξnx+ ϑn)Pn+1(x) + λnPn(x), n ≥ 0.

By comparing the degrees in the last equation (in xn+2 and xn+1), we obtain ξn = ϑn = 0, n ≥ 0
and then

TµPn+1(x) = λnPn(x), n ≥ 0. (3.2)

Identifying coefficients in the monomials of degree n in the last equation, we obtain

λn = µn+1, n ≥ 0. (3.3)

On the other hand, applying the operator Tµ to (2.1) with βn+1 = 0 and using (2.3), we get

TµPn+2(x) =
(
1 + 2µ(−1)n+1

)
Pn+1(x) + x(TµPn+1)(x)− γn+1(TµPn)(x), n ≥ 0.

Substituting (3.2) and (3.3) in the last equation and taking into account the fact that

1 + 2µ(−1)n+1 = µn+2 − µn+1,
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we get
µn+1Pn+1(x) = µn+1xPn(x)− µnγn+1Pn−1(x), n ≥ 0.

From (2.1), the last equation is equivalent to

µn+1γnPn−1(x) = µnγn+1Pn−1(x), n ≥ 0,

hence,
µn+1γn = µnγn+1, n ≥ 1.

Therefore,

γn+1 =
γ1
µ1

µn+1, n ≥ 1.

Since the last relation remains valid for n = 0, then we have

γn+1 =
γ1
µ1

µn+1, n ≥ 0.

Using (2.2), where a2 = 2γ1/µ1, we obtain

β̃n = 0, γ̃n+1 =
µn+1

2
, n ≥ 0.

So, we meet the recurrence coefficients for the generalized Hermite polynomial sequence (see [8]).

Case 2. Φ(x) = x2 + c, then (3.1) becomes

(x2 + c)TµPn+1(x) = (ξnx+ ϑn)Pn+1(x) + λnPn(x), n ≥ 0. (3.4)

Identifying the coefficients of higher degree in both sides of (3.4), we obtain ξn = µn+1, n ≥ 0.
Therefore, (3.4) becomes

(x2 + c)TµPn+1(x) = (µn+1x+ ϑn)Pn+1(x) + λnPn(x), n ≥ 0. (3.5)

Applying the operator Tµ to (2.1) with βn+1 = 0 and using (2.3) and the fact that

1 + 2µ(−1)n+1 = µn+2 − µn+1,

we get

TµPn+2(x) = (µn+2 − µn+1)Pn+1(x) + x(TµPn+1)(x) − γn+1(TµPn)(x), n ≥ 0.

Multiplying the previous equation by x2 + c and using (3.5), we get

(µn+2x+ ϑn+1)Pn+2(x) + λn+1Pn+1(x) = (µn+2 − µn+1)(x
2 + c)Pn+1(x)+

(µn+1x
2 + ϑnx)Pn+1(x) + λnxPn(x)− γn+1

(
(µnx+ ϑn−1)Pn(x) + λn−1Pn−1(x)

)
, n ≥ 1,

or, equivalently,

(ϑn+1 − ϑn)xPn+1(x)− c(µn+2 − µn+1)Pn+1 + λn+1Pn+1(x)

= λnxPn(x) + γn+1

(
(µn+2x+ ϑn+1)Pn(x)− (µnx+ ϑn−1)Pn(x)− λn−1Pn−1(x)

)
, n ≥ 1.

(3.6)

Comparing the degrees in the last equation, we obtain ϑn+1 = ϑn, n ≥ 1. But, from (3.5) and the
fact that {Pn}n≥0 is symmetric, where n = 0 and n = 1, we get, respectively,

v0 = 0, λ0 = c(1 + 2µ),

v1 = 0, λ1 = 2(γ1 + c).
(3.7)
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Thus,

ϑn = 0, n ≥ 0.

Therefore, (3.6) becomes

c(µn+1 − µn+2)Pn+1(x) + λn+1Pn+1(x)

= λnxPn(x) + γn+1

(
(µn+2 − µn)xPn(x)− λn−1Pn−1(x)

)
, n ≥ 1.

Taking into account (2.1), we get

(
λn+1 + c(µn+1 − µn+2)

)
xPn(x)− γn

(
λn+1 + c(µn+1 − µn+2)

)
Pn−1(x)

=
(
λn + (µn+2 − µn)γn+1

)
xPn(x)− λn−1γn+1Pn−1(x), n ≥ 1.

Then,

λn+1 + c(µn+1 − µn+2) = λn + (µn+2 − µn)γn+1, n ≥ 1, (3.8)

(
λn+1 + c(µn+1 − µn+2)

)
γn = λn−1γn+1, n ≥ 1. (3.9)

Since µn+2 − µn = 2, then, substitution of (3.8) in (3.9) gives

(λn + 2γn+1)γn = λn−1γn+1, n ≥ 1.

Therefore,
λn

γn+1
=

λn−1

γn
− 2, n ≥ 1.

So,

λn =
λ0 − 2nγ1

γ1
γn+1, n ≥ 1. (3.10)

It is clear that (3.10) remains valid for n = 0. Then, we have

λn =
λ0 − 2nγ1

γ1
γn+1, n ≥ 0. (3.11)

Substitution of (3.11) in (3.8) gives

λn+1 =
λ0 − 2(n − 1)γ1

λ0 − 2nγ1
λn + c(µn+2 − µn+1), n ≥ 1.

By virtue of fourth equality in (3.7), we obtain that the previous equation remains valid for n = 0.

Hence,

λn+1 =
λ0 − 2(n − 1)γ1

λ0 − 2nγ1
λn + c(µn+2 − µn+1), n ≥ 0. (3.12)

We will distinguish two situations: c = 0 and c 6= 0.

• If c = 0, then from (3.7) we have λ0 = 0. Therefore, λn = 0, n ≥ 0. Consequently, according
to (3.11) and the fourth equality in (3.7), γn+1 = 0, n ≥ 0. This contradicts the orthogonality
of {Pn}n≥0.

• If c 6= 0, using a dilatation, we can take c = −1. Putting

γ1 =
1 + 2µ

3 + 2µ+ 2α
,
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then (3.12) becomes

λn+1 =
2n+ 2α+ 2µ + 1

2n+ 2α+ 2µ + 3
λn + µn+1 − µn+2, n ≥ 0. (3.13)

From (3.13), we can easily prove by induction that

λn = −
µn+1(µn+1 + 2α)

2n+ 2α + 2µ+ 1
, n ≥ 0.

Thus, (3.11) gives

γn+1 =
µn+1(µn+1 + 2α)

(2n+ 2α + 2µ + 1)(2n + 2α+ 2µ + 3)
, n ≥ 0.

So, we meet the recurrence coefficients for the generalized Gegenbauer polynomial (see [3, 8]). �

Remark 2. Notice that when µ = 0 in (3.1), we again meet (1.1) for the symmetric case.

3.2. Second case: when L = T(θ,q)

Theorem 3. The only symmetric MOPS satisfying a T(θ,q)-difference equation of the form:

Φ(x)T(θ,q)Pn+1(x) = (ξnx+ ϑn)Pn+1(x) + λnPn(x), n ≥ 0, (3.14)

where Φ is a monic polynomial (even), degΦ ≤ 2, are, up a dilation, the q2-analogue of generalized
Hermite polynomials and the q2-analogue of generalized Gegenbauer polynomials.

P r o o f. Let {Pn}n≥0 be a symmetric MOPS satisfying (3.1). As in proof of Theorem 2, we
distinguish two cases: Φ(x) = 1 and Φ(x) = x2 + c.

Case 1. Φ(x) = 1, then (3.14) becomes

T(θ,q)Pn+1(x) = (ξnx+ ϑn)Pn+1(x) + λnPn(x), n ≥ 0. (3.15)

By comparing the degrees in (3.15), we obtain ξn = ϑn = 0, n ≥ 0. Then,

T(θ,q)Pn+1(x) = λnPn(x), n ≥ 0.

The comparison of the coefficients of xn in the previous equation leads to λn = θn+1,q, n ≥ 0.
Therefore,

T(θ,q)Pn+1(x) = θn+1,qPn(x), n ≥ 0. (3.16)

Now, applying T(θ,q) to (2.1) with βn+1 = 0 and using (2.4), we get

T(θ,q)Pn+2(x) =

(
1 + θ − θ(q + 1)

1 − (−1)n+1

2

)
Pn+1(x)

+q x(T(θ,q)Pn+1)(x)− γn+1(T(θ,q)Pn)(x), n ≥ 0.

Substituting (3.16) in the last equation, we get

θn+2,qPn+1(x) =

(
1 + θ − θ(q + 1)

1− (−1)n+1

2

)
Pn+1(x)

+qθn+1,q xPn(x)− γn+1θn,qPn−1(x), n ≥ 0.
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Using the fact that
xPn = Pn+1 + γnPn−1,

we obtain
(
θn+2,q − 1− θ + θ(q + 1)

1 − (−1)n+1

2
− qθn+1,q

)
Pn+1(x)

= qθn+1,qγnPn−1(x)− θn,qγn+1Pn−1(x), n ≥ 0.

After easy calculations from (2.5), we have

θn+2,q − 1− θ + θ(q + 1)
1 − (−1)n+1

2
− qθn+1,q = 0, n ≥ 0. (3.17)

Therefore,
(qθn+1,qγn − θn,qγn+1)Pn−1(x) = 0, n ≥ 0.

Hence,
qθn+1,qγn = θn,qγn+1, n ≥ 1.

Then, we can deduce by induction that

γn+1 =
γ1

1 + θ
qn θn+1,q, n ≥ 1.

Moreover, the previous identity remains valid for n = 0, thus

γn+1 =
γ1

1 + θ
qn θn+1,q, n ≥ 0.

Then, according to (2.2), with the choice

a2 = q(q + 1)
γ1

1 + θ

and putting

µ =
1 + θ

q(q + 1)
−

1

2
,

we obtain

β̃n = 0, γ̃n+1 = qn
θn+1,q

q(q + 1)
, n ≥ 0,

which are the recurrence coefficients for the q2-analogue of generalized Hermite polynomial

H
(µ,q2)
n [12], with

µ =
1 + θ

q(q + 1)
−

1

2
.

Case 2 : Φ(x) = x2 + c, then in this case (3.14) becomes

(x2 + c)T(θ,q)Pn+1(x) = (ξnx+ ϑn)Pn+1(x) + λnPn(x), n ≥ 0. (3.18)

By comparing terms of higher degree in the previous equation, we obtain

ξn = θn+1,q, n ≥ 0.

Then, equation (3.18) becomes

(x2 + c)T(θ,q)Pn+1(x) = (θn+1,qx+ ϑn)Pn+1(x) + λnPn(x), n ≥ 0. (3.19)
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Applying the operator T(θ,q) to (2.1) with βn+1 = 0 and using (2.4), we get

T(θ,q)Pn+2(x) =

(
1 + θ − θ(q + 1)

1 − (−1)n+1

2

)
Pn+1(x)

+qx(T(θ,q)Pn+1)(x)− γn+1(T(θ,q)Pn)(x), n ≥ 0.

By (3.17), the last equation becomes

T(θ,q)Pn+2(x) = (θn+2,q − qθn+1,q)Pn+1(x)

+qx(T(θ,q)Pn+1)(x)− γn+1(T(θ,q)Pn)(x), n ≥ 0.

Multiplying the above equation by x2 + c and substituting (3.19) into the result, we get

(θn+2,qx+ ϑn+1)Pn+2(x) + λn+1Pn+1(x) = (θn+2,q − qθn+1,q)(x
2 + c)Pn+1(x)

+q(θn+1,qx
2 + ϑnx)Pn+1(x) + qλnxPn(x)− γn+1

(
(θn,qx+ ϑn−1)Pn(x) + λn−1Pn−1(x)

)
, n ≥ 1.

Substituting of (2.1) in the previous equation, we get

(ϑn+1 − qϑn)xPn+1(x) +
(
λn+1 − c(θn+2,q − qθn+1,q)

)
Pn+1(x) =

qλnxPn(x) + γn+1

(
((θn+2,q − θn,q)x+ ϑn+1 − ϑn−1)Pn(x)− λn−1Pn−1(x)

)
, n ≥ 1.

The comparison of the coefficients of xn+2 in the previous equation gives ϑn+1 = qϑn, n ≥ 1 and
putting n = 0 and n = 1 in (3.19), we get respectively

v0 = 0, λ0 = c(1 + θ),

v1 = 0, λ1 = (1 + q)(γ1 + c).
(3.20)

Hence, ϑn = 0, n ≥ 0.
Therefore, the last equation becomes

(
λn+1 − c(θn+2,q − qθn+1,q)

)
Pn+1(x)

= qλnxPn(x) + γn+1

(
(θn+2,q − θn,q)xPn(x)− λn−1Pn−1(x)

)
, n ≥ 1.

Using the fact that Pn+1 = xPn(x)− γnPn−1, the above equation is equivalent to

(
λn+1 − c(θn+2,q − qθn+1,q)

)
xPn(x)− γn

(
λn+1 − c(θn+2,q − qθn+1,q)

)
Pn−1(x)

=
(
qλn + (θn+2,q − θn,q)γn+1

)
xPn(x)− λn−1γn+1Pn−1(x), n ≥ 1.

Then, we deduce

λn+1 − c(θn+2,q − qθn+1,q) = qλn + (θn+2,q − θn,q)γn+1, n ≥ 1, (3.21)
(
λn+1 − c(θn+2,q − qθn+1,q)

)
γn = λn−1γn+1, n ≥ 1. (3.22)

Since
θn+2,q − θn,q = (1 + q)qn,

then the substitution of (3.21) in (3.22) gives

(qλn + (1 + q)qnγn+1)γn = λn−1γn+1, n ≥ 1,

therefore,

qλn =

(
λn−1

γn
− (1 + q)qn

)
γn+1, n ≥ 1.
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We can easily deduce by induction that

qnλn =

(
λ0

γ1
− q(q + 1)[n]q2

)
γn+1, n ≥ 1.

It is clear that the previous identity remains valid for n = 0. Then, we have

qnλn =

(
λ0

γ1
− q(q + 1)[n]q2

)
γn+1, n ≥ 0. (3.23)

Now, we will determine λn. By (3.23), we have

γn+1 = qn
γ1

λ0 − q(q + 1)γ1[n]q2
λn, n ≥ 0. (3.24)

Therefore, (3.21) becomes

λn+1 =
qλ0 − (q + 1)γ1([n]q2 − 1)

λ0 − q(q + 1)γ1[n]q2
λn + c(θn+2,q − qθn+1,q), n ≥ 1.

By virtue of (3.20), we obtain that the previous equation remains valid for n = 0.
Then,

λn+1 =
qλ0 − (q + 1)γ1([n]q2 − 1)

λ0 − q(q + 1)γ1[n]q2
λn + c(θn+2,q − qθn+1,q), n ≥ 0. (3.25)

We will distinguish two situations: c = 0 and c 6= 0.
• If c = 0, then from (3.20) λ0 = 0. Therefore, λn = 0, n ≥ 0. Consequently, according to

(3.24) and the fourth equality in (3.20), γn+1 = 0, n ≥ 0. This contradicts the orthogonality
of {Pn}n≥0.

• If c 6= 0, using a suitable dilatation, we can suppose that c = −1. Putting

γ1 =
1 + θ

1 + θ + q(q + 1)(α + 1)
. (3.26)

Equation (3.25) becomes

λn+1 = q
q(q + 1)(α + 1) + θ2n−1,q

q(q + 1)(α + 1) + θ2n+1,q
λn − (θn+2,q − qθn+1,q), n ≥ 0. (3.27)

Therefore, from (3.27), we can prove by induction that

λn = −
θn+1,q

(
q(q + 1)(α+ 1) + θn−1,q(1 + θ(1− q)(1− (−1)n)/2 )

)

q(q + 1)(α+ 1) + θ2n−1,q
, n ≥ 0. (3.28)

By virtue of (3.24), (3.26) and (3.28), we get

γn+1 = qn
θn+1,q

(
q(q + 1)(α + 1) + θn−1,q(1 + θ(1− q)(1 − (−1)n)/2)

)

(
q(q + 1)(α + 1) + θ2n−1,q

)(
q(q + 1)(α + 1) + θ2n+1,q

) , n ≥ 0.

So, we meet the recurrence coefficients for the q2-anlogue of generalized Gegenbauer polynomial

S
(α,β,q2)
n , with

β =
1 + θ

q(q + 1)
− 1

(see [12]). �

Remark 3. Notice that when q → 1, we recover the result in Theorem 2 and when θ = 0
in (3.14), we again meet (1.2) for symmetric case.
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4. Conclusion

To conclude this paper, we will present two tables in which we give the only symmetric MOPS
verifying the L-difference (1.3).

Polynomial Φ ξn ϑn λn

Generalized Hermite H
(µ,q2)
n 1 0 0 µn+1, n ≥ 0

Generalized Gegenbauer S
(α,β,q2)
n x2 − 1 µn+1 0 −

µn+1(µn+1 + 2α)

2n+ 2α + 2µ + 1
, n ≥ 0

Table 1: Case when L = Tµ

Polynomial Φ ξn ϑn λn

q2-analogue of generalized
1 0 0 θn+1,q, n ≥ 0

Hermite H
(µ,q2)
n

q2-analogue of generalized x2 − 1 θn+1,q 0 −
θn+1,q

(
q(q+1)(α+1)+θn−1,q (1+θ(1−q)(1−(−1)n)/2)

)

q(q+1)(α+1)+θ2n−1,q
,

Gegenbauer S
(α,β,q2)
n n ≥ 0.

Table 2: Case when L = T(θ,q)

Remark 4. In this paper, we have studied only the symmetric case. The question for non-
symmetric case remains open.
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Abstract: We consider the control problem for a parabolic system that describes the heating of a given
number of rods. Control is carried out through heat sources that are located at the ends of the rods (only at
one end or at both). The density functions of the internal heat sources and exact values of the temperature
at the right ends of some rods are unknown, and only the segments of their change are given. The goal of
choosing control is to ensure that at a fixed time moment the weighted sum of the average temperatures of the
rods belongs to a non-convex terminal set for any admissible unknown functions. After a change of variables,
this problem reduces to a one-dimensional differential game. Necessary and sufficient conditions for the game
termination are found.

Keywords: Control, Uncertainty, Parabolic system.

1. Introduction

Mathematical modelling of controlled processes of thermal conductivity, diffusion, filtration
leads to problems of control of parabolic equations [2, 4, 8, 11, 13]. In applications, problems often
arise about heating a rod at the ends of which there are controlled heat sources. In a formalized
form, these problems are reduced to the study of the heat equation, the boundary conditions of
which depend on the control functions (see, for example, [1, 10]).

Control processes for real dynamic systems often occur in conditions where some of the system
parameters and boundary conditions are not precisely specified, and there is also influence from
uncontrolled disturbances [3, 5, 18, 19].

To study such problems, the method of optimization of guaranteed result [9] can be applied.
This method is based on the theory of differential games (see, for example, [12, 14]). Uncertainties
and disturbances affecting the system are taken as the second player – the opponent. In [12, 14]
control is constructed within the framework of the theory of positional differential games.

This article continues the research begun in [6, 15]. The work [15] considers the problem of
heating a rod by controlling the rate of temperature change at its left end. The temperature at the
right end of the rod is determined by an unknown function limited in value. The density function of
the internal heat sources of the rod is not precisely known, and only the boundaries of its possible
values are given. The goal of the control is to bring the average temperature of the rod at a fixed
time moment to a given segment for any unknown temperature at the right end of the rod and for
any function of the density of internal heat sources. The average temperature value is calculated as
the integral of the product of temperature and a given function. In [6] the problem of controlling a

1The research was supported by a grant from the Russian Science Foundation no. 23-21-00539,
https://rscf.ru/project/23-21-00539/.

https://doi.org/10.15826/umj.2023.2.010
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parabolic system describing the heating of a given number of rods using point heat sources located
at the ends of the rods is considered. The goal of choosing a control is to ensure that at a fixed
time moment the modulus of the linear function, determined using the average temperatures of the
rods, does not exceed a given value.

In this work, a modification of problems [6, 15] is solved. A finite set of desired temperature
values is given. The goal of the control is to bring the weighted sum of the average temperatures
of the rods into the ε–neighbourhood of one of the desired values. After changing variables, taking
unknown functions as a control of the second player, the original problem is reduced to a single-
type one-dimensional differential game. For the resulting differential game, a solvability set and
corresponding player controls are constructed.

2. Problem statement

The heat equation

∂Ti(x, t)

∂t
=
∂2Ti(x, t)

∂x2
+ fi(x, t), 0 ≤ t ≤ p, 0 ≤ x ≤ 1, i = 1, n, (2.1)

describes the temperature distribution Ti(x, t) in i-th (i = 1, n) homogeneous rod of unit length as a
function of time t. At the initial time moment t = 0, the temperature distributions Ti(x, 0) = gi(x),
i = 1, n, are given, where gi(x) are continuous functions.

We assume that the controlled temperature Ti(0, t) at the left end of i–th rod varies according
to equation

dTi(0, t)

dt
= a

(1)
i (t) + a

(2)
i (t)G

(1)
i ξ(t). (2.2)

Here, a
(ζ)
i (t), i = 1, n, ζ = 1, 2, are continuous functions for 0 ≤ t ≤ p, and a

(2)
i (t) > 0. The

vector-function ξ(t) = (ξ1(t), ξ2(t), . . . , ξq(t))
∗ ∈ U , where U is compact in R

q, is a control. The
symbol ∗ denotes the transposition operation. The choice of the corresponding one-dimensional

controls ξι(t) for the left end of each rod is given by the matrix G(1) of n by q dimension. G
(1)
i

denotes the i–th row of the corresponding matrix.

The temperature value Ti(1, t) at the right end of the i-th rod is given as follows:

1. Determined by ξ control

dTi(1, t)

dt
= b

(1)
i (t) + b

(2)
i (t)G

(2)
i ξ(t), i = 1, k. (2.3)

Here, the functions b
(1)
i (t) and b

(2)
i (t), i = 1, k, are continuous for 0 ≤ t ≤ p, and b

(2)
i (t) > 0.

The choice of the corresponding one-dimensional controls ξι(t) for the right end of the rods

with indices i = 1, k is given by the matrix G(2) of k by q dimension. G
(2)
i denotes the i–th

row of the corresponding matrix.

2. The temperature values Ti(1, t), i = k + 1, l, which depend continuously on the time t ∈ [0, p],
are not exactly known, but the limits of their change are given

β
(1)
i (t) ≤ Ti(1, t) ≤ β

(2)
i (t), 0 ≤ t ≤ p. (2.4)

Here β
(ζ)
i (t), i = k + 1, l, ζ = 1, 2, are continuous functions for 0 ≤ t ≤ p.

3. Ti(1, t), i = l + 1, n, are known continuous functions.
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In addition, we know estimates of the continuous functions fi(x, t), which are the densities of
internal heat sources of the rods:

f
(1)
i (x, t) ≤ fi(x, t) ≤ f

(2)
i (x, t), 0 ≤ t ≤ p, 0 ≤ x ≤ 1, i = 1, n. (2.5)

Here functions f
(ζ)
i (x, t), i = 1, n, ζ = 1, 2, are continuous.

Assumption 1. Each function fi : [0, 1] × [0, p] → R, i = 1, n, is such that for any numbers

0 ≤ τ < ν and for any continuous functions ̺
(ζ)
i : [τ, ν] → R, ζ = 1, 2, µi : [0, 1] → R such that the

matching condition ̺
(1)
i (τ) = µi(0), ̺

(2)
i (τ) = µi(1) is satisfied, the first boundary value problem

∂Qi(x, t)

∂t
=
∂2Qi(x, t)

∂x2
+ fi(x, t), (2.6)

Qi(0, t) = ̺
(1)
i (t), Qi(1, t) = ̺

(2)
i (t), τ ≤ t ≤ ν; (2.7)

Qi(x, τ) = µi(x), 0 ≤ x ≤ 1 (2.8)

has a unique solution Qi(x, t) continuous for 0 ≤ x ≤ 1, τ ≤ t ≤ ν.

Let numbers αs, s = 1, r, and ε ≥ 0 be such that αs+1 − αs = ∆ > 0, s = 1, r − 1 and ∆ > 2ε,
and vector λ = (λ1, . . . , λn)

∗ ∈ R
n such that λi > 0, i = 1, n, be given. The goal of choosing control

ξ(t) in (2.2), (2.3) is to implement the inclusion

n∑

i=1

λi

∫ 1

0
Ti(x, p)σi(x)dx ∈ Z(ε) =

⋃

s=1,r

[αs − ε, αs + ε] (2.9)

for any continuous functions Ti(1, t) (2.4), i = k + 1, l, and for any continuous functions
fi(x, t) (2.5), i = 1, n, satisfying Assumption 1.

Here continuous functions σi : [0, 1] → R, i = 1, n are given and satisfy the conditions

σi(0) = σi(1) = 0. (2.10)

3. Problem formalization

Let us describe an admissible rule for choosing control ξ(t). It means that for each time moment
0 ≤ ν < p and for each admissible temperature distribution

T (x, ν) = (T1(x, ν), T2(x, ν), . . . , Tn(x, ν))

at this time moment, a measurable vector-function ξ(t) such that ξ : [ν, p] → U is choosing. We
will denote such a rule as

ξ(t) = N(t, T (·, ν)), t ∈ [ν, p]. (3.1)

Fix a partition ω : 0 = t0 < t1 < . . . < tj < tj+1 < . . . < tm+1 = p of the segment [0, p] with
diameter

d(ω) = max
0≤j≤m

(tj+1 − tj).

Let the temperature distribution T
(ω)

(x, tj), 0 ≤ x ≤ 1 be realized at time moment tj , j = 0,m.

Denote ξ
(j)

(t) = N(t, T
(ω)

(·, tj)), t ∈ [tj , p]. Let continuous functions (2.4) Ti(1, t) = ̺
(2)
i (t) for

tj ≤ t ≤ tj+1, i = k + 1, l, for which ̺
(2)
i (tj) = T

(ω)
i (1, tj), and continuous functions fi(x, t) (2.5),

i = 1, n, for tj ≤ t ≤ tj+1, 0 ≤ x ≤ 1, be realized.
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We denote by T
(ω)
i (x, t) for 0 ≤ x ≤ 1, tj ≤ t ≤ tj+1 the solution Qi(x, t) of the problem

(2.6)–(2.8) for τ = tj, ν = tj+1 and for the following initial and boundary conditions:

βi(x) = T
(ω)
i (x, tj), x ∈ [0, 1]; (3.2)

Qi(0, t) = T
(ω)
i (0, tj) +

∫ t

tj

(a
(1)
i (r) + a

(2)
i (r)G

(1)
i ξ

(j)
(r))dr, t ∈ [tj, tj+1]; (3.3)

Qi(1, t) = T
(ω)
i (1, tj) +

∫ t

tj

(b
(1)
i (r) + b

(2)
i (r)G

(2)
i ξ

(j)
(r))dr, i = 1, k, (3.4)

Qi(1, t) = Ti(1, t), i = k + 1, n, t ∈ [tj , tj+1]. (3.5)

Definition 1. We say that control of the form (3.1) guarantees the fulfilment of the stated

goal (2.9), if for any number γ ∈ (ε,∆/2) there exists a number δ > 0 such that for any parti-

tion ω with diameter d(ω) < δ, for any continuous functions fi(x, t) (2.5), i = 1, n, that satisfy

Assumption 1, and for any continuous functions Ti(1, t) (2.4), i = k + 1, l, the inclusion

n∑

i=1

λi

∫ 1

0
T
(ω)
i (x, p)σi(x)dx ∈ Z(γ) =

⋃

s=1,r

[αs − γ, αs + γ] (3.6)

holds.

Note that when inequality γ < ∆/2 is satisfied, segments [αs − γ, αs + γ], s = 1, r, do not
intersect.

4. Reduction to a one-dimensional problem

Let us denote by ψi(x, τ) for 0 ≤ x ≤ 1, 0 ≤ τ ≤ p solutions of the following first boundary
value problems

∂ψi(x, τ)

∂τ
=
∂2ψi(x, τ)

∂x2
, ψi(x, 0) = σi(x), ψi(0, τ) = ψi(1, τ) = 0, i = 1, n. (4.1)

Equality (2.6) implies that the matching conditions at the ends of the segment in problems (2.9)
are satisfied.

Using the conditions (2.4), it can be shown that [15]

{∫ 1

0
fi(x, t)ψi(x, p − t)dx : f

(1)
i (x, t) ≤ fi(x, t) ≤ f

(2)
i (x, t)

}
=

= {c
(1)
i (t) + c

(2)
i (t)si(t) : |si(t)| ≤ 1}, i = 1, n,

(4.2)

where

c
(1)
i (t) =

1

2

∫ 1

0
(f

(1)
i (x, t) + f

(2)
i (x, t))ψi(x, p − t)dx,

c
(2)
i (t) =

1

2

∫ 1

0
(f

(2)
i (x, t) − f

(1)
i (x, t))|ψi(x, p − t)|dx.

Note that the functions c
(1)
i (t) and c

(2)
i (t), i = 1, n, are continuous for 0 ≤ t ≤ p and c

(2)
i (t) ≥ 0.

The inequalities (2.4) imply

{Ti(1, t)} =

{
β
(1)
i (t) + β

(2)
i (t)

2
+
β
(2)
i (t)− β

(1)
i (t)

2
η̂i(t) : |η̂i(t)| ≤ 1

}
(4.3)



Control Problem for a Parabolic System with Uncertainties 125

for i = k + 1, l.
Introduce new variables

yi(t) =

∫ 1

0
Ti(x, t)ψi(x, p− t)dx+ Ti(0, t)

∫ p

t

∂ψi(0, p − r)

∂x
dr+

+

∫ p

t

(
a
(1)
i (τ)

∫ p

τ

∂ψi(0, p − r)

∂x
dr +c

(1)
i (τ)

)
dτ − θi(t), i = 1, n,

(4.4)

where

θi(t) = Ti(1, t)

∫ p

t

∂ψi(1, p − r)

∂x
dr +

∫ p

t

b
(1)
i (τ)

∫ p

τ

∂ψi(1, p − r)

∂x
drdτ, i = 1, k,

θi(t) =

∫ p

t

(
β
(1)
i (τ) + β

(2)
i (τ)

2

∂ψi(1, p − τ)

∂x

)
dτ, i = k + 1, l,

θi(t) =

∫ p

t

(
Ti(1, τ)

∂ψi(1, p − τ)

∂x

)
dτ, i = l + 1, n.

We fix a partition ω of the segment [0, p] and a control (3.1). Let us substitute the realized

functions T
(ω)
i (x, t), i = 1, n, into formula (4.4). Further, taking into account formulas (2.1),

(3.2)–(3.5) and (4.1)–(4.3), we obtain

ẏ
(ω)
i (t) =

(
a
(2)
i (t)

∫ p

t

∂ψi(0, p − r)

∂x
dr

)
G

(1)
i ξ

(j)
(t)−

−

(
b
(2)
i (t)

∫ p

t

∂ψi(1, p − r)

∂x
dr

)
G

(2)
i ξ

(j)
(t) + c

(2)
i (t)si(t), i = 1, k,

(4.5)

ẏ
(ω)
i (t) =

(
a
(2)
i (t)

∫ p

t

∂ψi(0, p − r)

∂x
dr

)
G

(1)
i ξ

(j)
(t)−

−

(
β
(2)
i (t)− β

(1)
i (t)

2

∂ψi(1, p − t)

∂x

)
η̂i(t) + c

(2)
i (t)si(t), i = k + 1, l,

(4.6)

ẏ
(ω)
i (t) =

(
a
(2)
i (t)

∫ p

t

∂ψi(0, p − r)

∂x
dr

)
G

(1)
i ξ

(j)
(t) + c

(2)
i (t)si(t), i = l + 1, n. (4.7)

Next, we rewrite (4.5)–(4.7) in the matrix form

ẏ
(ω)

(t) = −A(t)ξ
(j)

(t) +B(t)η(t), ξ
(j)

(t) ∈ U, η(t) ∈ Π(n). (4.8)

Here

y(ω)(t) =
(
y
(ω)
1 (t), y

(ω)
2 (t), . . . , y(ω)n (t)

)∗
;

Π(n) = {s = (s1, s2, . . . , sn)
∗ ∈ R

n : |si| ≤ 1, i = 1, n};

Ai(t) = −

(
a
(2)
i (t)

∫ p

t

∂ψi(0, p − r)

∂x
dr

)
G

(1)
i +

(
b
(2)
i (t)

∫ p

t

∂ψi(1, p − r)

∂x
dr

)
G

(2)
i

for i = 1, k,

Ai(t) = −

(
a
(2)
i (t)

∫ p

t

∂ψi(0, p − r)

∂x
dr

)
G

(1)
i , for i = k + 1, n;

B(t) = diag

{
c
(2)
1 (t), . . . , c

(2)
k (t), c

(2)
k+1(t) +

β
(2)
k+1(t)− β

(1)
k+1(t)

2

∣∣∣∂ψk+1(1, p − t)

∂x

∣∣∣,

. . . , c
(2)
l (t) +

β
(2)
l (t)− β

(1)
l (t)

2

∣∣∂ψl(1, p − t)

∂x

∣∣∣, c(2)l+1(t), . . . , c
(2)
n (t)

}
.
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Denote by 〈·, ·〉 the operation of the scalar product of two vectors. Define

a−(t) = min
ξ∈U

〈λ,A(t)ξ〉, a+(t) = max
ξ∈U

〈λ,A(t)ξ〉, b(t) = max
η∈Π(n)

〈λ,B(t)η〉.

Note that these functions are continuous.
Then the connectedness of the compact sets U , Π(n) and the symmetry of Π(n) imply

〈λ,A(t)ξ〉 =
1

2
(a+(t) + a−(t)) + a(t)u, |u| ≤ 1, a(t) =

1

2
(a+(t)− a−(t)) ≥ 0; (4.9)

〈λ,B(t)η〉 = b(t)v, |v| ≤ 1. (4.10)

We introduce a new one-dimensional variable

z = 〈λ, y〉. (4.11)

Taking into account (4.11), we obtain a polygonal line z(ω)(t), which satisfies the equality

z(ω)(p) =

n∑

i=1

λi

∫ 1

0
T
(ω)
i (x, p)σi(x)dx.

It follows that inclusion (2.9) takes the form

z(ω)(p) ∈ Z(γ). (4.12)

Differentiate z, taking into account formulas (4.8)–(4.10). Taking the uncertain function v as a
control of the second player, we obtain the following one-dimensional differential game

ż(ω)(t) = −a(t)u+ b(t)v, |u| ≤ 1, |v| ≤ 1, z(p) ∈ Z(ε). (4.13)

5. Termination conditions

Define function

g(t) =

∫ p

t

(a(r)− b(r))dr

for t ≤ p and denote

q1(ε) = inf
{
t < p : ε+ g(τ) < ∆− ε− g(τ) for all t < τ ≤ p

}
,

q2(ε) = inf
{
t < p : 0 ≤ ε+ g(τ) for all t < τ ≤ p

}
,

q3(ε) = inf
{
t < p : α1 − ε− g(τ) ≤ αr + ε+ g(τ) for all t < τ ≤ p

}
.

Let us define the set W (t, ε) for t ≤ p as follows:

W (t, ε) =





⋃
s=1,r

[αs − ε− g(t), αs + ε+ g(t)] for max (q1(ε), q2(ε)) ≤ t ≤ p,

[α1 − ε− g(t), αr + ε+ g(t)] for q3(ε) ≤ t < q1(ε), q2(ε) < q1(ε),

∅ for max (t, q1(ε)) < q2(ε) or t < q3(ε).

(5.1)

Here ∅ denotes the empty set.

Theorem 1. Let the initial temperature distributions Ti(x, 0) = gi(x) be such that the inclusion

z(0) ∈W (0, ε) (5.2)

holds. Then there exists a control ξ that guarantees the fulfillment of the stated goal (2.9) for any

unknown functions (2.4), (2.5).
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P r o o f. Case 1. Let max(q1(ε), q2(ε)) ≤ 0 ≤ p. Then, according to (5.1), inclusion (5.2)
implies conditions

−g(τ) ≤ ε for all 0 < τ ≤ p, z(0) ∈ [αs − ε− g(0), αs + ε+ g(0)] (5.3)

for some s ∈ 1, r.
Let’s make a change of variable z∗ = z − αs and rewrite (5.3) as follows

F (z∗(0)) ≤ ε, (5.4)

where

F (z) = max

(
|z| − g(0),− min

0≤τ≤p
g(τ)

)
.

Define ξ0(t) = N(t, T (·, τ)), t ∈ [τ, p] as the solution of problem

〈λ,A(t)ξ(t)〉sign z∗(t) → max
ξ(t)∈U

.

Here and henceforth sign 0 = 1.
Next, taking into account (4.9), we substitute the control ξ0(t) into (4.13) with z = z∗. We get

that
ż
(ω)
∗ (t) = −a(t)sign z∗(tj) + b(t)v(t), |v(t)| ≤ 1. (5.5)

Here v(t) satisfies the conditions: |v(t)| ≤ 1 if b(t) = 0, and

v(t) =
〈λ,B(t)η(t)〉

b(t)
for b(t) > 0.

Each measurable function v : [0, p] → [−1, 1] with z
(ω)
∗ (0) = z∗(0) defines a polygonal line

z
(ω)
∗ (t) satisfying equation (5.5). The family of these polygonal lines defined on the interval [0, p] is
uniformly bounded and equicontinuous [16, p. 46]. According to Arzel’s theorem [7, p. 104] from
any sequence of these polygonal lines we can select a subsequence uniformly converging on the
segment [0, p]. The limit function z∗(t) satisfies [16, Theorem 8.1] the inequality

|z∗(p)| ≤ F (z∗(0)). (5.6)

Fix a number γ ∈ (ε,∆/2). Let us show that there exists a number δ > 0 such that inclu-
sion (4.12) holds for any polygonal line z(ω)(t) with partition diameter d(ω) < δ.

Indeed, let us assume the opposite. Then there exists a sequence of polygonal lines z(ωk)(t)
with diameters d(ωk) → 0 such that z(ωk)(p) /∈ Z(γ) or what is the same

|z(ωk)(p)− αs| > γ

for all s ∈ 1, r. We can assume that the functions z(ωk)(t) converge on the segment [0, p] uniformly
to the function z(t) (otherwise we move on to a subsequence). Then

|z(p)− αs| ≥ γ

for all s ∈ 1, r. This inequality contradicts inequalities (5.4) and (5.6).

Case 2. Let q3(ε) ≤ 0 < q1(ε), q2(ε) < q1(ε). Then, according to (5.1), inclusion (5.2) implies
conditions

α1 − ε− g(τ) ≤ αr + ε+ g(τ) for all 0 < τ ≤ p, z(0) ∈
[
α1 − ε− g(0), αr + ε+ g(0)

]
. (5.7)
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Define ξ
0
(t) = N(t, T (·, τ)), t ∈ [τ, p] as the solution of problem

〈λ,A(t)ξ(t)〉sign(z(t)− 0.5(α1 + αr)) → max
ξ(t)∈U

.

Taking into account (4.9), we substitute the control ξ0(t) into (4.13)

Next, reasoning by analogy with case 1 of the proof and relying on the results of work [17], it
can be shown that when conditions (5.7) are satisfied, the limit function z(t) satisfies the inclusion

z(q1(ε)) ∈
[
α1 − ε− g(q1(ε)), αr + ε+ g(q1(ε))

]
.

According to the definition of q1(ε), equality

[
α1 − ε− g(q1(ε)), αr + ε+ g(q1(ε))

]
=

⋃

s=1,r

[
αs − ε− g(q1(ε)), αs + ε+ g(q1(ε))

]

holds, and, therefore,

z(q1(ε)) ∈
[
αs − ε− g(q1(ε)), αs + ε+ g(q1(ε))

]
(5.8)

holds for some s ∈ 1, r.

Since q2(ε) < q1(ε), then inequality −g(τ) ≤ ε holds for all q1(ε) < τ ≤ p. From here and from
(5.8) we fall into the condition of case 1.

�

Now we consider the case when function

η∗(t) = sign(z(ω)(tj)− 0.5(α1 + αr))(1, 1, . . . , 1)
∗

is realized in (4.8) for tj < t < tj+1.

Taking (4.10) into account, let us substitute this function η∗(t) into (4.13). We get that

ż(ω)(t) = −a(t)uj(t) + b(t) sign (z(ω)(tj)− 0.5(α1 + αr)), (5.9)

where

a(t)uj(t) = 〈λ,A(t)ξ
(j)

(t)〉.

Choosing arbitrary measurable functions ξ(j)(t) ∈ U and solving equation (5.9) with
z(ω)(0) = z(0), we obtain a family of polygonal lines z(ω)(t).

Theorem 2. Let at least one of the following inequalities be satisfied:

z(0) < α1 − γ − g(0), αr + γ + g(0) < z(0), 0 < q3(γ). (5.10)

Then there exists a number δ > 0 such that z(ω)(p) /∈ Z(γ) for any polygonal line z(ω)(t) (5.9) with
partition diameter d(ω) < δ.

P r o o f. Let’s assume the opposite. Let’s take a sequence of numbers δk → 0. Then there
exists a sequence of polygonal lines z(ωk)(t) with diameter d(ωk) < δk and z(ωk)(t) ∈ Z(γ). The
family of polygonal lines (5.9) with z(ω)(0) = z(0) satisfies the conditions of Arzela’s theorem.
Passing, if necessary, to a subsequence, we can assume that the sequence of polygonal lines z(ωk)(t)
converges to z(t) uniformly.
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Let’s make a change of variables

z̃ = z − 0.5(α1 + αr)

and rewrite conditions (5.10) in the following form:

|z̃(0)| > γ + g(0) + 0.5(αr − α1) or γ + 0.5(αr − α1) + min
0≤τ≤p

g(τ) < 0.

Hence,

0 ≤ γ < F (z̃(0)) − 0.5(αr − α1). (5.11)

On the other hand, the limit function satisfies the inequality |z̃(p)| ≥ F (z̃(0)) [16, Theorem 8.2].
From this and from (5.11) we obtain that

|z̃(ωk)(p)| > γ + 0.5(αr − α1)

for any sufficiently large number k. After a reverse change of variables, we obtain one of the
inequalities

z(ωk)(p) < α1 − γ or z(ωk)(p) > αr + γ.

Thus, we get a contradiction.

�

Next, consider the case when the function

η∗(t) = −sign
(
z(ω)(tj)− 0.5(αs + αs+1)

)
(1, 1, . . . , 1)∗

is realized in (4.8) for tj < t < tj+1. Here, number s ∈ 1, r − 1 can be calculated as the solution of
the minimization problem

min
s∈1,r−1

|z(0) − 0.5(αs + αs+1)|.

Taking (4.10) into account, let us substitute this function η∗(t) into (4.13). We obtain

ż(ω)(t) = −a(t)uj(t)− b(t) sign (z(ω)(tj)− 0.5(αs + αs+1)). (5.12)

Further, we define a family of polygonal lines z(ω)(t) for equation (5.12) by analogy with (5.9).

Theorem 3. Let the following inequalities be satisfied:

αs + γ + g(0) < z(0) < αs+1 − γ − g(0), q1(γ) < 0. (5.13)

Then there exists a number δ > 0 such that z(ω)(p) /∈ Z(γ) for any polygonal line z(ω)(t) (5.12)
with partition diameter d(ω) < δ.

P r o o f. Let’s assume the opposite. By analogy with the proof of Theorem 2, we construct a
sequence of polygonal lines z(ωk)(t) that converges to z(t) uniformly.

Let’s introduce the variable

ẑ = z − 0.5(αs + αs+1)

and write inequalities (5.13) as follows:

|ẑ(0)| < 0.5∆ − γ − g(0), 0 < 0.5∆ − γ − max
0≤τ≤p

g(τ).
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From here we obtain

G(ẑ(0)) = max

{
|ẑ(0)| −

∫ p

0
(b(r)− a(r))dr,− min

0≤τ≤p

∫ p

τ

(b(r)− a(r))dr

}
< 0.5∆ − γ (5.14)

On the other hand, applying [16, Theorem 8.1] from the point of view of the second player
(in variables ẑ the roles of the players change, and the second player becomes the pursuer), we
obtain that the limit function satisfies the inequality |ẑ(p)| ≤ G(ẑ(0)). From this and from (5.14)
we obtain that

|ẑ(ωk)(p)| < 0.5∆ − γ

for all sufficiently large numbers k. After a reverse change of variables, we obtain the inequalities

αs + γ < z(ωk)(p) < αs+1 − γ.

Thus, we get a contradiction. �

Remark 1. Let q3(γ) ≤ 0 < q1(γ) < q2(γ). Let’s substitute an arbitrary function v(t, z)
(|v(t, z)| ≤ 1) into (4.13) and, by analogy with the proof of Theorem 2, define z(t) as the uniform
limit of a sequence of polygonal lines. Then there exists a time moment t∗ ∈ (q1(γ), q2(γ)) such
that γ + g(τ) < 0 for all τ ∈ [t∗, q2(γ)). Then one of the following conditions is satisfied:

αs + γ + g(t∗) < z(t∗) < αs+1 − γ − g(t∗) for some s ∈ 1, r − 1;

z(t∗) < α1 − γ − g(t∗); αr + γ + g(t∗) < z(t∗).

From here we find ourselves in the conditions of Theorem 2 or 3 with the initial time moment t∗.

Corollary 1. Theorems 1, 2, 3 and Remark 1 imply that the set W (0, ε) determines the nec-

essary and sufficient termination conditions in the differential game (4.13).

6. Conclusion

This paper considers the problem of controlling a parabolic system that describes the heating
of a given number of rods, with a non-convex one-dimensional terminal set, which is defined as the
union of a finite number of disjoint segments of equal length. Necessary and sufficient conditions
have been found under which there exists a control (3.1) that guarantees the achievement of the
stated goal (2.9) for all continuous functions (2.4) and for all density functions of internal heat
sources (2.5) that satisfy the Assumption 1.

In the future, it is planned to consider a version of this problem with an arbitrary n-dimensional
non-convex terminal set. This will require the development of approximate algorithms for solving
differential games: constructing a solvability set and restoring the corresponding control ξ.
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Abstract: The paper is devoted to a new unidirectional mean value inequality for the Fréchet subdifferential
of a continuous function. This mean value inequality finds an intermediate point and localizes its value both
from above and from below; for this reason, the inequality is called two-sided. The inequality is considered for
a continuous function defined on a Fréchet smooth space. This class of Banach spaces includes the case of a
reflexive space and the case of a separable Asplund space. As some application of these inequalities, we give an
upper estimate for the Fréchet subdifferential of the upper limit of continuous functions defined on a reflexive
space.

Keywords: Smooth Banach space, Fréchet subdifferential, Unidirectional mean value inequality, Upper
limit of continuous functions.

1. Introduction

Consider the following mean value inequalities.

Proposition 1 [12, Theorems 2.1 and 2.2]. Let a scalar function f be defined and lower semi-

continuous on a Fréchet smooth Banach space X. Let points ǔ and v̌ in X be given. Then, for

arbitrary numbers š < f(v̌) − f(ǔ) and κ̌ > 0, there exist a point z− ∈ [ǔ; v̌] + κ̌B and a Fréchet

subgradient ζ− ∈ ∂̂f(z−) such that

š < ζ−(v̌ − ǔ) and f(z−) < f(ǔ) + max(0, š) + κ̌. (1.1)

Furthermore, if f is continuous, there are a point z+ ∈ [ǔ; v̌] + κ̌B and a Fréchet subgradient

ζ+ ∈ ∂̂f(z+) such that

š < ζ+(v̌ − ǔ) and f(z+) > f(v̌)−max(0, š)− κ̌. (1.2)

Note that inequalities (1.1) and (1.2) are similar. This suggests that, in the case of continuity of f ,
it is possible to get a common point z+ = z− such that the value f(z) is localized from both above
and below. Proving the corresponding two-sided unidirectional mean inequality is the primary goal
of this paper.

As part of the historical background, note that the existence of a pair (z−, ζ−) satisfying inequal-
ities like (1.1) has been widely studied (see, for example, [13, Subsect. 3.4.8] and [14, Sect. 4.4]).
Unlike different variants of Lagrange’s mean value theorem for certain classes of Lipschitz contin-
uous functions, they ensure an upper bound of f(v) − f(u) through some subgradient ζ. These
inequalities apply to any lower semicontinuous function. Furthermore, the corresponding to the

1This study was funded by the RFBR and DFG (project no. 21-51-12007).

https://doi.org/10.15826/umj.2023.2.011
mailto:khlopin@imm.uran.ru


On Two-Sided Inequality 133

Fréchet subdifferentials unidirectional mean value inequality is equivalent to the Asplund property
of a Banach space [14, 17], and therefore is equivalent to several basic principles of variational
analysis [1, 18], for example, to the inspired by [16] and [5] multidirectional mean value inequality
[4, Subsection 3.6.1]; for more recent references, see [10] and [8]. However, the multidirectional
mean value theorem as well as the previous unidirectional mean value inequality also localizes f(ẑ)
on one side only.

The rest of the paper is organized as follows. In Section 3, we will prove the desired two-
sided unidirectional mean value inequality for continuous functions. Then, applying this result,
in Section 4, we will show an upper estimate for the Fréchet subdifferential of the upper limit of
continuous functions. But first, we will recall several elementary definitions and notions.

2. Definitions and notation

We will use elementary notions from the set-valued and variational analyses [4, 13, 15].
For a nonempty set X of some real Banach space X, denote by clX and coX the closure and

the convex hull of X . For a point x ∈ X , the contingent (Bouligand tangent) cone to X at x is
the set T (x;X ) of all v ∈ X such that one finds a decreasing to 0 sequence of positive tn and a
converging to v sequence of vn ∈ X such that x+ tnvn ∈ X for all positive integers n. For a point
x ∈ X, we say that ζ ∈ X

∗ is a Fréchet normal to X at x if one has x ∈ X and

lim sup
n→∞

ζ(zn − x)

‖zn − x‖
= 0

for all converging to x sequences of zn ∈ X . Denote by N̂(x;X ) the set of all Fréchet normals to
X at x.

We call a Banach space X Fréchet smooth if this space has an equivalent norm that is C1-
smooth off the origin. Note that any reflexive Banach space and any separable Asplund space are
Fréchet smooth [4, Theorem 6.1.6]. It is worth mentioning that each Fréchet smooth space has a
C1-smooth Lipschitz function with bounded nonempty support [3, Ex. 4.3.9].

Denote by B and B∗ the unit closed balls in X and X
∗, respectively.

Given an extended-real-valued function g : X → R ∪ {−∞,∞}, define its lower semicontinuous
envelope lsc g by the rule:

lsc g(x)
△
= lim inf

κ↓0
inf

z∈x+κB
g(z) for all x ∈ X.

Note that this function is lower semicontinuous. In addition, a function g is lower semicontinuous
iff its epigraph

epi g
△
= {(x, a) ∈ X× R | a ≥ g(x)}

is closed. In the case of lower semicontinuous function g, define the Fréchet subdifferential of g at
x as

∂̂g(x)
△
= {ζ ∈ X

∗ | (ζ,−1) ∈ N̂(x, g(x); epi g)}

for a point x ∈ X with finite g(x); let also ∂̂g(x) = ∅ if |g(x)| = ∞.

3. Two-sided mean value inequality

Theorem 1. Let X be a Fréchet smooth space. Let a continuous function f : X → R and some

closed interval [u; v] in X be given. Then, for a real number s < f(v) − f(u) and positive ε, there
exist some point ẑ ∈ [u; v] + εB and Fréchet subgradient ζ̂ ∈ ∂̂f(ẑ) such that

s < ζ̂(v − u) and |f(ẑ)− f(u)| ≤ |s|+ ε. (3.1)
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P r o o f. Without loss of generality, we can assume that u = 0 and f(u) = 0. Now, the initial
inequality can be written as s < f(v).

Case s < 0. Let s be negative. Choose a positive number ε < min(|s|, f(v)−s). Define ε̄ = ε/4

and s̄
△
= s+3ε̄. Since s̄ < 0 = f(0) < |s̄| and s̄ < f(v), one finds a positive number t̂ < 1 such that

|s̄| > f(t̂v) > −t̂|s̄| > −|s̄| = s̄ (3.2)

because f is continuous on [0; v]. For the same reason, there is a positive κ < ε̄ such that

|f(z)− f(0)| < ε̄ for all z ∈ [0; v] ∩ κB. (3.3)

We claim that there exist some ẑ ∈ [0; t̂v] + κB and ζ̂ ∈ ∂̂f(ẑ) such that

s < −|s̄| < ζ̂v and |f(ẑ)| < |s̄|+ 2ε̄ < |s|. (3.4)

To this end, consider the continuous map

[0; t̂ ] ∋ τ 7→ h(τ) = f(τv)− τf(t̂v)/t̂.

Since h(t̂) = h(0) = 0 holds, due to the intermediate value theorem, there exists positive τ̂ ≤ t̂ that
satisfies the equality h(τ̂ ) = 0 and at least one of the following conditions:

(i) τ̂ < κ; (ii) h|[0,τ̂ ] is nonpositive; (iii) h|[0,τ̂ ] is nonnegative.

Now, the relations 0 < τ̂ ≤ t̂ < 1, h(τ̂ ) = 0, and (3.2) yield the inequality

−|s̄| ≤ −|s̄|τ̂
(3.2)
< τ̂f(t̂v)/t̂ = f(τ̂v)− f(0). (3.5)

Let us apply Proposition 1 to this inequality with

ǔ−
△
= 0, v̌+

△
= τ̂ v, š

△
= −|s̄|τ̂ , and κn

△
= κ/n

for all positive integers n. This gives some r−, r+ ∈ [0; τ̂ ], z−, z+ ∈ X, ζ− ∈ ∂̂f(z−), and ζ+ ∈ ∂̂f(z+)
such that

−|s̄|τ̂ < τ̂ζ−v, ‖r−v − z−‖ < κn, f(z−)− f(0) < κn,

−|s̄|τ̂ < τ̂ζ+v, ‖r+v − z+‖ < κn, f(z+)− f(τ̂v) > −κn.

Next, taking into account the inequalities τ̂ > 0 and f(0) + κn = κn < ε̄, we have

−|s̄| < ζ±v, z± = r±v + κnB ⊂ [0; v] + κB,

f(z−) < f(0) + κn < ε̄, and f(z+) > −κn + f(τ̂ v)
(3.5)
≥ −κn − |s̄| > −ε̄− |s̄|. (3.6)

Now, in the case of τ̂ < κ (condition (i)) and in the case of nonpositive h|[0;τ̂ ] (condition (ii)),

let us set ẑn
△
= z+, r̂n

△
= r+, and ζ̂n

△
= ζ+ for all positive integers n; and in the case of nonnegative

h|[0;τ̂ ] (condition (iii)), set ẑn
△
= z−, r̂n

△
= r−, and ζ̂n

△
= ζ− for all positive integers n. Then, in all

these cases and for all positive integers n, we have proved the first inequality in (3.4). So, it is
required to check only

|f(ẑn)| ≤ |s̄|+ 2ε̄

for at least one positive integer n.
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Note that all r̂nv lie in the compact set [0; τ̂ v]. Passing to a subsequence, we can assume that
this sequence converges. By ‖ẑn − r̂nv‖ → 0, the both sequences of ẑn and r̂nv has the common
limit. The sequences of f(ẑn) and f(r̂nv) are the same by the continuity of f ; in particular, one
finds a positive integer N such that

|f(ẑN )− f(r̂Nv)| < ε̄. (3.7)

So, it is required to check only the inequality

|f(r̂Nv)| < |s̄|+ ε̄.

Now, in the case of nonnegative h|[0;τ̂ ] (condition (iii)), by the choice of r̂N = r− and ẑN = z−,
we obtain

0 ≤ h(r−) = f(r−v)− r−f(t̂v)/t̂ ≤ f(r−v) + |f(t̂v)|

and

ε̄
(3.6)
> f(ẑN ) = f(z−)

(3.7)
≥ f(r−v)− ε̄ ≥ −|f(t̂v)| − ε̄

(3.2)
≥ −|s| − ε̄.

In the case h|[0;τ̂ ] ≤ 0 (condition (ii)), one has

0 ≥ h(r+) ≥ f(r+v)− |f(t̂v)|

and

−ε̄− |s̄|
(3.6)
< f(ẑN ) = f(z+)

(3.7)
≤ f(r+v) + ε̄ ≤ |f(t̂v)|+ ε̄

(3.2)
≤ |s̄|+ ε̄.

Finally, in the case τ̂ < κ (condition (i)), (3.3) and (3.7) yield

|f(r−v)| < 2ε̄ < |s̄|+ ε̄.

Inequalities (3.4) have been proved.

Case s ≥ 0. Assume that s is nonnegative. Recall that s < f(v). Choose a positive ε such that
s+ ε < f(v). Define

s̄
△
= s+ ε/2.

This entails
0 < s̄ < s+ ε < f(v),

and one can choose positive ε̄ such that

ε̄+ (1 + ε̄)3s̄ < s+ ε.

Consider the map f̄ : X× R → R defined as

f̄(x, r)
△
= f(x)− (1 + ε̄)rs̄ for all x ∈ X, r ∈ R.

Then, we have f̄(0, 0) = 0,

∂̂f̄(x, r) = ∂̂f(x)× {−(1 + ε̄)s̄},

f̄(v, 1) = f̄(v, 1) − f̄(0, 0) = f(v)− (1 + ε̄)s̄ > s̄− (1 + ε̄)s̄ = −ε̄s̄.

Since −ε̄s̄ < 0, we can apply the first case of our theorem to the inequality

−ε̄s̄ < f̄(v, 1) − f̄(0, 0).
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Then, there exist some number r ∈ [0; 1], point

z̄ = (ẑ, r̂) ∈ (rv, r) + ε̄B,

and subgradient
ζ̄ = (ζ̂,−(1 + ε̄)s̄) ∈ ∂̂f̄(ẑ, r̂)

that satisfy (3.4); i.e.,

−ε̄s̄ < ζ̂v − (1 + ε̄)s̄ and |f̄(ẑ, r̂)| ≤ ε̄|s̄|+ ε̄.

Now, the first inequality leads to s < s̄ < ζ̂v by s < s̄; on the other hand, the second inequality
entails

|f(ẑ)| =
∣

∣f̄(ẑ, r̂) + (1 + ε̄)r̂s̄
∣

∣ < ε̄s̄+ ε̄+ (1 + ε̄)|r̂|s̄ < ε̄s̄+ ε̄+ (1 + ε̄)2s̄ < (1 + ε̄)3s̄+ ε̄ < s+ ε

by |r̂| < |r|+ ε̄ ≤ 1 + ε̄ and the choice of ε̄.
The theorem is proved. �

Remark 1. As [12, Example 2.1] has shown, (1.2) can be violated if f : R → R is only lower
semicontinuous. Therefore, the assumption of the continuity of f is essential in this theorem as
well.

Remark 2. In the case of Lipschitz continuous function f , for its G-subdifferential, there exists
a variant of unidirectional mean value inequality that guaranties the inclusion z ∈ [u; v] instead
of z ∈ [u; v] + εB (see [9, Theorem 4.70]). However, this is not true for a Fréchet subdifferential.
Indeed, for the Lipschitz continuous function

R
2 ∋ (x, y) 7→ f(x, y)

△
= −|x|,

its Fréchet subdifferential is empty on the interval [(0, 0); (0, 1)]; in particular, no Fréchet subgra-
dient ζ satisfies (3.1).

Remark 3. It may mistakenly seem that Theorem 1 does not essentially use the asymmetry
of a Fréchet subdifferential and can be directly extended to the symmetric case. Indeed, Lebourg’s
mean value theorem [6, Theorem 2.4] for Clarke subdifferentials, the mean value theorem [2] for
MP-subdifferentials, and the symmetric subdifferential mean value theorem [13, Theorem 3.47],
[14, Theorem 4.11] give the corresponding gradient ζ of f at some ẑ ∈ [u; v] that satisfies the
symmetric bound

|f(v)− f(u)| =
∣

∣ζ̂(v − u)
∣

∣. (3.8)

This bound is exactly the limit of bounds

s+ < ζ̂(v − u) + ε and − s− < (−ζ̂)(v − u) + ε

as s+ ↑ f(v) − f(u), −s− ↑ (−f)(u) − (−f)(v), and ε ↓ 0. Similarly, passing to the limit in
|f(ẑ)− f(u)| < |s|+ ε, we could hope for the eatimate

|f(ẑ)− f(u)| ≤
∣

∣ζ̂(v − u)
∣

∣ (3.9)

together with (3.8). However, in the case

f(x)
△
= x(x− 2) and [u, v]

△
= [0, 2],

inequalities (3.8) and (3.9) should give f ′(ẑ) = ζ = 0 and |f(ẑ)| ≤ 0; i.e., 1 = ẑ ∈ {0, 2}. This
contradiction negates the hope of adding two-side estimate (3.9) to (3.8).
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4. Subdifferentials of the upper limit of continuous functions

Let a family of continuous functions fθ : X → R ∪ {−∞,∞}, θ ∈ [0;∞) be given. Define a
function fsup : X → R ∪ {−∞,∞} by the following rule:

fsup(x)
△
= lim sup

θ↑∞

fθ(x) for all x ∈ X. (4.1)

For every positive δ, denote by Zδ(x̌) the set of all ζ ∈ X
∗ for which there exists a pair

(θ, x) ∈ [0;∞) × X such that ζ ∈ ∂̂fθ(x),

θ > 1/δ, x ∈ x̌+ δB, and |fθ(x)− (lsc fsup)(x̌)| < δ. (4.2)

The following estimate of the subdifferential of the upper limit function is the enlargement of
[11, Lemma 6] on reflexive spaces as well as the refinement of [12, Theorem 6.1(a)] in the case of
continuous functions; its proof is similar to that of [12, Theorem 6.1(a)].

Proposition 2. Assume that X is a reflexive space, a family of scalar functions fθ, θ ∈ [0;+∞),
continuous on X is given, and fsup is defined by (4.1). For all x̌ ∈ X and ξ ∈ ∂̂ lsc fsup(x̌), for every
positive δ, there exist some N ∈ N, α1, α2, . . . , αN ∈ [0; 1], and ζ1, ζ2, . . . , ζN ∈ Zδ

(

x̌, lsc fsup(x̌)
)

such that α1 + · · · + αN = 1 and

ξ ∈

N
∑

k=1

αkζk + δB∗. (4.3)

P r o o f. The special case: x̌ = 0 is a local minimum of lsc fsup. Assume that x̌
△
= 0 and

ξ
△
= 0; furthermore, assume that

(lsc lim sup
θ↑∞

fθ)(0) = inf
x∈δ0B

lim sup
θ↑∞

fθ(x) = 0

for some positive δ0. Then 0 ∈ ∂̂fsup(0) = ∂̂ lsc fsup(0).
Note that fsup(z) = infT>0 E(T, z) for all z ∈ X; here E : [0;+∞) × X → R ∪ {−∞,+∞} is

defined as

E(T, x)
△
= sup

θ≥T

fθ(x) for all T > 0, x ∈ X.

Fix a vector v ∈ B and a positive number δ < min(δ0, 1/3). Define t = δ2. Since 0 is a local
minimum of lsc f , there exists a point ž ∈ tB such that

0 ≤ lsc fsup(ž) ≤ fsup(ž) < δ4.

Then,
‖ž + tv‖ < 2δ2 < δ < δ0 and fsup(ž + tv) ≥ lsc fsup(ž + tv) ≥ 0.

So,
fsup(ž + tv)− fsup(ž) > −δ4 = −δ2t.

Further, we can find positive numbers T̄ ≥ 1/δ and θ̂ > T̄ such that

δ2t > E(T̄ , ž)− fsup(ž) and δ2t+ f
θ̂
(ž + tv) > E(T̄ , ž + tv). (4.4)

By definition of E, we also have

0 ≤ E(T̄ , ž + tv)− fsup(ž + tv) and f
θ̂
(ž) ≤ E(T̄ , ž). (4.5)



138 Dmitry V. Khlopin

Subtracting the sum of inequalities (4.5) from the sum of inequalities (4.4), we have

2δ2t+ f
θ̂
(ž + tv)− f

θ̂
(ž) > fsup(ž + tv)− fsup(ž).

From fsup(ž + tv)− fsup(ž) > −δ2t and δ < 1/3, it follows that

f
θ̂
(ž + tv)− f

θ̂
(ž) > −δt.

Now, Theorem 1 for f = f
θ̂
with u = ž, v = ž + tv, s = −δt, and ε = δ(δ − t) gives a number

r ∈ [0, t], a point ẑ ∈ X, and a subgradient ζ̂ ∈ ∂̂f
θ̂
(ẑ) such that

−δt < tζ̂v, ‖ẑ− ž‖ < ‖ẑ− rv‖+ r ≤ t+ δ(δ− t) < 2δ2, and |f
θ̂
(ẑ)−f

θ̂
(ž)| < δt+ δ(δ− t) = δ2.

Then, by the choice of ž, we obtain

‖ẑ‖ ≤ ‖ž‖+ 2δ2 < 3δ2 < δ and |f
θ̂
(ẑ)| ≤ |f

θ̂
(ž)− f

θ̂
(u)|+ δ2 ≤ 2δ2 < δ.

So, we show (4.2) for (x̌, y̌) = (0, 0), (θ, x) = (θ̂, ẑ), therefore we obtain ζ̂ ∈ Zδ(0, 0). Hence, for
each v ∈ B, we have found ζ̂ ∈ Zδ(0, 0) such that ζ̂v > −δ. This entails

−δ < inf
v∈B

sup
ζ∈Zδ(0,0)

ζv ≤ inf
v∈B

sup
ζ∈cl coZδ(0,0)

ζv.

The set B is an weak compact subset of X
∗∗ = X and, together with cl coZδ(0, 0), is convex.

In addition, the map (ζ, v) 7→ ζv is continuous and linear in (ζ, v) ∈ X
∗ × X

∗∗. Therefore, the
nonsymmetrical Minimax Theorem [4, Theorem 3.6.14] ensures

−δ < inf
v∈B

sup
ζ∈cl coZδ(0,0)

ζv = sup
ζ∈cl coZδ(0,0)

inf
v∈B

ζv.

Since there exists ζ ∈ cl coZδ such that δ > −ζv for all v ∈ B, we obtain ‖ζ‖ ≤ δ. Therefore, (4.3)
holds in the special case. The special case of this lemma is proved.

The general case. Let a point x̌ ∈ X and a subgradient ξ ∈ ∂̂ lsc fsup(x̌) be given. Define
y̌ = lsc fsup(x̌). Choose a positive number δ < 1/3.

Since X is a Fréchet smooth space, by [7, Theorem 4.6 (i)], there exist a C1-smooth function g
and a positive number δ1 < δ2 such that

ξ = g′(x̌), lsc fsup(x̌) = g(x̌), and lsc fsup(x̌+ tv)− lsc fsup(x̌) ≥ g(x̌+ tv)− g(x̌)

if x ∈ x̌ + δ1B. Further, decreasing δ1 if necessary, we can also ensure ξ ∈ g′(x) + δ2B∗ and
g(x) ∈ g(x̌) + δ2B for all x ∈ x̌+ δ1B. So,

lsc(fsup − g)(0) ≤ (fsup − g)(x) for all x ∈ δ1B.

Using the special case for the maps

X ∋ x 7→ f̄θ(x) = fθ(x− x̌)− g(x− x̌),

and a positive number δ2, we find ζ ∈ cl co Z̄δ2(x̌, y̌) ∩ δ2B∗. Then, in the account of
the fuzzy sum rule, one finds a positive integer N , points x1, . . . , xN ∈ X, subgradients
ζ̄1 ∈ ∂̂fθ1(x̄1)− g′(x̄1), . . . , ζN ∈ ∂̂f̄θN (x̄N ) − g′(x̄N ), and convex coefficients αi ∈ [0, 1] such that
α1 + . . .+ αN = 1,

x̄i ∈ x̌+ 2δ2B, θi ≥ δ−2, |f̄θi(x̄i)− g(x̄i)− lsc fsup(x̌) + g(x̌)| ≤ 2δ2
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for all i and
N
∑

k=1

αkζk ∈ 2δ2B∗.

Define
ζ̄ ′i

△
= ζ̄i + g′(x̄1) ∈ ∂̂fθ1(x̄1).

By the choice of a positive number δ1 and a smooth function g, we obtain

|f̄θi(x̄i)− lsc fsup(x̌)| ≤ |g(x̄i)− g(x̌)|+ 2δ2 < δ,

∥

∥

∥

N
∑

k=1

αkζ
′
k −

N
∑

k=1

αkζ̄k

∥

∥

∥
≤ max

i∈[1 :N ]

∥

∥g′(x̄i)− ξ
∥

∥ < 2δ2 < δ, and ξ ∈

N
∑

k=1

αkζ
′
k + δB∗.

So, the proposition is proved. �

Remark 4. If X
△
= R

d, by the famous Carathéodory theorem [15, Theorem 2.29], any finite
convex sum of a (co)vectors can be represented by some finite convex sum of no more than d + 1
of them. So, we can assume that N ≤ d+ 1.

Remark 5. If every fθ is C1-smooth, we conclude that every ∂̂fγ(x) is a singleton; therefore,
ζi = f ′

γi
(xi) for all i.
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Abstract: This paper investigates convexity of reachable sets for quasilinear systems under integral quadratic
constraints. Drawing inspiration from B.T. Polyak’s work on small Hilbert ball image under nonlinear mappings,
the study extends the analysis to scenarios where a small nonlinearity exists on the system’s right-hand side. At
zero value of a small parameter, the quasilinear system turns into a linear system and its reachable set is convex.
The investigation reveals that to maintain convexity of reachable sets of these systems, the nonlinear mapping’s
derivative must be Lipschitz continuous. The proof methodology follows a Polyak’s scheme. The paper’s
structure encompasses problem formulation, exploration of parameter linear mapping and image transformation,
application to quasilinear control systems, and concludes with illustrative examples.
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1. Introduction

This paper focuses on studying the reachable sets of quasilinear systems with integral quadratic
constraints.

The study is based on the work of B.T. Polyak [21, 22], wherein sufficient conditions were derived
for establishing convexity of a nonlinear mapping applied to a small ball in Hilbert space. These
conditions were further applied to problems in control theory, demonstrating that the reachable set
of a nonlinear system exhibits convexity given a sufficient small control resource, provided that the
linearized system is controllable. A series of papers [12–14, 19] used the convexity conditions of the
small ball mapping to investigate the reachable sets of nonlinear systems under integral constraints
over small time intervals. In this case, it is important to note that the controllability of the linearized
system alone does not guarantee convexity of the reachable sets for the nonlinear system. Additional
conditions related to the asymptotic behavior of the eigenvalues of the controllability Gramian of
the linearized system need to be imposed. Once these conditions are fulfilled, the reachable sets
of the nonlinear system not only exhibit convexity but are also asymptotically equivalent to the
reachable sets of the linearized system.

Therefore, the study investigates the convexity of reachable sets of nonlinear systems with a
small control resource and on a small time interval. This paper discusses a variant of convexity of
reachable sets of systems with a small parameter, namely with a small nonlinearity on the right
hand side.

Systems that have small nonlinearity on the right-hand side are commonly called quasilin-
ear systems. The study of such systems in control theory dates back to the 1960s [16, 17, 23].

1The work was performed as part of research conducted in the Ural Mathematical Center with the
financial support of the Ministry of Science and Higher Education of the Russian Federation (Agreement
no. 075-02-2023-913).
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E.G. Albrecht solved several problems concerning quasilinear systems [3], including the optimal
motion problem [1] and the game problem of quasilinear objects rendezvous [2]. Control problems
for quasilinear systems are also addressed in the following works [6, 9, 15, 18]. In modern appli-
cations of control theory, quasilinear systems arise after feedback linearization [4] and stochastic
linearization [5, 10].

The paper studies the convexity of the reachable sets of quasilinear systems under integral
constraints. In line with researches [12–14, 19, 21, 22], the study is reduced to the analysis of
a nonlinear mapping from the control space and the small parameter space to the space of the
trajectories endpoints generated by these controls. In this case, the reachable set is the image
of the ball under this mapping. The specific feature of the mapping defined by the solution of a
quasilinear system is the fact that, at zero value of the small parameter, this mapping becomes
linear in control. For the image of the ball to preserve its convexity for small values of the small
parameter, it is necessary for the nonlinear part of the mapping to have a Lipschitz continuous
derivative. The scheme for proving this statement is in many ways similar to the scheme for
proving the mail theorem in [21].

The paper is organized as follows. The problem statement and some remarks are given in the
second section. The third section contains the investigation of parameter linear mapping and image
of a ball. In next section, we apply the results of the third section to the quasilinear control system.
Finally, we provide two illustrative examples in the fifth section.

2. Problem statement and preparatory remarks

Further we use the following notation. By A⊤ we denote the transpose of a real matrix A, I
is an identity matrix, 0 stands for a zero vector or a zero matrix of appropriate dimension. For a
real n × n matrix A a spectral matrix norm induced by the Euclidean vector norm is denoted as
‖A‖. The symbols L1 and L2 stand for the spaces of summable and square summable functions
respectively. The norms in these spaces are denoted as ‖ · ‖L1

and ‖ · ‖L2
. By BX(a, r) we will

denote the closed ball of radius r > 0 centered at a,

BX(a, r) = {x ∈ X : ‖x− a‖X 6 r}.

Here X is some linear space with a norm ‖ · ‖X .

Let us consider the quasilinear control system

ẋ(t) = A(t)x(t) +B(t)u(t) + εf
(
x(t), t

)
, t0 6 t 6 T, x(t0) = x0, (2.1)

where x ∈ R
n is a state vector, u ∈ R

r is a control vector, t0 is a non-negative number, T is a positive
number and ε is a small parameter such that ε ∈ [0, ε], ε > 0. The matrix maps A : [t0, T ] → R

n×n,
B : [t0, T ] → R

n×r are assumed to be continuous. The function f : Rn × [t0, T ] → R
n is assumed

to be continuous in (x, t) and continuously differentiable in x.

The control u(·) will be chosen from BL2
(0, µ) with some µ > 0.

For any control u(·) ∈ L2 and any ε ∈ [0, ε] there exists the unique absolutely continuous
solution x(t, ε, u(·)) of the system (2.1), satisfying the initial condition x(t0, ε, u(·)) = x0, and this
solution is defined on some interval [t0, t0 +∆], where t0 +∆ < T .

Further we will suppose that the conditions of the following assumption are satisfied.

Assumption 1. There exists µ > µ such that for all ε ∈ [0, ε] all solutions x(t, ε, u(·)) gen-
erated by controls u(·) ∈ BL2

(0, µ) belong to some convex compact set D ⊂ R
n. In addition, it
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is assumed that the function f : Rn × [t0, T ] → R
n and its derivative on x satisfy the Lipschitz

condition with constants Lf , lf respectively

‖f(x1, t)− f(x2, t)‖ 6 Lf ‖x1 − x2‖ , t ∈ [t0, T ], x1, x2 ∈ D,
∥∥∥∥
∂f(x1, t)

∂x
− ∂f(x2, t)

∂x

∥∥∥∥ 6 lf ‖x1 − x2‖ , t ∈ [t0, T ], x1, x2 ∈ D.

In particular, first part of Assumption 1 holds if f satisfies one of the following conditions [8]:

∥∥f
(
x, t

)∥∥ 6 l1(t)(1 + ‖x‖),
x · f(x, t) 6 a(t)‖x‖2 + b(t),

(2.2)

where l1(·) ∈ L1[t0, T ] and a(·), b(·) are continuous functions.

Definition 1. The reachable set G(T, µ, ε) of the system (2.1) at time T is the set consisting
of all possible states that can be reached by the system at time T while satisfying the given integral
constraints on the control

G(T, µ, ε) =
{
x̃ ∈ R

n : ∃u(·) ∈ BL2
(0, µ), x(T, ε, u(·)) = x̃

}
.

The question to be studied is under which conditions the reachable set will be convex for small ε.

3. Nonlinear mappings depending on a small parameter

In this section, x (including x0, x1 and others) is not related to the state vector of system (2.1).
Here x is an element of the space X, ε is still a small non-negative parameter.

Consider the mapping

F (x, ε) = a0 +A0x+ εA1(x, ε) : BX(0, r)× R+ → Y,

where X and Y are Hilbert spaces. Here a0 ∈ Y is a constant, it does not depend on either x or ε,
A0 is a linear continuous operator which we assume to be a surjective mapping from X to Y . The
last implies, that there exists ν > 0, such that

‖A∗
0y‖ > ν‖y‖, ∀y ∈ Y. (3.1)

Here A∗
0 is a linear operator adjoint to A0. Let A1 : BX(0, r) × R+ → Y be a nonlinear operator,

which is continuous in x and ε.

Assumption 2. There exists ε > 0, such that for all x ∈ BX(0, r), ε ∈ [0, ε] the mapping
A1(x, ε) has a Frechet derivative

∂A1(x, ε)

∂x
= A′

1(x, ε)

which is continuous in ε and Lipschitz continuous in x: there exists L > 0, such that

‖A′
1(x1, ε)−A′

1(x2, ε)‖ 6 L‖x1 − x2‖, x1, x2 ∈ BX(0, r), ε ∈ [0, ε].

In order to justify this further, it is useful to quote the following result from [20, 21]. In the
formulation of following lemma it is assumed that f : X → Y is a nonlinear Frechet differentiable
map.
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Lemma 1 [20, 21]. Suppose there exist L, ρ, µ > 0 and y0 ∈ Y , such that

‖f ′(x)− f ′(z)‖ 6 L‖x− z‖, ∀x, z ∈ B(x0, ρ),

‖f ′(x)∗y‖ > µ‖y‖, ∀y ∈ Y, ∀x ∈ B(x0, ρ),

‖f(x0)− y0‖ 6 ρµ,

then the equation f(x) = y0 has a solution x∗ ∈ B(x0, ρ) and

‖x∗ − x0‖ 6
1

µ
‖f(x0)− y0‖ .

The following theorem can now be formulated and proven.

Theorem 1. Denote the image of the ball BX(0, r) under the map F (x, ε) by F
(
BX(0, r), ε

)
,

i.e.
F
(
BX(0, r), ε

)
=

{
F (x, ε) : x ∈ BX(0, r)

}
.

Suppose the condition of Assumption 2 to be fulfilled and F
(
BX(0, r), ε

)
is a closed set for each

ε ∈ [0, ε]. There exists ε0 ∈ (0, ε], such that for all positive ε < ε0 the image F
(
BX(0, r), ε

)
is a

convex set in Y .

P r o o f. Note that the constant a0 has no impact on the convexity of the image F
(
BX(0, r), ε

)
.

Therefore, for the proof, we will consider it as zero.
Let us consider two arbitrary points, x1 and x2, in BX(0, r). Let

x0 =
1

2
(x1 + x2), y(ε) =

1

2

(
y1(ε) + y2(ε)

)
,

where y1(ε) = F (x1, ε) and y2(ε) = F (x2, ε).
To prove that the set F

(
BX(0, r), ε

)
is convex we need to show y(ε) ∈ F

(
BX(0, r), ε

)
or,

equivalently, there exists x∗ ∈ BX(0, r), such that F (x∗, ε) = y(ε). Let us write down the expression
for y(ε)

y(ε) =
1

2

(
F (x1, ε) + F (x2, ε)

)
=

1

2

(
A0x1 + εA1(x1, ε) +A0x2 + εA1(x2, ε)

)

= A0x0 +
1

2
ε
(
A1(x1, ε) +A1(x2, ε)

)
.

(3.2)

Let x ∈ X and h ∈ X be chosen such that the inclusions x ∈ BX(0, r) and x+h ∈ BX(0, r) are
valid. Under Assumption 2, we will expand A1 in a series around the point x:

A1(x+ h, ε) = A1(x, ε) +A′
1(x, ε)h +R(ε, x, h). (3.3)

Multiplying both sides of this equality by y∗ ∈ Y ∗, ‖y∗‖ 6 1 we get

〈y∗, R(ε, x, h)〉 = 〈y∗, A1(x+ h, ε)〉 − 〈y∗, A1(x, ε)〉 − 〈y∗, A′
1(x, ε)h〉.

Apply mean value theorem to function 〈y∗, A1(x, ε)〉 to obtain

〈y∗, A1(x+ h, ε)〉 − 〈y∗, A1(x, ε)〉 = 〈y∗, A′
1(x+ θh, ε)h〉, 0 6 θ 6 1.

The last two relations lead to the following estimates

‖〈y∗, R(ε, x, h)〉‖ 6 ‖y∗‖‖A′
1(x+ θh, ε)−A′

1(x, ε)‖‖h‖ 6 Lθ‖h‖2 6 L‖h‖2,
‖R(ε, x, h)‖ 6 L‖h‖2,
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Substituting (3.3) into the expression (3.2), we obtain

y(ε) = A0x0 +
1

2
ε
(
A1(x0, ε) +A′

1(x0, ε)(x1 − x0) +R(ε, x0, x1 − x0)

+A1(x0, ε) +A′
1(x0, ε)(x2 − x0) +R(ε, x0, x2 − x0)

)

= A0x0 + εA1(x0, ε) + ξ(ε, x1, x2),

where the residual term has the form

ξ(ε, x1, x2) =
1

2
ε
(
R(ε, x0, x1 − x0) +R(ε, x0, x2 − x0)

)
,

and it could be estimated as

‖ξ(ε, x1, x2)‖ 6
1

2
εL

(1
4
‖x1 − x2‖2 +

1

4
‖x1 − x2‖2

)
6

1

4
Lε‖x1 − x2‖2.

As a result, we have

y(ε) = A0x0 + εA1(x0, ε) + ξ(ε, x1, x2) = F (x0, ε) + ξ(ε, x1, x2)

for all x1, x2 ∈ B(0, r), x1 6= x2, ε ∈ [0, ε], and we have

‖F (x0, ε)− y(ε)‖ = ‖ξ(ε, x1, x2)‖ 6
1

4
Lε‖x1 − x2‖2.

Now let us study the derivative of the mapping F (x0, ε) in x0 for a fixed ε,

F ′
x(x0, ε) = A0 + εA′

1(x0, ε).

Using Assumption 2 we can estimate ‖A′
1(x0, ε‖ from above:

‖A′
1(x0, ε)−A′

1(0, ε)‖ 6 L‖x0‖ 6 Lr,

‖A′
1(x0, ε)‖ 6 ‖A′

1(0, ε)‖ + Lr.

Since

‖A′
1(x0, ε)‖ = ‖

(
A′

1(x0, ε)
)∗‖,

it follows

‖
(
A′

1(x0, ε)
)∗‖ 6 ‖A′

1(0, ε)‖ + Lr.

From this and (3.1), we have

∥∥F ′
x(x0, ε)

∗y
∥∥ =

∥∥(A0 + εA′
1(x0, ε)

)∗
y
∥∥ > ‖A∗

0y‖ − ε
∥∥(A′

1(x0, ε)
)∗∥∥ ‖y‖ > (ν − kε)‖y‖,

where

k = max
ε∈[0,ε]

‖A′
1(0, ε)‖ + Lr > 0.

For small ε, the following inequality is true

(ν − kε) >
ν

2

and we have ∥∥F ′
x(x0, ε)

∗y
∥∥ >

ν

2
‖y‖.
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In order to use Lemma 1, we require that

‖F (x0, ε)− y(ε)‖ = ‖ξ(ε, x1, x2)‖ 6
1

4
Lε‖x1 − x2‖2 6

ν

2

‖x1 − x2‖2
8r

.

To achieve this, it is necessary to choose a value of ε such that it satisfies the inequality

ε 6 ε0 = min
{ ν

4Lr
,
ν

2k
, ε
}
.

Then, from Lemma 1 with parameters

µ =
ν

2
, ρ =

‖x1 − x2‖2
8r

,

it follows that there exists x∗ ∈ B(x0, ρ) such that F (x∗, ε) = y(ε).

Since BX(0, r) is Hilbert ball, it is strongly convex and the inclusion B(x0, ρ) ⊂ BX(0, r) is
true, therefore x∗ ∈ BX(0, r). So, the point

y(ε) =
1

2

(
F (x1, ε) + F (x2, ε)

)

is contained within the image of the ball F
(
BX(0, r), ε

)
for all ε 6 ε0 and x1, x2 ∈ BX(0, r). Due

to the closeness, for all ε 6 ε0, the image of the ball F
(
BX(0, r), ε

)
is convex. �

4. On the properties of the solutions of quasilinear systems

In this section we investigate the solutions of (2.1) to verify the applicability of the previous
results, in particular Theorem 1.

By X(t, τ) we denote the Cauchy matrix of the linear system ẋ(t) = A(t)x(t). This matrix is
the solution of the following equation

∂X(t, τ)

∂t
= A(t)X(T, τ), X(τ, τ) = I.

If x(·, ε, u(·)) is the solution of (2.1), produced by control u(·) and initial condition x0, it satisfies
the next integral equation

x
(
T, ε, u(·)

)
= X(T, t0)x0 +

T∫

t0

X(T, τ)

(
Bu(τ) + εf

(
x
(
τ, ε, u(·)

)
, τ
))

dτ

= X(T, t0)x0 +

T∫

t0

X(T, τ)B(t)u(τ) dτ + ε

T∫

t0

X(T, τ)f
(
x
(
τ, ε, u(·)

)
, τ
)
dτ.

Let us define the mapping F : BL2
(0, µ)× [0, ε] → R

n by the equality F (u(·), ε) = x(T, ε, u(·)),
where x(T, ε, u(·)) is the solution of (2.1) at moment T generated by the control u(·) and the small
parameter ε.

In order to use the results from the previous sections, we now rewrite the mapping F as

F (u(·), ε) = a0 +A0u(·) + εA1(u(·), ε),
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where a0 = X(T, 0)x0, the linear map A0 : BL2
(0, µ) 7→ R

n is defined by

A0u(·) =
T∫

t0

X(T, τ)B(t)u(τ) dτ

and nonlinear map A1 : BL2
(0, µ)× [0, ε] → R

n is defined by

A1(u(·), ε) =
T∫

t0

X(T, τ)f
(
x
(
τ, ε, u(·)

)
, τ
)
dτ. (4.1)

Reachable set G(T, µ, ε) of the quasilinear system (2.1) is the image under mapping F of the
ball BL2

(0, µ),
G(T, µ, ε) = F (BL2

(0, µ), ε).

Assertion 1. Assume the Assumption 1 is fulfilled. Then, for all ε ∈ [0, ε], the reachable set
G(T, µ, ε) is closed.

P r o o f. The proof is based on the equicontinuity of trajectories, the uniform boundedness of
the set of trajectories, and the weak compactness of the ball BL2

(0, µ) (see, for example [11]). �

To apply Theorem 1 to the mapping F , we must demonstrate that Assumption 2 holds for A1,
defined in equation (4.1).

Lemma 2. Assume Assumption 1 to be fulfilled. Then, for all ε ∈ [0, ε], there exists a constant
Lx(ε) > 0, such that for any ui(·) ∈ BL2

(0, µ), i = 1, 2 and t ∈ [t0, T ],

‖x1(t)− x2(t)‖ 6 Lx(ε)‖u1(·)− u2(·)‖L2
,

where xi(t) = x(t, ε, ui(·)), i = 1, 2. Furthermore, Lx(ε) 6 Lx(ε).

P r o o f. Since xi(t) ∈ D for all t ∈ [t0, T ], from Assumption 1, we have

‖f
(
x1(t), t

)
− f

(
x2(t), t

)
‖ 6 Lf‖x1(t)− x2(t)‖.

From the integral identities

xi(t) = x0 +

t∫

t0

A(τ)xi(τ) dτ +

t∫

t0

B(τ)ui(τ) dτ + ε

t∫

t0

f
(
xi(τ), τ

)
dτ (4.2)

we get

‖x1(t)− x2(t)‖ 6

∥∥∥∥

t∫

t0

A(τ)
(
x1(τ)− x2(τ)

)
dτ

∥∥∥∥+

∥∥∥∥

t∫

t0

B(τ)
(
u1(τ)− u2(τ)

)
dτ

∥∥∥∥

+ε

∥∥∥∥

t∫

t0

(
f
(
x1(τ), τ

)
− f

(
x2(τ), τ

))
dτ

∥∥∥∥

6

t∫

t0

(
kA + Lfε) ‖x1(τ)− x2(τ)‖ dτ + ku‖u1(·)− u2(·)‖L2

.
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Here,

ku =
√
(T − t0) max

τ∈[t0,t]
‖B(τ)‖, kA = max

τ∈[t0,t]
‖A(τ)‖.

From the Grownwall inequality we have

‖x1(t)− x2(t)‖ 6 Lx(ε)‖u1(·)− u2(·)‖L2
,

where

Lx(ε) = ku exp
(
(kA + Lfε)(T − t0)

)
.

Note, that Lx(ε) 6 Lx(ε). �

Introduce the mapping F : [t0, T ]× [0, ε]×BL2
(0, µ) → R

n,

F (τ, ε, u(·)) = x
(
τ, ε, u(·)

)
,

where x
(
τ, ε, u(·)

)
is a solution of (2.1) at moment τ generated by the control u(·) the small

parameter ε. The derivative of F in u(·), F ′
: BL2

(0, µ) → R
n is the solution of the linearized

system as it was shown in [11]

F
′
(τ, ε, u(·))δu(·) = δx(τ),

where δx(τ) is a solution of the the system (2.1) linearized along (u(·), x(·, ε, u(·)), corresponding
to the control δu(·) and zero initial condition:

δẋ = A
(
t, ε, u(·)

)
δx+B(t)δu(t), 0 6 t 6 τ, δx(0) = 0, (4.3)

where

A
(
t, ε, u(·)

)
= A(t) + ε

∂f
(
x(t, ε, u(·)), t

)

∂x
.

Lemma 3. Suppose Assumption 1 to be fulfilled. There exists a constant Lu(ε) > 0, such that
for any ε ∈ [0, ε], ui(·) ∈ BL2

(0, µ) and τ ∈ [t0, T ],

‖F ′
(τ, ε, u1(·))− F

′
(τ, ε, u2(·))‖ 6 Lu(ε)‖u1(·) − u2(·)‖L2

,

where i = 1, 2.

P r o o f. The solution of (4.3) has the form

δx
(
τ, ε, ui(·), δu(·)

)
=

τ∫

t0

X(τ, s, ε, ui(·))B(s)δu(s) ds, (4.4)

where X(τ, s, ε, u(·)) is fundamental matrix of system (4.3), and it satisfies the equation

∂X(τ, s, ε, u(·))
∂s

= −A
(
s, ε, u(·)

)⊤
X(τ, s, ε, u(·)), X

(
τ, τ, ε, u(·)

)
= I.
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It is well-known (for example, it follows from the proof of Theorem 3 in [7]), that there exists
kX > 0 such that

‖X(τ, s, ε, u(·))‖ 6 kX , τ ∈ [t0, T ], s ∈ [t0, T ]

for all u(·) ∈ BL2
(0, µ) and sufficiently small ε. For the sake of brevity, we use the notation

Ai(t) = A
(
t, ε, ui(·)

)
and X i(t, s) = X(t, s, ε, ui(·)). Under Assumption 1 and using Lemma 2 we

can obtain the estimate
τ∫

t0

‖A1(s)−A2(s)‖ds 6 LA‖u1(·)− u2(·)‖L2
.

Here LA > 0 does not depend on u1(·), u2(·), τ and ε. Since,

∂

∂t

(
X1(t, s)−X2(t, s)

)
= −A

⊤

1 (t)
(
X1(t, s)−X2(t, s)

)
+ (A2(t)−A1(t))

⊤X2(t, s), t ∈ [s, τ ]

we get the following formula

X1(τ, s)−X2(τ, s) =

τ∫

s

Y (t, s)
(
A2(t)−A1(t)

)⊤
X2(t, s)dt.

Here Y (t, s) is a fundamental matrix of the system

ẏ = −A1(t)y.

Like X i(τ, s), this matrix is also bounded: there exists kY > 0 such that

‖Y (t, s)‖ 6 kY , t, s ∈ [t0, τ ]

for all u(·) ∈ B(0, µ). We get

‖X1(τ, s)−X2(τ, s)‖ 6 LX‖u1(·)− u2(·)‖L2
,

where
LX = kY LAkX(T − t0).

Hence from (4.4) it follows the statement of the lemma and Lu(ε) = LX(ε)τ . �

Now we will claim Frechet differentiability of the mapping A1(u(·), ε) in u(·). Let us choose
arbitrary u(·) ∈ BL2

(0, µ) and δu(·), such that ‖δu(·)‖L2
6 µ− µ and consider

A1(u(·) + δu(·), ε) −A1(u(·), ε)

=

T∫

t0

X(T, τ)
[
f
(
x
(
τ, ε, u(·) + δu(·)

)
, τ
)
− f

(
x
(
τ, ε, u(·)

)
, τ
)]

dτ.
(4.5)

Here we should study the difference between solutions of (2.1), produced by u(·) and u(·)+δu(·).
From (4.2) it follows

x
(
t, ε, u(·) + δu(·)

)
− x

(
t, ε, u(·)

)
=

t∫

t0

A(τ)
[
x
(
τ, ε, u(·) + δu(·)

)
− x

(
τ, ε, u(·)

)]
dτ

+

t∫

t0

B(τ)δu(τ) dτ + ε

t∫

t0

[
f
(
x(τ, ε, u(·) + δu(·)), τ

)
− f

(
x(τ, ε, u(·)), τ

)]
dτ.

(4.6)
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Let y ∈ R
n and h ∈ R

n be chosen such that the inclusions y ∈ D and y + h ∈ D are valid.
Then, for all τ ∈ [t0, T ], using representation of the increment of a function through the integral
over a parameter, we have

f(y + h, τ)− f(y, τ) =

( 1∫

0

∂f

∂x

(
y + ξh, τ

)
dξ

)
h =

∂f

∂x

(
y, τ

)
h+ ω(y, h, τ),

where

ω(y, h, τ) =

( 1∫

0

[
∂f

∂x

(
y + ξh, τ

)
− ∂f

∂x

(
y, τ

)]
dξ

)
h.

Since D is convex, y+ ξh ∈ D for all 0 6 ξ 6 1. Therefore, using Assumption 1, we can obtain
the following estimate

‖ω(y, h, τ)‖ 6 lf

( 1∫

0

‖ξh‖ dξ

)
h 6

lf
2
‖h‖2.

When y = x
(
τ, ε, u(·)

)
and

h = ∆x
(
τ, ε, δu(·)

)
= x

(
τ, ε, u(·) + δu(·)

)
− x

(
τ, ε, u(·)

)
,

for all τ ∈ [t0, T ] we have

f
(
x(τ, ε, u(·) + δu(·)), τ

)
− f

(
x(τ, ε, u(·)), τ

)

=
∂f

∂x

(
x(τ, ε, u(·)), τ

)
∆x

(
τ, ε, δu(·)

)
+ ω

(
x(τ, ε, u(·)),∆x(τ, ε, δu(·)), τ

)
,

(4.7)

where (see Lemma 2)

∥∥ω
(
x
(
τ, ε, u(·)

)
,∆x

(
τ, ε, δu(·)

)
, τ
)∥∥ 6

lf
2
‖∆x(τ, ε, δu(·))‖2 6 lf

2
L2
x(ε)‖δu(·)‖2L2

. (4.8)

From (4.7) it follows, that ω(x(τ, ε, u(·)),∆x(τ, ε, δu(·)), ·) is measurable, as the sum of mea-
surable functions. Substituting (4.7) to (4.6), we obtain

∆x
(
t, ε, δu(·)

)
=

t∫

t0

A
(
τ, ε, u(·)

)
∆x

(
τ, ε, δu(·)

)
dτ +

t∫

t0

B(τ)δu(τ) dτ

+ε

t∫

t0

ω
(
x
(
τ, ε, u(·)

)
,∆x

(
τ, ε, δu(·)

)
, τ
)
dτ = δx(t) + Ω(t, ε, δu(·)),

where δx(t) is the solution of system (4.3) and

Ω(t, ε, δu(·)) = ε

t∫

t0

ω
(
x
(
τ, ε, u(·)

)
,∆x

(
τ, ε, δu(·)

)
, τ
)
dτ.
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Since (4.8) we can estimate Ω(t, ε, δu(·)) from above for all t ∈ [t0, T ]

‖Ω(t, ε, δu(·))‖ 6
lf
2
εL2

x(ε)(T − t0)‖δu(·)‖2L2
.

Here we are going to rewrite (4.7),

f
(
x(τ, ε, u(·) + δu(·)), τ

)
− f

(
x(τ, ε, u(·)), τ

)

=
∂f

∂x

(
x(τ, ε, u(·)), τ

)
δx(t) +

∂f

∂x

(
x(τ, ε, u(·)), τ

)
Ω(t, ε, δu(·)) + ω

(
x(τ, ε, u(·)),∆x(τ, ε, δu(·)), τ

)
.

We can estimate the norm of residial term from above:
∥∥∥∥
∂f

∂x

(
x(τ, ε, u(·)), τ

)
Ω(t, ε, δu(·))

∥∥∥∥ 6
lf
2
εL2

x(ε)(T − t0) max
x∈D

τ∈[t0,T ]

∥∥∥
∂f

∂x

(
x, τ

)∥∥∥‖δu(·)‖2L2
,

Therefore, we are able to rewrite (4.5) in form

A1(u(·) + δu(·), ε) −A1(u(·), ε) =
T∫

t0

X(T, τ)
∂f

∂x

(
x
(
τ, ε, u(·)

)
, τ
)
δx(t) dτ + o(‖δu(·)‖2).

This implies, that the Frechet derivative A′
1(u(·), ε) : BL2

(0, µ) → R
n exists and could be defined

by equality

A′
1(u(·), ε)δu(·) =

T∫

t0

X(T, τ)
∂f

∂x

(
x
(
τ, ε, u(·)

)
, τ
)
δx(t) dτ (4.9)

The Lipschitz continuity of δx(·) was proved in Lemma 3. The derivative

∂f

∂x

(
x
(
τ, ε, u(·)

)
, τ
)

is Lipschitz continuous as a composition of Lipschitz continuous functions

∥∥∥∥
∂f

(
x(τ, ε, u1(·)), τ

)

∂x
− ∂f

(
x(τ, ε, u2(·)), τ

)

∂x

∥∥∥∥ 6 lf
∥∥x

(
τ, ε, u1(·)

)
− x

(
τ, ε, u2(·)

)∥∥

6 lfLx(ε) ‖u1(·)− u2(·)‖L2
, τ ∈ [t0, T ], u1(·), u2(·) ∈ BL2

(0, µ).

Then the integrand in (4.9) also fulfills the Lipschitz condition for all ε ∈ [0, ε] and τ ∈ [t0, T ],
∥∥∥∥
∂f

∂x

(
x(τ, ε, u1(·)), τ

)
F

′
(τ, ε, u1(·))δu(·) −

∂f

∂x

(
x(τ, ε, u2(·)), τ

)
F

′
(τ, ε, u2(·))δu(·)

∥∥∥∥

6 (µ − µ)
(
lfLx(ε) max

u(·)∈BL2
(0,µ)

τ∈[t0,T ]

‖F ′
(τ, ε, u(·))‖ + Lu(ε) max

x∈D,
τ∈[t0,T ]

∥∥∥
∂f

∂x

(
x, τ

)∥∥∥
)
‖u1(·)− u2(·)‖ ,

and the whole derivative A′
1(u(·), ε) will be Lipschitz continuous in u(·).

In order to fulfill the condition of Assumption 2, it remains to show that this derivative will
be continuous in ε. This is valid due to the facts that the right-hand side of system (2.1) is linear
in the parameter ε and the matrix A

(
t, ε, u(·)

)
of the linearized system (4.3) depends continuously

on ε.
Thus, the mapping A1(u(·), ε) defined in (4.1) fulfills the condition of Assumption 2 and we are

able to formulate the main result of this paper in the following theorem
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Theorem 2. Assume the conditions of Assumption 1 are satisfied, then there exists a positive
value ε0 such that the reachable sets G(T, µ, ε) of the quasilinear system (2.1) are convex for all
ε < ε0.

P r o o f. The statement’s validity can be confirmed by applying Theorem 1 to the mapping F ,
given that Lipschitz continuity of A′

1 and closeness of G(T, µ, ε) (Assertion 1) were previously
established. �

Remark 1. In the article [2], E.G. Albrecht investigates the support functions of reachable
sets for quasilinear systems with integral constraints. The paper defines conditions under which
the support functions of reachable sets have continuous dependence on parameter. The author also
noted that the continuous dependence of the reachable set on the parameter implies its convexity
for small values of parameter. However, no proof of this fact was provided. Furthermore, continuity
of reachable sets alone was not sufficient to prove it.

5. Examples

In this section, we present the results of numerical experiments that are intended to illustrate
the application of the Theorems 1 and 2.

Example 1. First system under study is Duffing oscillator. We deal with equations

ẋ1 = x2, ẋ2 = −x1 − 10εx31 + u, 0 6 t 6 2 (5.1)

describing the motion of a non-linear elastic spring under the influence of an external force u. The
impact of the nonlinear elastic force term is determined by the small parameter ε > 0. The initial
state is x1(0) = x2(0) = 0, and the control is bounded by

2∫

0

u2dt 6 1. (5.2)

When ε = 0, the equations (5.1) describe a linear system with the matrices

A =

(
0 1
−1 0

)
, B =

(
0
1

)
.

The nonlinear term comprises of a small parameter and the function f(x) = [−10x3; 0]. Con-
dition (2.2) is not fulfilled for this nonlinear term. However, we can use estimates obtained in
paper [26] to show, that all the trajectories of the system (5.1) corresponding to admissible con-
trols and zero initial state are lying in a compact set D.

We set

vε(t, x) =
5

2
εx41 +

1

2
x21 +

1

2
x22

and calculate the time derivative

d

dt
vε(t, x(t)) = ∇vε(t, x(t))

(
Ax(t) +Bu(t) + εf(x(t))

)
= x2(t)u(t). (5.3)
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Figure 1. The reachable sets of Duffing oscillator.

For each ε > 0 and each control u(·) satisfied (5.2), there exists τ > 0, such that the solution
of (5.1) generated by this control u(·) and by zero initial state is defined on time interval [0, τ ]. Let
us integrate (5.3) from 0 to τ . We have

vε(τ, x(τ)) =

τ∫

0

x2(t)u(t) dt 6

( 2∫

0

u2(t) dt

)1/2( τ∫

0

x22(t) dt

)1/2

6
√
2

( τ∫

0

vε(t, x(t)) dt

)1/2

.

Applying comparison theorem to this inequality, one can obtain, that vε(τ, x(τ)) 6 τ and,
therefore, ‖x(τ)‖2 6 2τ . Using well-known technique, we could conclude that any solution (5.1)
generated by a control u(·) ∈ BL2

(0, 1) and zero initial state, could be continued to time interval
[0, 2] and it will belong to the convex set D = BRn(0, 2).

The Assumption 1 are fullfilled: the pair (A,B) is a constant; the function f is continuous
and continuously differentiable; also, the function f and its derivative ∂f/∂x satisfy the Lipschitz
condition on the set D.

Therefore, the requirements of Theorem 2 are fulfilled for system (5.1), and the correspond-
ing reachable sets should be convex for small parameter values. This is evident in Fig. 1, which
demonstrates the constructed reachable sets Gε(T, µ) using numerical Monte–Carlo based tech-
nique [24, 25].

It can be seen that sets G0.01(1, 1) and G0.1(1, 1) are close to set G0(1, 1) constructed for the
linear system. One can also see that the sets become non-convex as the parameter ε increases.
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Figure 2. The reachable sets of system (5.4).

Example 2. Second system under study is



ẋ1
ẋ2
ẋ3


 =



0 1 0
0 0 1
0 0 0






x1
x2
x3


+ ε



cos x3 − x2
sinx3 − x3

0


+



0
0
1


u. (5.4)

When ε = 0, the equations (5.4) describe a linear system with matrices

A =



0 1 0
0 0 1
0 0 1


 , B =



0
0
1


 ,

and when ε = 1, they describe a unicycle. The nonlinear term comprises of a small parameter and
the function

f(x) =



cos x3 − x2
sinx3 − x3

0


 .

The initial state is zero x1(0) = x2(0) = x3(0), the constraints on the controls are the same as
in the first example, but we will consider this system on the time interval 0 6 t 6 1.

Similar to the previous example, the conditions of Assumption 1 are satisfied, allowing the
application of Theorem 2. Fig. 2 displays the projections in the plane (x1, x2) of the numerically
constructed reachable sets Gε(T, µ) for the system (5.4).

It can be seen that projections of sets G0.001(1, 1) and G0.01(1, 1) are close to projection of
set G0(1, 1) constructed for the linear system. One can also see that the projections of sets become
non-convex as the parameter ε increases.
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POLYNOMIALS LEAST DEVIATING FROM ZERO
IN Lp(−1; 1), 0 ≤ p ≤ ∞, WITH A CONSTRAINT

ON THE LOCATION OF THEIR ROOTS1
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We study Chebyshev’s problem on polynomials that deviate least from zero with respect to Lp-means on
the interval [−1; 1] with a constraint on the location of roots of polynomials. More precisely, we consider the
problem on the set Pn(DR) of polynomials of degree n that have unit leading coefficient and do not vanish in
an open disk of radius R ≥ 1. An exact solution is obtained for the geometric mean (for p = 0) for all R ≥ 1;
and for 0 < p < ∞ for all R ≥ 1 in the case of polynomials of even degree. For 0 < p < ∞ and R ≥ 1, we
obtain two-sided estimates of the value of the least deviation.

Keywords: Algebraic polynomials, Chebyshev polynomials, Constraints on the roots of a polynomial.

1. Statement and discussion of the problem

Let

DR := {z ∈ C : |z| < R}

be an open disk with center at zero and radius R > 0. For R = 1, denote by D the unit open disk.
Let I be the interval [−1; 1].

Denote by Pn the set of algebraic polynomials of (exact) degree n with complex coefficients
and leading coefficient equal to one. A polynomial pn from Pn is uniquely defined by its roots zk,
k = 1, n, by the equality

pn(z) =

n∏

k=1

(z − zk).

Denote by Pn(DR) the set of algebraic polynomials from Pn that do not vanish in an open disk of
radius R > 0:

Pn(DR) :=
{
pn ∈ Pn : pn(z) 6= 0, |z| < R

}
.

We use the following notation:

‖pn‖∞ = ‖pn‖C(I) := max
{
|pn(x)| : x ∈ [−1; 1]

}
;

‖pn‖p :=
(1
2

∫ 1

−1
|pn(x)|pdx

)1/p
, 0 < p <∞;

‖pn‖0 := exp
(1
2

∫ 1

−1
ln |pn(x)|dx

)
.

1This work was supported by the Russian Science Foundation, project no. 22-21-00526,
https://rscf.ru/project/22-21-00526/ .
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For p ≥ 1, this functional is a norm. It is known (see, e.g., [13]) that

‖pn‖0 = lim
p→0

‖pn‖p, pn ∈ Pn.

In this paper, we study polynomials that deviate least from zero with respect to Lp-means on
the interval [−1; 1] among all polynomials from the set Pn(DR).

Define the value of the least deviation from zero of polynomials from Pn(DR) with respect to
Lp-means on the interval [−1; 1] by the equality

τn(I,DR)p := min
{
‖pn‖p : pn ∈ Pn(DR)

}
. (1.1)

The problem is to find quantity (1.1) and polynomials from Pn(DR) least deviating from zero on
the interval [−1; 1], that is, polynomials for which the minimum in (1.1) is attained. It will follow
from the further reasoning that the minimum in (1.1) is attained.

The problem on polynomials that deviate least from zero is one of the important problems of
approximation theory. In the uniform norm, the problem without constraints on the location of
roots was posed and solved by Chebyshev in 1854 [5]. The Chebyshev polynomial of the first kind
with unit leading coefficient is extremal in this problem. The polynomial that deviates least from
zero in the space L1(−1; 1) was found by E.I. Zolotarev and A.N.Korkin, Chebyshev’s disciples,
in 1873 (see, for example, [1]). The Chebyshev polynomial of the second kind with unit leading
coefficient is extremal. The Legendre polynomials are extremal in the space L2(−1; 1) (see, for
example, [20]). Polynomials that deviate least from zero in the space L0(−1; 1) were obtained by
Glazyrina in 2005 [8]. Although an explicit form of the polynomials least deviating from zero in
spaces Lp(−1; 1) for p 6= 0, 1, 2,∞ is unknown, some of their general properties, which can be found
in [14, Sects. 2.3–2.4], are useful in studying many important problems of approximation theory.

Note that (as will be seen below), unlike polynomials that deviate least from zero on the interval
[−1; 1], an extremal polynomial in (1.1) is, generally speaking, not unique.

Studying extremal properties of algebraic polynomials with restrictions on the location of their
roots began apparently in 1939 with paper [21] by Turán devoted to inequalities that give a lower
estimate for the norm of the derivative of a polynomial in terms of the norm of the polynomial
itself. A detailed history of studies of such inequalities can be found in [9, 10].

In 1947, Lax [15] proved the conjecture of P. Erdős. The statement is that, in the classical
Bernstein inequality

‖p′n‖C(D) ≤ n ‖pn‖C(D), pn ∈ Pn,

considered on the set Pn(D) of polynomials that do not vanish in the unit disk, the exact (smallest)
constant is half as large (is equal to n/2); i.e., the following inequality holds:

‖p′n‖C(D) ≤
n

2
‖pn‖C(D), pn ∈ Pn(D).

The inequality turns into an equality on an arbitrary polynomial having all its roots on the unit
circle.

Akopyan [3, Theorem 2] found polynomials in Pn(DR), R > 0, that deviate least from zero
on the unit circle with respect to Lp-norms, 0 ≤ p ≤ ∞ (Lp-means for 0 ≤ p < 1). These are
polynomials of the form zn + εRn, |ε| = 1.

The sharp Bernstein inequality on the set of polynomials Pn(D) with respect to Lp-norms on
the unit circle was obtained by Lax [15] (p = 2,∞), de Bruijn [6] (1 ≤ p < ∞), and Rahman and
Schmeisser [18] (0 ≤ p < 1). Arestov obtained [4] a generalization of the Bernstein inequality on
the set of polynomials Pn(D) for rather wide class of operators. The sharp Bernstein inequality on
the set of polynomials Pn(DR) in the case p = ∞ and R > 1 was obtained by Malik [16]. Several
results for p = 2 can be found in Akopyan’s paper [2].
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Denote by Mn,m(DR)p the exact (the smallest) constant in the Markov brothers inequality for
polynomials from the class Pn(DR) with respect to Lp-means on the interval I = [−1, 1]:

‖p(m)
n ‖p ≤Mn,m(DR)p ‖pn‖p, pn ∈ Pn(DR), 0 ≤ p ≤ ∞, m = 0, 1, . . . , n. (1.2)

It is clear that, for m = n, the inequality (1.2) is related to problem (1.1); more precisely, the
following equality holds:

n! =Mn,n(DR)p τn(I,DR)p.

For the results related to the Markov brothers inequality for p = ∞ with constraints on the location
of the roots of polynomials, see [7, 12] and the references therein.

In the author’s paper [17], the problem on polynomials that deviate least from zero on a
compact set K of the complex plane C with respect to the uniform norm and with a constraint on
the location of roots was studied. In particular, a solution to problem (1.1) was found for p = ∞
(see Theorem A below). Moreover, the existence of an extremal polynomial was proved, and the
problem was reduced to polynomials with roots on the boundary of the domain which gives the
constraints.

Similar statements are valid for the more general case of problem (1.1) for 0 ≤ p ≤ ∞. In the
following statement, we prove that an extremal polynomial exists for 0 ≤ p ≤ ∞.

Assertion 1. For 0 ≤ p ≤ ∞, the minimum in problem (1.1) is attained.

P r o o f of Assertion 1 is performed by the scheme of the proof of Theorem 1 from [17]. Let
qn,k, k ∈ N, be an extremal sequence in (1.1), i.e., lim

k→∞
‖qn,k‖p = τn(I,DR)p. Using the different

metrics inequality, we get

‖qn,k‖∞ ≤ c(n)p‖qn,k‖p,

where the constant c(n)p is independent of k. The existence of c(n)p in the case p ≥ 1 is a well-
known fact (the equivalence of norms in finite-dimensional spaces). In the case 0 ≤ p < 1, a
finite constant also exists, see [9, Lemma 1] for 0 < p < 1 and [8] for p = 0. Then the sequence
qn,k is uniformly bounded on [−1; 1]. Hence, using the Lagrange interpolation formula, we get its
uniformly boundedness on an arbitrary compact set from C.

By the principle of compactness (condensation) in analytic function theory, there exists a
subsequence that uniformly converges inside C. It follows from the convergence of coefficients of
polynomials of the subsequence that the limiting analytic function is a polynomial. Taking into
account the continuity of roots of polynomials as functions of their coefficients and the closedness
of C \DR, we conclude that zeros of the limiting polynomial do not belong to DR. At the same
time, the roots of polynomials of the extremal sequence do not tend to infinity, because we get
τn(I,DR)p = ∞ if even one root tends to infinity. Thus, we conclude that the limiting polynomial
belongs to Pn(DR). The assertion is proved. �

The following statement on the reduction of problem (1.1) to a similar problem for polynomials
with roots on a circle is a consequence of a more general Theorem 2 from [17] (see Remark 1). In
the particular case considered in the present paper, the proof is simplified. We will give it for the
completeness.

Assertion 2. For 0 ≤ p ≤ ∞ and R ≥ 1, every extremal polynomial in problem (1.1) has all n
roots on the circle of radius R centered at the origin.
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P r o o f. Assume that at least one root of a polynomial pn ∈ Pn(DR) does not lie on the circle
of radius R. Denote it by z0 = ρeit, where ρ > R. Then the polynomial pn can be represented in
the form

pn(x) = pn−1(x)(x− z0), pn−1 ∈ Pn−1(DR).

Consider the polynomial qn(x) = pn−1(x)(x − z̃0), where z̃0 = Reit. It is clear that qn ∈ Pn(DR).
Since R < ρ, we have |x − z̃0| < |x − z0| for all x ∈ [−1; 1], and hence the following pointwise
inequality holds: |qn(x)| < |pn(x)|, x ∈ [−1; 1]. Taking into account the monotonicity of Lp-means,
we obtain the inequality ‖qn‖p < ‖pn‖p. Consequently, the polynomial pn is not a polynomial
from Pn(DR) that deviates least from zero on the interval [−1; 1] with respect to Lp-means. The
assertion is proved. �

The further scheme of presentation in the paper is as follows. In the next two sections, we give a
solution to the problem in the two extreme cases p = ∞ and p = 0. In the last section, we estimate
quantity (1.1) from below and above for 0 < p < ∞. These estimates coincide for polynomials of
even degrees, which makes it possible to find an exact value of (1.1) and extremal polynomials.

2. Solution to problem (1.1) in the case p = ∞

Let ̺n be equal to 1/
√
2 if n = 2m and to the unique root of the equation

(̺2 − 1)2m(̺2 + 1) = ̺4m+2

in the interval (1/
√
2, 1/ 4

√
2) if n = 2m+ 1, m ≥ 1.

Theorem A. [17, Theorem 3] The following equality holds:

τn(I,DR)∞ =

{ √
1 +R2, n = 1, R ≥ 0,

Rn, n > 1, R ≥ ̺n.
(2.1)

The minimum in (1.1) is attained on the polynomials

p∗n(x) = (x2 −R2)m for n = 2m;

p∗n(x) = (x2 −R2)m(x± iR) for n = 2m+ 1.

The polynomials from Pn(DR), given in the theorem, that deviate least from zero on [−1, 1]
are not unique. For example, the polynomials

p∗∗2mk(x) = (x2k −R2k)m, k,m ∈ N,

are extremal for even n and R ≥ 1/ 2k
√
2.

3. Solution to problem (1.1) in the case p = 0

In this section, we find an exact solution to problem (1.1) in the case p = 0 for R ≥ 1.

Theorem 1. The following equality holds for R ≥ 1:

τn(I,DR)0 = ‖x+R‖n0 =

{
2ne−n, R = 1,

e−n
(
(R+ 1)(R+1)/(R − 1)(R−1)

)n/2
, R > 1.

(3.1)

The polynomials
p∗n(x) = (x−R)k(x+R)n−k, 0 ≤ k ≤ n,

are unique extremal polynomials.
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P r o o f. According to Assertion 2, it suffices to consider polynomials with roots on the circle.
First, we study the case of polynomials of the first degree (n = 1). Consider the polynomials
p(x) = x− z0, where |z0| = |x0 + iy0| = R. The following equalities hold:

ln ‖p‖0 =
1

2

∫ 1

−1
ln |p(x)|dx =

1

2

∫ 1

0
(ln |p(x)|+ ln |p(−x)|)dx =

1

2

∫ 1

0
ln((x2 +R2)2 − 4x2x20)dx.

It is clear that, under the condition x0 ∈ [−R;R], the quantity ‖p‖0 attains its minimal value only
for x0 = R and −R. Thus, in the case n = 1, the polynomials p∗1(x) = x ± R are extremal. It is
not difficult to verify the equalities

‖p∗1‖0 = e−1
(
(R+ 1)(R+1)/(R− 1)(R−1)

)1/2
for R > 1,

‖p∗1‖0 = 2e−1 for R = 1.

Now, let n > 1. In view of the multiplicativity of L0-means, for the polynomial

pn(x) =

n∏

k=1

(x− zk),

we have

‖pn‖0 = exp

(
1

2

∫ 1

−1

n∑

k=1

ln |x− zk|dx
)

=

n∏

k=1

exp

(
1

2

∫ 1

−1
ln |x− zk|dx

)
=

n∏

k=1

‖x− zk‖0.

Then the following equality holds for the value of the least deviation:

τn(I,DR)0 =

n∏

k=1

τ1(I,DR)0 = ‖x+R‖n0 .

The uniqueness of extremal polynomials of degree n follows from the uniqueness of polynomials for
n = 1. This proves equality (3.1). �

4. Studying of problem (1.1) in the case 0 < p < ∞

In this section, we find estimates of quantity (1.1) from below and above for 0 < p <∞. These
estimates coincide for polynomials of even degrees; hence, we find an exact value of (1.1).

Lemma 1. The following inequality holds for arbitrary 0 < p < ∞, R ≥ 1, and positive
integer n:

τn(I,DR)p ≥
(∫ 1

0
(R2 − x2)np/2dx

)1/p

. (4.1)

P r o o f. The following chain of relations holds for an arbitrary polynomial pn ∈ Pn(DR):

‖pn‖pp =
1

2

∫ 1

−1
|pn(x)|pdx =

1

2

∫ 1

0

(
|pn(−x)|p + |pn(x)|p

)
dx ≥ 1

2

∫ 1

0
ψn(x)dx,

where

ψn(x) = min
{
(|pn(−x)|p + |pn(x)|p) : pn ∈ Pn(DR)

}
.
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Using the inequality of means, we obtain the inequality

|pn(−x)|p + |pn(x)|p ≥ 2|pn(−x) pn(x)|p/2.

Consider the absolute value of the product:

|pn(−x) pn(x)| =
∣∣∣

n∏

k=1

(x2 − z2k)
∣∣∣ = |qn(x2)|,

where qn(x) ∈ Pn(DR2). It follows the inequality

ψn(x) ≥ 2min
{
|qn(x2)|p/2 : qn ∈ Pn(DR2)

}
.

The following equality holds for an arbitrary point z0 ∈ DR2 :

min
{
|qn(z0)| : qn ∈ Pn(DR2)

}
= min

{
|z0 − z|n : |z| = R2

}
.

Using this equality, we obtain
ψn(x) ≥ 2(R2 − x2)np/2.

Consequently, the inequality

‖pn‖pp ≥
∫ 1

0
(R2 − x2)np/2dx

holds for an arbitrary polynomial pn ∈ Pn(DR). This implies estimate (4.1). The lemma is proved.
�

Now, we pass to obtaining an upper estimate.

Lemma 2. The following inequality holds for arbitrary 0 < p < ∞, R ≥ 1, and positive
integer n:

τn(I,DR)p ≤





(1
2

∫ 1

−1
(R2 − x2)mpdx

)1/p
, n = 2m,

(1
2

∫ 1

−1
(R2 − x2)mp · (R2 + x2)p/2dx

)1/p
, n = 2m+ 1.

(4.2)

P r o o f. We obtain an upper estimate directly from the definition of the value of the least
deviation by means of the polynomials

pn(x) = (R2 − x2)m for n = 2m,

pn(x) = (R2 − x2)m(x+ iR) for n = 2m+ 1.

�

For polynomials of even degrees, the lower and upper estimates coincide, therefore, we obtain
an exact solution to problem (1.1) for all 0 < p <∞.

Theorem 2. The following equality holds for 0 < p < ∞ and R ≥ 1 in the case of even
n = 2m:

τn(I,DR)p =
(1
2

∫ 1

−1
(R2 − x2)mpdx

)1/p
. (4.3)

The polynomials p∗2m(x) = (x2 −R2)m are extremal.
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In the case p = 2, we write out a solution for polynomials of small odd degrees.

Theorem 3. The following equalities hold for R ≥ 1:

τ1(I,DR)2 =
(
R2 +

1

3

)1/2
, (4.4)

τ3(I,DR)2 =
(
R6 − R4

3
− R2

5
+

1

7

)1/2
. (4.5)

Any polynomial with a root on a circle of radius R, i.e., any polynomial of the form (x + Reit),
t ∈ [0; 2π], is extremal for n = 1. Any polynomial of the form (x2 − R2)(x + Reit), t ∈ [0; 2π], is
extremal for n = 3.

P r o o f. According to Assertion 2, we may consider polynomials with roots on the circle.
In the case n = 1, all polynomials with roots on the circle have the same norm; this implies
equality (4.4).

Consider polynomials of the third degree. Let

p3(x) =

3∏

k=1

(x− zk),

where |zk| = |xk + iyk| = R, k = 1, 2, 3. Calculating the norm of p3, we obtain the relation

τ3(I,DR)
2
2 = min

xk∈[−R;R]

(
R6 +R4 +

3R2

5
+

1

7
+
(4
5
+

4R2

3

)
(x1x2 + x2x3 + x1x3)

)
.

Minimizing the function σ(x1, x2, x3) = x1x2 + x2x3 + x1x3 in xk ∈ [−R;R], we get equality (4.5).
The theorem is proved. �

In conclusion, let us give explicit values of the quantity τ2m(I,DR)p for 0 < p <∞.

(1) The following equality holds for R = 1 and 0 < p <∞:

τ2m(I,D1)p =
(1
2

∫ 1

−1
(1− x2)mpdx

)1/p
=

(√π
2

Γ
(np+ 3

2

))1/p
.

(2) The relation

τ2m(I,DR)p =
(1
2
R2mp

∫ 1

−1

(
1− x2

R2

)mp
dx

)1/p
=

(
R2mp +

∞∑

k=1

(−1)kCk
mpR

2(mp−k)

2k + 1

)1/p
,

where

Ck
mp =

k∏

l=1

mp− l + 1

l
,

holds for arbitrary 0 < p <∞ and R > 1.
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Abstract: Some inequalities between the best simultaneous approximation of functions and their interme-
diate derivatives, and the modulus of continuity in a weighted Bergman space are obtained. When the weight
function is γ(ρ) = ρα, α > 0, some sharp inequalities between the best simultaneous approximation and an mth
order modulus of continuity averaged with the given weight are proved. For a specific class of functions, the
upper bound of the best simultaneous approximation in the space B2,γ1 , γ1(ρ) = ρα, α > 0, is found. Exact

values of several n-widths are calculated for the classes of functions W
(r)
p (ωm, q).

Keywords: The best simultaneous approximation, Modulus of continuity, Upper bound, n-widths.

1. Introduction

Extremal problems of polynomial approximation of functions in a Bergman space were studied,
for example, in [8, 13–15]. Here, we will continue our research in this direction and study the
simultaneous approximation of functions and their intermediate derivatives in a weighted Bergman
space based on the works [4–6, 10]. Note that the problem of simultaneous approximation of
periodic functions and their intermediate derivatives by trigonometric polynomials in the uniform
metric was studied by Garkavi [1]. In the case of entire functions, this problem was studied by
Timan [12].

To solve the problem, we first will prove an analog of Ligun’s inequality [2].

Let us introduce the necessary definitions and notation to formulate our results. Let

U := {z ∈ C : |z| < 1}

be the unit disk in C, and let A(U) be the set of functions analytic in the disk U . Denote by B2,γ

the weighted Bergman space of analytic functions f ∈ A(U) such that [8]

‖f‖2,γ :=

(

1

2π

∫∫

(U)
|f(z)|2γ(|z|)dσ

)1/2

<∞, (1.1)

dσ is an area element, γ := γ(|z|) is a nonnegative measurable function that is not identically zero,
and the integral is understood in the Lebesgue sense. It is obvious, that the norm (1.1) can be
written in the form

‖f‖2,γ =

(

1

2π

∫ 1

0

∫ 2π

0
ργ(ρ)|f(ρeit)|2dρdt

)1/2

.

https://doi.org/10.15826/umj.2023.2.0141
mailto:muqim.saidusainov@ucentralasia.org
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In the particular case of γ ≡ 1, Bq := Bq,1 is the usual Bergman space. The mth order modulus of
continuity in B2,γ is defined as

ωm(f, t)2,γ = sup
{

‖∆m(f, ·, ·, h)‖2,γ : |h| ≤ t
}

=

= sup

{(

1

2π

∫ 1

0

∫ 2π

0
ργ(ρ)|∆m(f ; ρ, u, h)|2dρdu

)1/2

: |h| ≤ t

}

,

where

∆m(f ; ρ, u, h) =

m
∑

k=0

(−1)kCk
mf

(

ρei(u+kh)
)

.

Let Pn be the set of complex polynomials of order at most n. Consider the best approximation of
functions f ∈ B2,γ :

En−1(f)2,γ = inf
{

‖f − pn−1‖2,γ : pn−1 ∈ Pn−1

}

Denote by B
(r)
2,γ and B

(r)
2 , r ∈ N the class of functions f ∈ A(U) whose rth order derivatives

f (r)(z) = drf/dzr

belong to the spaces B2,γ and B2, respectively. Define

αn,r = n(n− 1) · · · (n − r + 1), n > r.

It is well known [7, 8] that the best approximation of functions

f =

∞
∑

k=0

ck(f)z
k ∈ B2,γ

is equal to

En−1(f)2,γ =

( ∞
∑

k=n

|ck(f)|
2

∫ 1

0
ρ2k+1γ(ρ)dρ

)1/2

,

En−s−1

(

f (s)
)

2,γ
=

( ∞
∑

k=n

|ck(f)|
2 α2

k,s

∫ 1

0
ρ2(k−s)+1γ(ρ)dρ

)1/2

,

(1.2)

and the modulus of continuity of f ∈ B2,γ is

ωm

(

f (r), t
)

2,γ
= 2m/2 sup

|h|≤t

{ ∞
∑

k=r

α2
k,r|ck(f)|

2(1− cos(k − r)h)m
∫ 1

0
ρ2(k−r)+1γ(ρ)dρ

}1/2

. (1.3)

Denote by

µs(γ) =

∫ 1

0
γ(ρ)ρsdρ, s = 0, 1, 2, . . . (1.4)

the moments of order s of the weight function γ(ρ) on [0, 1]. According to notation (1.4), we write
equalities (1.2) and (1.3) in compact form:

En−1(f)2,γ =

( ∞
∑

k=n

|ck(f)|
2µ2k+1(γ)

)1/2

,

En−s−1

(

f (s)
)

2,γ
=

( ∞
∑

k=n

|ck(f)|
2 α2

k,s µ2(k−s)+1(γ)

)1/2

, (1.5)

ωm

(

f (r), t
)

2,γ
= 2m/2 sup

|h|≤t

{ ∞
∑

k=r

α2
k,r|ck(f)|

2(1− cos(k − r)h)m µ2(k−r)+1(γ)

}1/2

.
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2. Analog of Ligun’s inequality

For compact statement of the results, we introduce the following extremal characteristic:

Km,n,r,s,p(q, γ, h) = sup
f∈B

(r)
2,γ

2m/2En−s−1

(

f (s)
)

2,γ
(

∫ h

0
ωp
m(f (r), t)2,γq(t)dt

)1/p
,

where m,n ∈ N, r ∈ Z+, n > r ≥ s, 0 < p < 2, 0 < h ≤ π/(n − r), and q(t) is a real, nonnegative,
measurable weight function that is not identically zero on [0, h].

Theorem 1. Let k,m, n ∈ N, r, s ∈ Z+, k > n > r ≥ s, 0 < p < 2, 0 < h ≤ π/(n − r), and let
q(t) be a nonnegative, measurable function that is not identically zero on [0, h]. Then

1

Ln,r,s,p(q, γ, h)
≤ Km,n,r,s,p(q, γ, h) ≤

1

inf
n≤k<∞

Lk,r,s,p(q, γ, h)
, (2.1)

where

Lk,r,s,p(q, γ, h) =
αk,r

αk,s

(

µ2(k−r)+1(γ)

µ2(k−s)+1(γ)

)1/2 (
∫ h

0

(

1− cos(k − r)t
)mp/2

q(t)dt

)1/p

.

P r o o f. Consider the simplified variant of Minkowski’s inequality [3, p. 104]:

(
∫ h

0

( ∞
∑

k=n

|gk(t)|
2

)p/2

dt

)1/p

≥

( ∞
∑

k=n

(
∫ h

0
|gk(t)|

pdt

)2/p)1/2

, (2.2)

which is hold for all 0 < p ≤ 2 and h ∈ R+. Setting

gk = fkq
1/p (0 < p ≤ 2)

in (2.2), we get

(
∫ h

0

( ∞
∑

k=n

|fk(t)|
2

)p/2

q(t)dt

)1/p

≥

( ∞
∑

k=n

(
∫ h

0
|fk(t)|

pq(t)dt

)2/p)1/2

. (2.3)

From (1.3) with respect to (2.3), we get

{
∫ h

0
ωp
m

(

f (r), t
)

2,γ
q(t)dt

}1/p

=

{
∫ h

0

(

ω2
m(f (r), t)2,γ

)p/2
q(t)dt

}1/p

≥

{
∫ h

0

(

2m
∞
∑

k=n

α2
k,r|ck(f)|

2(1− cos(k − r)t)mµ2(k−r)+1(γ)
)p/2

q(t)dt

}1/p

≥

{ ∞
∑

k=n

[

2mp/2αp
k,r|ck(f)|

p

∫ h

0
(1− cos(k − r)t)mp/2

(

µ2(k−r)+1(γ)
)p/2

q(t)dt
]2/p

}1/2

= 2m/2

{ ∞
∑

k=n

|ck(f)|
2µ2(k−r)+1(γ)

[

αp
k,r

∫ h

0
(1− cos(k − r)t)mp/2q(t)dt

]2/p
}1/2

= 2m/2

{ ∞
∑

k=n

|ck(f)|
2α2

k,s µ2(k−s)+1(γ)µ2(k−r)+1(γ)
(

µ2(k−s)+1(γ)
)−1
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[(

αk,r

αk,s

)p ∫ h

0
(1− cos(k − r)t)mp/2q(t)dt

]2/p}1/2

≥ 2m/2 inf
n≤k<∞

{

αk,r

αk,s

(

µ2(k−r)+1(γ)

µ2(k−s)+1(γ)

)1/2 (∫ h

0
(1− cos(k − r)t)mp/2q(t)dt

)1/p}

×

( ∞
∑

k=n

|ck(f)|
2α2

k,s µ2(k−s)+1(γ)

)1/2

= 2m/2En−s−1(f
(s))2,γ inf

n≤k<∞
Lk,r,s,p(q, γ, h),

and this yields the inequality

2m/2En−s−1

(

f (s)
)

2,γ
(
∫ h

0
ωp
m(f (r), t)2,γq(t)dt

)1/p
≤

1

inf
n≤k<∞

Lk,r,s,p(q, γ, h)
(2.4)

or

Km,n,r,s,p(q, γ, h) ≤
1

inf
n≤k<∞

Lk,r,s,p(q, γ, h)
. (2.5)

To estimate the value in (2.1) from below, consider the function

f0(z) = zn ∈ B
(r)
2,γ.

Simple calculation leads to the following relations:

En−s−1

(

f
(s)
0

)

2,γ
= αn,s

(
∫ 1

0
ρ2(n−s)+1γ(ρ)dρ

)1/2

= αn,s

(

µ2(n−s)+1(γ)
)1/2

,

ω2
m

(

f
(r)
0 , t

)

2,γ
= 2mα2

n,r

(

1− cos(n− r)t
)m

∫ 1

0
ρ2(n−r)+1γ(ρ)dρ

= 2mα2
n,r

(

1− cos(n− r)t
)m
µ2(n−r)+1(γ),

using which, we get the lower estimate

Km,n,r,p(q, γ, h) ≥
2m/2En−s−1

(

f
(s)
0

)

2,γ
(
∫ h

0
ωp
m(f

(r)
0 , t)2,γq(t)dt

)1/p

=
2m/2αn,s

(

µ2(n−s)+1(γ)
)1/2

(

2mp/2αp
n,r

(

µ2(n−r)+1(γ)
)p/2

∫ h

0
(1− cos(n− r)t)mp/2q(t)dt

)1/p
=

1

Ln,r,s,p(q, γ, h)
.

(2.6)

Comparing the upper estimate (2.5) and the lower estimate (2.6), we obtain the required two-sided
inequality (2.1). This completes the proof of Theorem 1. �

Corollary 1. The following two-sided inequality holds for γ1(ρ) = ρα, α ≥ 0, in Theorem 1:

1

Gn,r,s,p,α(q, h)
≤ Km,n,r,s,p(q, γ1, h) ≤

1

inf
n≤k<∞

Gk,r,s,p,α(q, h)
, (2.7)

where

Gk,r,s,p,α(q, h) =
αk,r

αk,s

(

2(k − s+ 1) + α

2(k − r + 1) + α

)1/2 (∫ h

0
(1− cos(k − r)t)mp/2 q(t)dt

)1/p

. (2.8)
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The following problem naturally arises from (2.7): to find an exact upper bound for the extremal
characteristic

Km,n,r,s,p(q, γ1, h) = sup
f∈B

(r)
2,γ1

2m/2En−s−1(f
(s))2,γ1

(
∫ h

0
ωp
m(f (r), t)2,γ1q(t)dt

)1/p
,

where m,n ∈ N, r, s ∈ Z+, n > r ≥ s, 0 < p < 2, 0 < h ≤ π/(n − r), γ1(ρ) = ρα, and α ≥ 0.

Theorem 2. Let a weight function q(t), t ∈ [0, h], be continuous and differentiable on the
interval. If the differential inequality

( r−1
∑

l=s

p

k − l
−

2p(r − s)

[2(k − r + 1) + α](2(k − s+ 1) + α)
−

1

k − r

)

q(t)−
1

k − r
tq′(t) ≥ 0 (2.9)

holds for all k ∈ N, r, s ∈ Z+, k > n > r ≥ s, 0 < p ≤ 2, and α ≥ 0, then the following equality
holds for all m,n ∈ N and 0 < h ≤ π/(n− r):

Km,n,r,s,p(q, γ1, h) =
αn,s

αn,r

(

2(n − r + 1) + α

2(n − s+ 1) + α

)1/2 (∫ h

0
(1− cos(n− r)t)mp/2 q(t)dt

)1/p

. (2.10)

P r o o f. To prove equality (2.10), it suffices to show that the following equality holds in (2.7):

inf
n≤k<∞

Gk,r,s,p,α(q, h) = Gn,r,s,p,α(q, h). (2.11)

We should note that a similar problem of finding a lower bound in (2.11) for some specific weights
for p = 2 was considered in [2]. In the general case, this problem was studied in [9], where it was
proved that, if the weight function q ∈ C(1)[0, h] for 1/r < p ≤ 2, r ≥ 1, and 0 < t ≤ h satisfies the
differential equation

(rp− 1)q(t) − tq′(t) ≥ 0,

then (2.11) holds.
Let us now show that, under all constrains on the parameters k, r, s, m, p, α, and h in Theo-

rem 2, the function

ψ(k) =

(

αk,r

αk,s

)p(2(k − s+ 1) + α

2(k − r + 1) + α

)p/2 ∫ h

0

(

1− cos(k − r)t
)mp/2

q(t)dt (2.12)

increases for n ≤ k <∞. Indeed, differentiating (2.12) and using the identity

d

dk
(1− cos(k − r)t)mp/2 =

t

k − r

d

dt
(1− cos(k − r)t)mp/2,

we obtain

ψ′(k) =

(

αk,r

αk,s

)p r−1
∑

l=s

p

k − l

(

2(k − s+ 1) + α

2(k − r + 1) + α

)p/2 ∫ h

0
(1− cos(k − r)t)mp/2 q(t)dt

+

(

αk,r

αk,s

)p p

2

(

2(k − s+ 1) + α

2(k − r + 1) + α

)p/2−1 4s − 4r

[2(k − r + 1) + α]2

∫ h

0
(1− cos(k − r)t)mp/2 q(t)dt

+

(

αk,r

αk,s

)p(2(k − s+ 1) + α

2(k − r + 1) + α

)p/2 ∫ h

0

d

dk
(1− cos(k − r)t)mp/2 q(t)dt
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=

∫ h

0
(1− cos(k − r)t)mp/2 q(t)dt

{(

αk,r

αk,s

)p r−1
∑

l=s

p

k − l

(

2(k − s+ 1) + α

2(k − r + 1) + α

)p/2

−

(

αk,r

αk,s

)p 2p(r − s)

[2(k − r + 1) + α](2(k − s+ 1) + α)

(

2(k − s+ 1) + α

2(k − r + 1) + α

)p/2}

+

(

αk,r

αk,s

)p(2(k − s+ 1) + α

2(k − r + 1) + α

)p/2 ∫ h

0

t

k − r

d

dt
(1− cos(k − r)t)mp/2q(t)dt

=

(

αk,r

αk,s

)p(2(k − s+ 1) + α

2(k − r + 1) + α

)p/2 { h

k − r
(1− cos(k − r)h)mp/2q(h) +

∫ h

0
(1− cos(k − r)t)mp/2

×

[( r−1
∑

l=s

p

k − l
−

2p(r − s)

[2(k − r + 1) + α](2(k − s+ 1) + α)
−

1

k − r

)

q(t)−
1

k − r
tq′(t)

]

dt

}

.

This relation and condition (2.9) imply that ψ(k) > 0, k ≥ n > r ≥ s, and we obtain equal-
ity (2.10). Theorem 2 is proved. �

Denote byW
(r)
p (ωm, q) (r ∈ Z+, 0 < p ≤ 2) the set of functions f ∈ B

(r)
2,γ1

whose rth derivatives

f (r) satisfy the following condition for all 0 < h ≤ π/(n − r) and n > r:

∫ h

0
ωp
m

(

f (r), t
)

2,γ1
q(t)dt ≤ 1.

Since, for f ∈ B
(r)
2,γ1

, its intermediate derivatives f (s) (1 ≤ s ≤ r−1) also belong to L2, the behavior

of the value En−s−1

(

f (s)
)

2
for some classes M

(r) ⊂ B
(r)
2,γ1

, n > r ≥ s, n ∈ N, and r, s ∈ Z+, is of
interest. More precisely, it is required to find the value

An,s

(

M
(r)

)

:= sup
{

En−s−1(f
(s))2,γ1 : f ∈ M

(r)
}

.

Corollary 2. The following equality holds for all n ∈ N, n > r ≥ s, 0 < p ≤ 2, and 0 < h ≤
π/(n − r):

An,s

(

W (r)
p (ωm, q)

)

:= sup
{

En−s−1(f
(s))2,γ1 : f ∈W (r)

p (ωm, q)
}

=
1

2m/2 Gn,r,s,p,α(q, h)
. (2.13)

Moreover, there is a function g0 ∈W
(r)
p (ωm, q) on which the upper bound in (2.13) is attained.

P r o o f. Assuming that γ = γ1(ρ) = ρα in (2.4), with respect to (2.8), we can write

En−s−1(f
(s))2,γ1 ≤

(
∫ h

0
ωp
m(f (r), t)2,γ1q(t)dt

)1/p

2m/2 inf
n≤k<∞

Lk,r,s,p(q, γ1, h)
=

(
∫ h

0
ωp
m(f (r), t)2,γ1q(t)dt

)1/p

2m/2 inf
n≤k<∞

Gk,r,s,p,α(q, h)
.

Using equality (2.11) and the definition of the class W
(r)
p (ωm, q), we get

En−s−1(f
(s))2,γ1 ≤

1

2m/2 Gn,r,s,p,α(q, h)
. (2.14)

From (2.14), it follows the upper estimate of the value on the left-hand side of (2.13):

An,s

(

W (r)
p (ωm; q,Φ)

)

≤
1

2m/2 Gn,r,s,p,α(q, h)
. (2.15)
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To obtain the lower estimate for this value, consider the function

g0(z) =

√

2(n− r + 1) + α

2m/2αn,r

(
∫ h

0
(1− cos(n− r)t)mp/2 q(t)dt

)−1/p

zn

and show that g0 belongs to W
(r)
p (ωm, q). Differentiating this function r times, we obtain

g
(r)
0 (z) =

√

2(n − r + 1) + α

2m

(
∫ h

0
(1− cos(n− r)t)mp/2 q(t)dt

)−1/p

zn−r.

Using this equality and formulas (1.3), we get

ωm

(

g
(r)
0 , t

)

2,γ1
=

[1− cos(n− r)t]m/2

(
∫ h

0
(1− cos(n− r)t)mp/2 q(t)dt

)1/p
.

Raising both sides of this inequality to a power p (0 < p ≤ 2), multiplying them by the weight
function q(t), and integrating with respect to t from 0 to h, we obtain

∫ h

0
ωp
m(g

(r)
0 , t)2,γ1q(t)dt = 1

or, equivalently,
(
∫ h

0
ωp
m(g

(r)
0 , t)2,γ1q(t)dt

)1/p

= 1.

Thus, the inclusion g0 ∈W
(r)
p (ωm, q) is proved.

Since the relation

g
(s)
0 (z) =

√

2(n− r + 1) + α

2m
αn,s

αn,r

(
∫ h

0
(1− cos(n− r)t)mp/2 q(t)dt

)−1/p

zn−s

holds for all 0 ≤ s ≤ r < n, n ∈ N, and r, s ∈ Z+, according to (1.5), we have

En−s−1

(

g
(s)
0

)

2,γ1
=

1

2m/2

αn,s

αn,r

√

2(n− r + 1) + α

2(n − s+ 1) + α

(
∫ h

0
[1− cos(n− r)t]mp q(t)dt

)−1/p

=
1

2m/2 Gn,r,s,p,α(q, h)
.

Using this equality, we obtain the lower estimate

sup
{

En−s−1(f
(s))2,γ1 : f ∈W (r)

p (Ωm, q)
}

≥ En−s−1(g
(s)
0 )2,γ1 =

1

2m/2 Gn,r,s,p,α(q, h)
. (2.16)

Comparing the upper estimate (2.15) and the lower estimate (2.16), we obtain the required equal-
ity (2.13). �
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3. Exact values of n-widths for the classes W
(r)
p (ωm, q) (r ∈ Z+, 0 < p ≤ 2)

Recall definitions and notation needed in what follows. Let X be a Banach space, let S be
the unit ball in X, let Λn ⊂ X be an n-dimensional subspace, let Λn ⊂ X be a subspace of
codimension n, let L : X → Λn be a continuous linear operator, let L ⊥ : X → Λn be a continuous
linear projection operator, and let M be a convex centrally symmetric subset of X. The quantities

bn(M,X) = sup
{

sup {ε > 0; εS ∩ Λn+1 ⊂ M} : Λn+1 ⊂ X
}

,

dn(M,X) = inf
{

sup {inf {‖f − g‖X : g ∈ Λn} : f ∈ M} : Λn ⊂ X
}

,

δn(M,X) = inf
{

inf {sup {‖f − L f‖X : f ∈ M} : LX ⊂ Λn} : Λn ⊂ X
}

,

dn(M,X) = inf
{

sup {‖f‖X : f ∈ M ∩ Λn} : Λn ⊂ X
}

,

Πn(M,X) = inf
{

inf{sup{‖f − L
⊥f‖X : f ∈ M} : L

⊥X ⊂ Λn} : Λn ⊂ X
}

are called the Bernstein, Kolmogorov, linear, Gelfand, and projection n-widths of a subset M in
the space X, respectively. These n-widths are monotone in n and related as follows in a Hilbert
space X (see, e.g., [3, 11]):

bn(M,X) ≤ dn(M,X) ≤ dn(M,X) = δn(M,X) = Πn(M,X). (3.1)

For an arbitrary subset M ⊂ X, we set

En−1(M)X := sup
{

En−1(f)2 : f ∈ M
}

.

Theorem 3. The following equalities hold for all m,n ∈ N, r ∈ Z+, n > r, and 0 ≤ h ≤
π/(n − r):

λn(W
(r)
p (ωm, q), B2,γ1) = En−1(W

(r)
p (ωm, q), B2,γ1)

=
1

2m/2αn,r

√

2(n − r + 1) + α

2(n + 1) + α

(
∫ h

0
[1− cos(n− r)t]mp q(t)dt

)−1/p

,
(3.2)

where λn(·) is any of the n-widths bn(·), dn(·), d
n(·), δn(·), and Πn(·).

P r o o f. We obtain the upper estimates of all n-widths for the class W
(r)
p (ωm, q) with s = 0

from (2.14) since

En−1

(

W (r)
p (ωm, q)

)

2,γ1
= sup

{

En−1(f)2,γ1 : f ∈W (r)
p (ωm, q)

}

≤
1

2m/2αn,r

√

2(n − r + 1) + α

2(n + 1) + α

(
∫ h

0
[1− cos(n− r)t]mp q(t)dt

)−1/p

.

Using relations (3.1) between the n-widths, we obtain the upper estimate in (3.2):

λn
(

W (r)
p (ωm, q)

)

≤ En−1

(

W (r)
p (ωm, q)

)

2,γ1

≤
1

2m/2αn,r

√

2(n − r + 1) + α

2(n + 1) + α

(
∫ h

0
[1− cos(n− r)t]mp q(t)dt

)−1/p

.
(3.3)

To obtain the lower estimate on the right-hand side of (3.2) for all n-widths in the (n + 1)-
dimensional subspace of complex algebraic polynomials

Pn+1 =
{

pn(z) : pn(z) =

n
∑

k=0

akz
k, ak ∈ C

}

,
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we introduce the ball

Bn+1:=

{

pn(z) ∈ Pn : ‖pn‖ ≤
1

2m/2αn,r

√

2(n−r+1)+α

2(n + 1) + α

(
∫ h

0
[1− cos(n− r)t]mp q(t)dt

)−1/p}

,

where n > r, n ∈ N, r ∈ Z+, and show that Bn+1 ⊂ W
(r)
p (ωm, q). Indeed, for all pn(z) ∈ Bn+1,

from (1.3), we write

ω2
m

(

p(r)n , t
)

2,γ1
= 2m

∞
∑

k=r

α2
k,r|ak(f)|

2

2(k − r + 1) + α
(1− cos(k − r)h)m

≤ 2m max
r≤k≤n

{

α2
k,r(1− cos(k − r)h)m

}

∞
∑

k=r

|ak(f)|
2

2(k − r + 1) + α
.

(3.4)

We have to prove that

max
r≤k≤n

{

α2
k,r(1− cos(k − r)h)m

}

= α2
n,r(1− cos(n− r)h)m, 0 ≤ h ≤ π/(n − r).

Consider the function

ϕ(k) = α2
k,r(1− cos(k − r)h)m, r ≤ k ≤ n, 0 ≤ h ≤ π/(n − r).

We will show that the function ϕ(k) is monotone increasing for all accepted values k and h. To
this end, it suffices to show that ϕ′(k) > 0. In fact

ϕ′(k) = 2α2
k,r

r−1
∑

l=0

1

k − l
(1− cos(k − r)h)m +mhα2

k,r sin(k − r)h(1− cos(k − r)h)m−1 ≥ 0.

Hence, we can write (3.4) in the form

ω2
m

(

p(r), t
)

2,γ1
≤ 2mα2

n,r(1− cos(n− r)h)m
∞
∑

k=r

|ak(f)|
2

2(k − r + 1) + α

≤ 2mα2
n,r(1− cos(n− r)h)m

∞
∑

k=0

|ak(f)|
2

2(k − r + 1) + α
= 2mα2

n,r(1− cos(n− r)h)m‖pn‖
2
2,γ1 .

(3.5)

From (3.5), we have

ωm

(

p(r), t
)

2,γ1
≤ 2m/2αn,r(1 − cos(n− r)h)m/2‖pn‖2,γ1 .

Raising both sides of this inequality to a power p (0 < p ≤ 2), multiplying them by the weight
function q(t), and integrating with respect to t from 0 to h, we obtain

∫ h

0
ωp
m

(

p(r), t
)

2,γ1
q(t)dt ≤ 2mp/2αp

n,r‖pn‖
p
2,γ1

∫ h

0
(1− cos(n− r)h)mp/2q(t)dt ≤ 1

for all pn ∈ Bn+1. It follows that Bn+1 ⊂ W
(r)
p (ωm, q). Then, according to the definition of the

Bernstein n-width and (3.1), we can write the following lower estimate for all above listed n-widths:

λn(W
(r)
p (ωm, q), B2,γ1) ≥ bn(W

(r)
p (ωm, q), B2,γ1) ≥ bn(Bn+1, B2,γ1)

≥
1

2m/2αn,r

√

2(n − r + 1) + α

2(n + 1) + α

(
∫ h

0
[1− cos(n− r)t]mp q(t)dt

)−1/p

.
(3.6)

Comparing the upper estimate (3.3) and the lower estimate in (3.6), we obtain the required equal-
ity (3.2). Theorem 3 is proved. �
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4. Conclusion

Upper and lower estimates have been proven for extremal characteristics in a weighted Bergman
space. In the case of a power function considered instead of a general weight, the values of n-widths
have been calculated for a specific class of functions.

REFERENCES

1. Garkavi A. L. Simultaneous approximation to a periodic function and its derivatives by trigonometric
polynomials. Izv. Akad. Nauk SSSR Ser. Mat., 1960. Vol. 24, No. 1. P. 103–128. (in Russian)

2. Ligun A.A. Some inequalities between best approximations and moduli of continuity in an L2 space.
Math Notes Acad. Sci. USSR, 1978. Vol. 24, No. 6. P. 917–921. DOI: 10.1007/BF01140019

3. Pinkus A. n-Widths in Approximation Theory. Berlin, Heidelberg: Springer-Verlag, 1985. 294 p.
DOI: 10.1007/978-3-642-69894-1

4. Shabozov M. Sh., Saidusaynov M. S. Upper bounds for the approximation of certain classes of functions
of a complex variable by Fourier series in the space L2 and n-widths. Math. Notes, 2018. Vol. 103, No. 4.
P. 656–668. DOI: 10.1134/S0001434618030343

5. Shabozov M. Sh., Saidusainov M. S. Mean-square approximation of functions of a complex variable by
Fourier sums in orthogonal systems. Trudy Inst. Mat. Mekh. UrO RAN, 2019. Vol. 25. No. 2. P. 258–272.
DOI: 10.21538/0134-4889-2019-25-2-258-272 (in Russian)

6. Shabozov M. Sh., Saidusaynov M. S. Approximation of functions of a complex variable by Fourier
sums in orthogonal systems in L2. Russian Math. (Iz. VUZ), 2020. Vol. 64, No. 6. P. 56–62.
DOI: 10.3103/S1066369X20060080

7. Shabozov M. Sh., Saidusainov M. S. Mean-squared approximation of some classes of complex variable
functions by Fourier series in the weighted Bergman space B2,γ . Chebyshevskii Sb., 2022. Vol. 23, No. 1.
P. 167–182. DOI: 10.22405/2226-8383-2022-23-1-167-182 (in Russian)

8. Shabozov M. Sh., Shabozov O. Sh. On the best approximation of some classes of analytic functions in
the weighted Bergman spaces. Dokl. Math., 2007. Vol. 75. P. 97–100. DOI: 10.1134/S1064562407010279

9. Shabozov M. Sh., Yusupov G.A. Best polynomial approximations in L2 of classes of 2π-periodic
functions and exact values of their widths. Math. Notes, 2011. Vol. 90, No. 5. P. 748–757.
DOI: 10.1134/S0001434611110125

10. Shabozov M. Sh., Yusupov G.A., Zargarov J. J. On the best simultaneous polynomial approximation of
functions and their derivatives in Hardy spaces. Trudy Inst. Mat. Mekh. UrO RAN, 2021. Vol. 27, No. 4.
P. 239–254. DOI: 10.21538/0134-4889-2021-27-4-239-254 (in Russian)

11. Tikhomirov V.M. Nekotorie voprosi teorii priblizhenij [Some Questions in Approximation Theory].
Moscow: Izdat. Moskov. Univ., 1976. 304 p. (in Russian)

12. Timan A. F. On the question of simultaneous approximation of functions and their derivatives on the
whole real axis. Izv. Akad. Nauk SSSR Ser. Mat., 1960. Vol. 24. No. 3. P. 421–430.

13. Vakarchuk S. B. Diameters of certain classes of functions analytic in the unit disc. I. Ukr. Math. J., 1990.
Vol. 42. P. 769–778. DOI: 10.1007/BF01062078

14. Vakarchyuk S. B. Best linear methods of approximation and widths of classes of analytic functions in a
disk. Math. Notes, 1995. Vol. 57, No. 1–2. P. 21–27. DOI: 10.1007/BF02309390

15. Vakarchuk S. B., Shabozov M. Sh. The widths of classes of analytic functions in a disc. Sb. Math., 2010.
Vol. 201, No. 8. P. 1091–1110. DOI: 10.1070/SM2010v201n08ABEH004104

https://doi.org/10.1007/BF01140019
https://doi.org/10.1007/978-3-642-69894-1
https://doi.org/10.1134/S0001434618030343
https://doi.org/10.21538/0134-4889-2019-25-2-258-272
https://doi.org/10.3103/S1066369X20060080
https://doi.org/10.22405/2226-8383-2022-23-1-167-182
https://doi.org/10.1134/S1064562407010279
https://doi.org/10.1134/S0001434611110125
https://doi.org/10.21538/0134-4889-2021-27-4-239-254
https://doi.org/10.1007/BF01062078
https://doi.org/10.1007/BF02309390
https://doi.org/10.1070/SM2010v201n08ABEH004104


URAL MATHEMATICAL JOURNAL, Vol. 9, No. 2, 2023, pp. 175–192

DOI: 10.15826/umj.2023.2.015

A PRESENTATION FOR A SUBMONOID
OF THE SYMMETRIC INVERSE MONOID

Apatsara Sareeto

Institute of Mathematics, University of Potsdam,
Potsdam, 14476, Germany

channypooii@gmail.com

Jörg Koppitz

Institute of Mathematics and Informatics,
Bulgarian Academy of Sciences,

Sofia, 1113, Bulgaria

koppitz@math.bas.bg

Abstract: In the present paper, we study a submonoid of the symmetric inverse semigroup In. Specifically,
we consider the monoid of all order-, fence-, and parity-preserving transformations of In. While the rank and
a set of generators of minimal size for this monoid are already known, we will provide a presentation for this
monoid.
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1. Introduction

Let n be a finite chain with n elements, where n is a positive integer, denoted by
n = {1 < 2 < · · · < n}. We denote by PTn the monoid (under composition) of all partial transfor-
mations on n. A partial transformation α on the set n is a mapping from a subset A of n into n.
The domain (respectively, image or range) of α is denoted by dom(α) (respectively, im(α)). The
empty transformation is denoted by ε. A transformation α ∈ PTn is called order-preserving if x < y
implies xα ≤ yα for all x, y ∈ dom(α). It is worth noting that we write mappings on the right of
their arguments and perform composition from left to right. Furthermore, an α ∈ PTn is called a
partial injection when α is injective. The set of all partial injections forms a monoid, the symmetric
inverse semigroup In, as introduced by Wagner [17]. We denote by POIn the submonoid of In,
consisting of all order-preserving partial injections on n. This monoid has already been well-studied
(see e.g., [6]).

A non-linear order that is closed to a linear order in some sense is the so-called zig-zag order.
The pair (n,�) is called a zig-zag poset or fence if

1 ≺ 2 ≻ · · · ≺ n− 1 ≻ n if n is odd and 1 ≺ 2 ≻ · · · ≻ n− 1 ≺ n if n is even, respectively.

The definition of the partial order � is self-explanatory. A transformation α ∈ PTn is referred
to as fence-preserving if it preserves the partial order �, meaning that for all x, y ∈ dom(α) with
x ≺ y, we have xα � yα. The set of fence-preserving transformations on n was initially explored by
Currie, Visentin, and Rutkowski. In [2, 14], the authors investigated the number of order-preserving
maps of a finite fence. In particular, a formula for the number of order-preserving self-mappings

https://doi.org/10.15826/umj.2023.2.015
mailto:channypooii@gmail.com
mailto:koppitz@math.bas.bg
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of a fence was introduced. It is noteworthy that every element of a fence is either minimal or
maximal. For all x, y ∈ n with x ≺ y, we have y ∈ {x − 1, x + 1}. We denote by PFIn the
submonoid of In, consisting of all fence-preserving partial injections of n. We denote by IFn the
inverse submonoid of PFIn of all regular elements in PFIn. It is easy to see that IFn is the set
of all α ∈ PFIn with α−1 ∈ PFIn. It is worth mentioning that several properties of a variety of
monoids of fence-preserving transformations were studied [3, 7, 9, 11, 12, 16].

In the present paper, we focus on a submonoid of IOFn = IFn
⋂

POIn. Let a ∈ dom(α) for
some α ∈ IOFn. If a + 1 ∈ dom(α) or a − 1 ∈ dom(α) then it is easy to verify that a and aα
have the same parity. In other words, a is odd if and only if aα is odd. However, if a − 1 and
a + 1 are not in dom(α), then a and aα can have different parity. In order to exclude this case,
we require that the image of any a ∈ dom(α) has the same parity as aα. In this context, we refer
to α as parity-preserving. In our paper, we consider the monoid IOF par

n of all parity-preserving
transformations of IOFn. Notably, for any α ∈ IOF par

n , the inverse partial injection α−1 exists
and possesses order-preserving, fence-preserving, and parity-preserving. This observation implies
that IOF par

n is an inverse submonoid of In, as explained in [15]. Furthermore, in the same paper
[15], the authors provided a characterization of the monoid IOF par

n :

Proposition 1 [15]. Let p ≤ n and let

α =

(

d1 < d2 < · · · < dp
m1 m2 · · · mp

)

∈ In.

Then α ∈ IOF par
n if and only if the following four conditions hold :

(i) m1 < m2 < ... < mp;

(ii) d1 and m1 have the same parity ;

(iii) di+1 − di = 1 if and only if mi+1 −mi = 1 for all i ∈ {1, ..., p − 1};
(iv) di+1 − di is even if and only if mi+1 −mi is even for all i ∈ {1, ..., p − 1}.

Also in [15], a set of generators of IOF par
n of minimal size is given. This leads to the question of a

presentation of IOF par
n . In this paper, we will exhibit a monoid presentation for IOF par

n . A monoid
presentation is represented as an ordered pair 〈X |R〉, where X is a set, referred to as the alphabet
(a set whose elements are called letters), and R is a binary relation on the free monoid generated by
X, denoted by X∗. A pair (u, v) ∈ X∗×X∗ is represented by u ≈ v and is called relation. We state
that u ≈ v, for u, v ∈ X∗, is a consequence of R if (u, v) ∈ ρR, where ρR denotes the congruence
on X∗ generated by R. We say that the momoid IOF par

n has (monoid) presentation 〈X |R〉 if
IOF par

n is isomorphic to the factor semigroup X∗/ρR. For a more comprehensive understanding of
semigroups, presentations, and standard notation see [1, 8, 10, 13].

Given that IOF par
n is a finite monoid, we can always exhibit a presentation for it. A usual

method to establish a good presentations is the Guess and Prove Method, which is described by
the following theorem, adapted to monoids from Ruškuc (1995, Proposition 3.2.2).

Theorem 1 [13]. Let X be a generating set for IOF par
n , let R ⊆ X∗ ×X∗ be a set of relations

and let W ⊆ X∗ that the following conditions are satisfied :

1. The generating set X of IOF par
n satisfies all the relations from R;

2. For each word w ∈ X∗, there exists a word w′ ∈ W such that the relation w ≈ w′ is a

consequence of R;

3. |W | ≤ |IOF par
n |.

Then IOF par
n is defined by the presentation 〈X |R〉.
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In the next section, we introduce the alphabet (generating set) denoted as Xn and the binary
relation R on X∗

n. Furthermore, we will demonstrate that Xn fulfills all the relations in R as
outlined in Theorem 1, item 1. Following the guidance of item 2 in Theorem 1, we will establish
a set of forms, denoted as P , in Section 3. Finally, in the last section, we will provide a proof for
item 3 of Theorem 1.

2. The generator and relations

In this section, we will define the alphabet Xn and introduce a binary relation R on X∗
n. We

will also demonstrate that the corresponding generating set satisfies all the relations in R. Let vi
be the partial identity with the domain n\{i} for all i ∈ {1, ..., n}. Additionally, let us define

ui =

(

1 · · · i i+ 1 i+ 2 i+ 3 i+ 4 · · · n
3 · · · i+ 2 − − − i+ 4 · · · n

)

and xi = (ui)
−1 for all i ∈ {1, ..., n − 2}. By Proposition 1, it is easy to verify that ui

as well as xi, i ∈ {1, ..., n − 2}, belong to IOF par
n . In [15], the authors have shown that

{v1, v2, ..., vn, u1, u2, ..., un−2, x1, x2, ..., xn−2} is a generating set of IOF par
n . In order to use Theo-

rem 1, we define an alphabet

Xn = {v1, v2, ..., vn, u1, u2, ..., un−2, x1, x2, ..., xn−2},

which corresponds to the set of generators of IOF par
n . For w = w1...wm with w1, ..., wm ∈ Xn,

where m being a positive integer, we write w−1 for the word w−1 = wm...w1.
We fix a particular sequence of letters as follows: xi,j = xixi+2...xi+2j−2 and

ui,j = uiui+2...ui+2j−2 for i ∈ {1, ..., n − 2}, j ∈ {1, ..., ⌊(n − i)/2⌋} and obtain the following sets of
words:

Wx =
{

xi,j : i ∈ {1, ..., n − 2}, j ∈
{

1, ...,
⌊n− i

2

⌋}}

,

W−1
x =

{

x−1
i,j : xi,j ∈ Wx

}

,

Wu =
{

ui,j : i ∈ {1, ..., n − 2}, j ∈
{

1, ...,
⌊n− i

2

⌋}}

.

Let w be any word of the form w = w1...wm with w1, ..., wm ∈ Wx∪Wu and m is a positive integer.
For k ∈ {1, ...,m}, the word wk is of the form

wk =

{

uik,jk if wk ∈ Wu;

xik,jk if wk ∈ Wx

for some ik ∈ {1, ..., n−2}, jk ∈ {1, ..., ⌊(n − i)/2⌋}. We observe jk = |wk|, i.e. jk is the length of the
word wk. We define two sequences 1x, 2x, ...,mx and 1u, 2u, ...,mu of indicators: for k ∈ {1, ...,m}
let

kx =

{

ik + 2|wk|+ 2|W k
u | − 2|W k

x | if wk ∈ Wu;

ik if wk ∈ Wx

and

ku =

{

ik + 2|wk| − 2|W k
u |+ 2|W k

x | if wk ∈ Wx;

ik if wk ∈ Wu,
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where W s
u (respectively, W s

x) means the word ws+1...wm without the letters in {x1, ..., xn−2} re-
spectively, in {u1, ..., un−2}) for s ∈ {0, 1, ...,m − 1} and Wm

u = Wm
x = ǫ, where ǫ is the empty

word. Let Q0 be the set of all words w = w1...wm with w1, ..., wm ∈ Wx ∪ Wu and m being a
positive integer such that:

(1q) If wk, wl ∈ Wx then ik + 2jk + 1 < il for k < l ≤ m;
(2q) If wk, wl ∈ Wu then ik + 2jk + 1 < il for k < l ≤ m;
(3q) If wk ∈ Wu then ik + 2jk + 2 ≤ (k + 1)u for k ∈ {1, ...,m − 1} and (k + 1)x − kx ≥ 2;
(4q) If wk ∈ Wx then ik + 2jk + 2 ≤ (k + 1)x for k ∈ {1, ...,m − 1} and (k + 1)u − ku ≥ 2.

Let now w = w1...wm ∈ Q0 and let w∗ = W 0
u (W

0
x )

−1. Further, we define recursively a set Aw:

(5q) If mu > mx and mu + 2 ≤ n then Am = {mu + 2, ..., n},
if mu < mx and mx + 2 ≤ n then Am = {mx + 2, ..., n},
otherwise Am = ∅;

(6q) If wk ∈ Wu then Ak = Ak+1 ∪ {ik + 2jk + 2, ..., (k + 1)u − 1} for k ∈ {1, ...,m − 1},
if wk ∈ Wx then Ak = Ak+1 ∪ {ku + 2, ..., (k + 1)u − 1)} for k ∈ {1, ...,m − 1};

(7q) If 1 ∈ {1x, 1u} then Aw = A1,
if 1 < 1u ≤ 1x then Aw = A1 ∪ {1, ..., 1u − 1},
if 1 < 1x < 1u then Aw = A1 ∪ {1u − 1x + 1, ..., 1u − 1}.

For a set A = {i1 < i2 < · · · < ik} ⊆ n, let vA = vi1vi2 ...vik for some k ∈ {1, ..., n}. Note that v∅
means the empty word ǫ. For convenience, we put vi = ǫ for i ≥ n+ 1. Let

Wn = {vAw
∗ : w ∈ Q0, A ⊆ Aw} ∪ {vA : A ⊆ n}.

On the other hand, we will define now a set of relations. For this, let Wt be the set of all words of
the form ui0ui1 ...uilxj1 ...xjmxjm+1

with the following four properties:

(i) l ∈ {0, ..., n − 2}, and m ∈ {0, ..., n − 3};
(ii) i0 < i1 < · · · < il ∈ {1, ..., n − 2};
(iii) j1 > j2 > · · · > jm > jm+1 ∈ {1, ..., n − 2};
(iv) if k ∈ {i0, ..., il−1} (respectively, k ∈ {j2, ..., jm+1}) then k+1, k+3 /∈ {i1, ..., il} (respectively,

k + 1, k + 3 /∈ {j1, ..., jm}) for all k ∈ {1, ..., n − 3}.

Then we define a sequence R of relations on X∗
n as follows: for i, j ∈ {1, ..., n} and k = i+ 2j − 2,

let

(E) xiuj ≈



















































v1v2vi+3...vj+3, if i < j, j − i = 2, 3;

v1v2vj+3...vi+3, if i > j, i− j = 2, 3;

v1v2vj+3vj+4, if i > j, i− j = 1;

v1v2vj+2vj+3, if i < j, j − i = 1;

v1v2vi+3, if i = j;

v1v2ujxi+2, if i < j, j − i ≥ 4;

v1v2uj+2xi, if i > j, i− j ≥ 4;

(L1) u2u1 ≈ u1u2 ≈ x1x2 ≈ x2x1 ≈ u22 ≈ x22 ≈ v1v2v3v4v5;

(L2) u3u2 ≈ x2x3 ≈ v1v2v3v4v5v6;

(L3) uiu1 ≈ v1v2ui and x1xi ≈ v3v4xi, i ≥ 3;

(L4) uiu2 ≈ v1v2v3ui and x2xi ≈ v3v4v5xi, i ≥ 4;

(L5) uiui−1 ≈ vi+3ui−3ui−1 and xi−1xi ≈ vi+3xi−1xi−3, i ≥ 4;

(L6) uiuj ≈ uj−2ui and xjxi ≈ xixj−2, i > j ≥ 3, i − j ≥ 2;
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(R1) v2i ≈ vi, i ∈ {1, ..., n};
(R2) vivj ≈ vjvi, i, j ∈ {1, ..., n}, i 6= j;

(R3) viuj ≈ ujvi and vixj ≈ xjvi, i ∈ {j + 4, ..., n};
(R4) viuj ≈ ujvi+2 and vi+2xj ≈ xjvi, 1 ≤ i ≤ j;

(R5) viuj ≈ uj and xjvi ≈ xj , i ∈ {j + 1, j + 2, j + 3};
(R6) ujvi ≈ uj and vixj ≈ xj , i ∈ {1, 2, j + 3};
(R7) u21 ≈ x21 ≈ v1...v4;

(R8) u2i ≈ ui−2ui and x2i ≈ xixi−2, i ≥ 3;

(R9) uiui+1 ≈ ui−1ui+1 and xi+1xi ≈ xi+1xi−1, i ∈ {2, ..., n − 5};
(R10) uiui+3 ≈ vi+6uiui+2 and xi+3xi ≈ vi+6xi+2xi, i ≤ n− 5;

(R11) w ≈ vi0+1vi0+2vi0+3ui1 ...uilxj1 ...xjm , w = ui0ui1 ...uilxj1 ...xjmxjm+1
∈ Wt

with jm+1 = i0 + 2l − 2m;

(R12) w ≈ vi0vi0+1vi0+2vi0+3ui1 ...uilxj1 ...xjm , w = ui0ui1 ...uilxj1 ...xjmxjm+1
∈ Wt

with jm+1 = i0 + 2l − 2m− 1;

(R13) w ≈ vi0+1vi0+2vi0+3vi0+4ui1 ...uilxj1 ...xjm , w = ui0ui1 ...uilxj1 ...xjmxjm+1
∈ Wt

with jm+1 = i0 + 2l − 2m+ 1;

(R14) w ≈ ui0ui1 ...uilxj1 ...xjm , w = ui0ui1 ...uilxj1 ...xjmxjm+1
∈ Wt with jm+1 < 2l − 2m;

(R15) w ≈ ui1 ...uilxj1 ...xjmxjm+1
, w = ui0ui1 ...uilxj1 ...xjmxjm+1

∈ Wt with i0 < 2m− 2l;

(R16) v1...viui,j ≈ v1...vk+3, i ∈ {1, ..., n − 2};
(R17) vk−i+3...vk+2x

−1
i,j ≈ v1...vk+3, i ∈ {1, ..., n − 2};

(R18) viui,j ≈ vk+3ui−1,j , i ∈ {2, ..., n − 2};
(R19) vk+2x

−1
i,j ≈ vk+3x

−1
i−1,j, i ∈ {2, ..., n − 2}.

Lemma 1. The relations from R hold as equations in IOF par
n , when the letters are replaced

by the corresponding transformations.

P r o o f. We show the statement diagrammatically. This method was also used in [4, 5]. We
give an example calculation for the relation (R10) uiui+3 ≈ vi+6uiui+2, i ≤ n−5, in Figures 1 and 2
below. Note we can show xi+3xi ≈ vi+6xi+2xi in a similar way. �

By Figures 1 and 2, we have that uiui+3 = vi+6uiui+2.

ui

ui+3

uiui+3

1 i i + 7 n

5 i + 4

1

3

i i + 4

=

n

i + 7

Figure 1. uiui+3.

ui

ui+2

vi+6

1 i i + 7 n

5 i + 4

vi+6uiui+2

1

3

i

i + 7

=

n

Figure 2. vi+6uiui+2.
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Next, we will verify consequences of R, which are important by technical reasons.

Lemma 2. (i) For w = ui0ui1 ...uilxj1 ...xjmxjm+1
∈ Wt with jm+1 = 2l − 2m, we have

w ≈ v1ui0ui1 ...uilxj1 ...xjm .
(ii) For w = ui0ui1 ...uilxj1 ...xjmxjm+1

∈ Wt with i0 = 2m− 2l, we have

w ≈ vi0+3ui1 ...uilxj1 ...xjmxjm+1
.

P r o o f. (i) We have

ui0ui1 ...uilxj1 ...xjmxjm+1

(R14)
≈ ui0ui1 ...uilxj1 ...xjmxjm+1−1xjm+1

.

Suppose jm+1 = 2l − 2m ≥ 4. Then

ui0ui1 ...uilxj1 ...xjmxjm+1−1xjm+1

(L5)
≈ ui0ui1 ...uilxj1 ...xjmvjm+1+3xjm+1−1xjm+1−3

(R4)
≈ v1ui0ui1 ...uilxj1 ...xjmxjm+1−1xjm+1−3

(R14)
≈ v1ui0ui1 ...uilxj1 ...xjm .

Suppose jm+1 = 2l − 2m < 4, i.e. jm+1 = 2. We prove that

ui0ui1 ...uilxj1 ...xjmxjm+1
≈ v1ui0ui1 ...uilxj1 ...xjm

by using (L1) and (R4)–(R6) in a similar way.
(ii) The proof is similar to (i), by using (R15) and (L5) if i0 ≥ 4 and (R15), (L1), and (R4)–(R6)

if i0 = 2. �

3. Set of forms

In this section, we introduce an algorithm, which transforms any word w ∈ X∗
n to a word

in Wn using R, with other words, we show that for all w ∈ X∗
n, there is w

′ ∈ Wn such that w ≈ w′

is a consequence of R. First, the algorithm transforms each w ∈ X∗
n to a “new” word w′. All

these “new” words will be collected in a set. Later, we show that this set belongs to Wn. Let
w ∈ X∗

n\{ǫ}.

• Using (R1)–(R6), we can move any vi for i ∈ {1, 2, ..., n}, at the beginning of the word or we
can cancel it. So we obtain w ≈ ṽw̃, where ṽ ∈ {v1, ..., vn}

∗ and w̃ ∈ {u1, u2, ..., un−2, x1, x2,
..., xn−2}

∗.

• Moreover, we separate the ui’s and xi’s for i ∈ {1, ..., n − 2} by (E) and (R1)–(R6). Then
ṽw̃ ≈ vBC, where v ∈ {v1, ..., vn}

∗, B ∈ {u1, u2, ..., un−2}
∗, and C ∈ {x1, x2, ..., xn−2}

∗.

• By (L1)–(L6) and (R1)–(R6), we get vBC ≈ v′B′C ′, where v′ ∈ {v1, ..., vn}
∗,

B′ ∈ {u1, u2, ..., un−2}
∗, and C ′ ∈ {x1, x2, ..., xn−2}

∗ such that the indices of the letters in
the word B′ are ascending and in the word C ′ are descending (reading from the left to the
right).

• By (L1), (R7)–(R10), and (R1)–(R6), we replace subwords of B′C ′ of the form
xi+3xi, xi+1xi, x

2
i , u

2
i , uiui+3, and uiui+1 until v′B′C ′ ≈ v′′w1...wp with v′′ ∈ {v1, ..., vn}

∗

and w1, ..., wp ∈ W−1
x ∪Wu such that

if ui ∈ var(w1...wp) (respectively, xi ∈ var(w1...wp)) then ui+1, ui+3 /∈ var(w1...wp)
(respectively, xi+1, xi+3 /∈ var(w1...wp)) for all i ∈ {1, ..., n − 2} and each letter in
w1...wp is unique. (∗)

Note that this is possible since each of the relations (L1), (R7)–(R10), and (R1)–(R6) does
not increase the index of any letter in {u1, u2, ..., un−2, x1, x2, ..., xn−2} in the “new” word.
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• Using (R11)–(R15), Lemmas 2, and (R1)–(R6), we remove letters xi and ui, respectively,
until one can not more remove a letter xi or ui for i ∈ {1, 2, ..., n−2}. We obtain v′′w1...wp ≈
v′′′w′

1...w
′
p′ , where v

′′′ ∈ {v1, ..., vn}
∗ and w′

1, ..., w
′
p′ ∈ W−1

x ∪Wu. Note that is possible since
each of the relations (R11)–(R15) as well as Lemmas 2 only removes letters (and add letters
in {v1, ..., vn}, respectively).

• We decrease the indices of the letters in {u1, u2, ..., un−2, x1, x2, ..., xn−2} (if possible) by
(R16)–(R19) as well as (R1)–(R6) and obtain v′′′w′

1...w
′
p′ ≈ v∗B∗C∗ with v∗ ∈ {v1, ..., vn}

∗,
B∗ ∈ {u1, u2, ..., un−2}

∗, and C∗ ∈ {x1, x2, ..., xn−2}
∗. Note that the indices of the letters in

B∗ (respectively, in C∗) are ascending (respectively, are descending).

We repeat all steps. The procedure terminates if the word will not change more in all steps. We
obtain v∗B∗C∗ ≈ vAŵ1...ŵp̂, where ŵ1, ..., ŵp̂ ∈ W−1

x ∪ Wu and A ⊆ n such that no vj (j ∈ A)
can be canceled by using (R1)–(R6). This case has to happen since the number of the letters from
{u1, u2, ..., un−2, x1, x2, ..., xn−2, v1, ..., vn} decreases or is kept and the indices of the ui’s and xi’s
decrease or are kept in each step.

We denote by P the set of all words obtained from w ∈ X∗
n by that algorithm.

By (∗), we obtain immediately from the algorithm.

Remark 1. Let ŵ = vAŵ1...ŵm ∈ P and let 1 ≤ k < k′ ≤ m.

If ŵk, ŵk′ ∈ Wu then ik + 2|ŵk|+ 2 ≤ ik′ .

If ŵk, ŵk′ ∈ Wx then ik′ + 2|ŵk′ |+ 2 ≤ ik.

Let fix a word ŵ = vAŵ1...ŵm ∈ P . There are a, b ∈ {0, ..., n} with a + b = m, t1, ..., ta+b ∈
{1, ...,m}, wt1 , ..., wta ∈ Wu and wta+1

, ..., wta+b
∈ Wx such that

ŵ = vAŵ1...ŵm = vAwt1 ...wtaw
−1
ta+1

...w−1
ta+b

,

where {wt1 , ..., wta} = ∅ or {wta+1
, ..., wta+b

} = ∅ (i.e. a = 0 or b = 0) is possible. We observe that

{ŵ1, ..., ŵm} = {wt1 , ..., wta , w
−1
ta+1

, ..., w−1
ta+b

} and {t1, ..., ta, ta+1, ..., ta+b} = {1, ...,m}. We define
an order on {t1, ..., ta, ta+1, ..., ta+b} by t1 < · · · < ta and ta+b < · · · < ta+1. If a, b ≥ 1, the order
between t1, ..., ta and ta+1, ..., ta+b is given by the following rule:

Let k ∈ {1, ..., a} and l ∈ {1, ..., b}
if itk + 2|wtk | − 2 + 2|wtk+1

...wta | − 2|w−1
ta+1

...w−1
ta+l−1

| < ita+l
+ 2|w−1

ta+l
| − 2 then tk < ta+l and

if itk + 2|wtk | − 2 + 2|wtk+1
...wta | − 2|w−1

ta+1
...w−1

ta+l−1
| > ita+l

+ 2|w−1
ta+l

| − 2 then tk > ta+l.

The case

itk + 2|wtk | − 2 + 2|wtk+1
...wta | − 2|w−1

ta+1
...w−1

ta+l−1
| = ita+l

+ 2|w−1
ta+l

| − 2

is not possible, since otherwise we can cancel uitk+2|wtk
|−2 and xita+l

+2|w−1
ta+l

|−2 in ŵ by (R11). Our

next aim is to describe the relationships between ku, (k+1)u and kx, (k+1)x for all k ∈ {1, ...,m−1}
for the word w = w1...wm.

Lemma 3. For all k ∈ {1, ...,m − 1}, we have ku < (k + 1)u and kx < (k + 1)x.

P r o o f. Let k ∈ {1, ...,m − 1}. Suppose wk, wk+1 ∈ Wu. We obtain ku < (k + 1)u and

kx = ik + 2|wk|+ 2|W k
u | − 2|W k

x |,

(k + 1)x = ik+1 + 2|wk+1|+ 2|W k+1
u | − 2|W k+1

x |.
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By Remark 1, we have ik + 2|wk|+ 2 ≤ ik+1. This gives

ik + 2|wk|+ 2|W k
u | − 2|W k

x | < ik+1 + 2|W k
u | − 2|W k

x | = ik+1 + 2|wk+1|+ 2|W k+1
u | − 2|W k+1

x |

(since wk+1 ∈ Wu implies 2|W k
x | = 2|W k+1

x | ). Then kx < (k + 1)x. For the case wk, wk+1 ∈ Wx,
we can show that ku < (k + 1)u and kx < (k + 1)x in a similar way.

Suppose wk ∈ Wu and wk+1 ∈ Wx. First, we will show ku < (k + 1)u. We have ku = ik and

(k + 1)u = ik+1 + 2|wk+1|+ 2|W k+1
x | − 2|W k+1

u |.

Since k ∈ {t1, ..., ta} and k + 1 ∈ {ta+1, ..., ta+b}, we obtain

ik + 2|wk| − 2 + 2|W k
u | − 2|W k+1

x | < ik+1 + 2|wk+1| − 2.

Then
ik < ik + 2|wk| < ik+1 + 2|wk+1|+ 2|W k+1

x | − 2|W k+1
u |

(since wk+1 ∈ Wx implies |W k
u | = |W k+1

u |). Then ku < (k + 1)u. Moreover, we prove kx < (k + 1)x
similarly. The case wk ∈ Wx and wk+1 ∈ Wu can be shown in a similar way as above. �

Of course, the next goal should be the proof of w = w1...wm ∈ Q0, i.e. we will show that w
satisfies (1q)–(4q).

Lemma 4. We have w = w1...wm ∈ Q0.

P r o o f. Exactly, w satisfies (1q) and (2q). This is trivially checked by Remark 1.
Let k ∈ {1, ...,m − 1} and let wk ∈ Wu, wk+1 ∈ Wx. This provides k ∈ {t1, ..., ta}, k + 1 ∈

{ta+1, ..., ta+b}. We have

ik + 2|wk| − 2 + 2|W k
u | − 2|W k+1

x | < ik+1 + 2|wk+1| − 2.

Since wk+1 ∈ Wx, we have
2|W k

u | = 2|W k+1
u |.

So
ik + 2|wk| − 2 + 2|W k+1

u | − 2|W k+1
x | < ik+1 + 2|wk+1| − 2.

We observe that

ik + 2|wk| − 2 + 2|W k+1
u | − 2|W k+1

x |+ 1 ≤ ik+1 + 2|wk+1| − 2.

If
ik + 2|wk| − 2 + 2|W k+1

u | − 2|W k+1
x |+ 1 = ik+1 + 2|wk+1| − 2,

we can cancel uik+2|wk|−2, xik+1+2|wk+1|−2 by (R13) in ŵ. This contradicts ŵ ∈ P . Then

ik + 2|wk| − 2 + 2|W k+1
u | − 2|W k+1

x |+ 2 ≤ ik+1 + 2|wk+1| − 2,

i.e.
ik + 2|wk|+ 2 ≤ ik+1 + 2|wk+1| − 2|W k+1

u |+ 2|W k+1
x | = (k + 1)u.

Next, to show that (k + 1)x − kx ≥ 2. Lemma 3 gives (k + 1)x − kx ≥ 1.
If (k + 1)x − kx = 1 then

ik+1 − ik − 2|wk| − 2|W k
u |+ 2|W k

x | = 1.
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This implies
ik+1 + 2|wk+1| − 2 = ik + 2|wk| − 2 + 2|W k

u | − 2|W k+1
x |+ 1

since
2|W k

x | = 2|Wk+1|+ 2|W k+1
x |.

We can cancel uik+2|wk|−2, xik+1+2|wk+1|−2 in ŵ by (R13). This contradicts ŵ ∈ P . Thus,
(k + 1)x − kx ≥ 2. In case wk, wk+1 ∈ Wu, by using Remark 1, we easily get

ik + 2|wk|+ 2 ≤ (k + 1)u.

To show (k + 1)x − kx ≥ 2, it is routine to calculate directly. Together with Remark 1, we will get
that (k+1)x − kx ≥ 2. Altogether, w satisfies (3q). We prove that w satisfies (4q) in a similar way.
Therefore, w ∈ Q0. �

We have shown w ∈ Q0. This leads us to the next step, showing that A ⊆ Aw. First, we point
out subsets of n, which do not contain any element of A.

Lemma 5. Let q ∈ {1, ..., a} and let

ρ ∈ {itq + 1, ..., itq + 2|wtq |+ 1} ∩ n.

Then ρ /∈ A.

P r o o f. Assume ρ ∈ A. Then

vρwt1 ...wtq ...wtaw
−1
ta+1

...w−1
ta+b

(R3)
≈ wt1 ...vρwtq ...wtaw

−1
ta+1

...w−1
ta+b

.

If ρ ∈ {itq + 1, itq + 2, itq + 3} ∩ n then

vρuitq
(R5)
≈ uitq .

If ρ = itq + h+ t for some h ∈ {2, 4, ..., 2|wtq | − 2} and t ∈ {2, 3} then

wt1 ...vρwtq ...wtaw
−1
ta+1

...w−1
ta+b

= wt1 ...vρuitquitq+2...uitq+2|wtq |−2wtq+1
...wtaw

−1
ta+1

...w−1
ta+b

(R3)
≈ wt1 ...uitq ...v(itq+h+t)uitq+h...uitq+2|wtq |−2wtq+1

...wtaw
−1
ta+1

...w−1
ta+b

(R5)
≈ wt1 ...uitq ...uitq+h...uitq+2|wtq |−2wtq+1

...wtaw
−1
ta+1

...w−1
ta+b

,

i.e. we can cancel vρ in ŵ using (R3) and (R5), a contradiction. �

Lemma 6. Let ρ ∈ A and let q ∈ {1, ..., a} such that tq 6= m. If ρ ∈ {(tq)u+1, ..., (tq +1)u−1}
then

ρ ∈
{

(tq)u + 2|wtq |+ 2, ..., (tq + 1)u − 1
}

⊆ Aw.

P r o o f. We have (tq)u = itq . It is a consequence of Lemma 5 that

ρ ∈
{

itq + 2|wtq |+ 2, ..., (tq + 1)u − 1
}

and by (6q), we have
{

itq + 2|wtq |+ 2, ..., (tq + 1)u − 1
}

⊆ Aw.

�
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Lemma 7. Let ρ ∈ A, if ta = m and ρ ∈ {im + 1, ..., n} then ρ ∈ {mx + 2, ..., n} ⊆ Aw.

P r o o f. Assume ρ ∈ {im + 1, ...,mx + 1}. We have mx + 1 = ita + 2|wta | + 1. Then
ρ ∈ {ita +1, ..., ita +2|wta |+1}. By Lemma 5, we have ρ /∈ A. Therefore, ρ ∈ {mx+2, ..., n} ⊆ Aw

by (5q). �

Lemma 8. Let ρ ∈ A, then ρ 6= (ta+l)u + 1 for all l ∈ {1, ..., b}.

P r o o f. Let l ∈ {1, ..., b}. Assume ρ = (ta+l)u + 1. Suppose that there exists q ∈ {1, ..., a}
with tq > ta+l. Then

vρwt1 ...wtq ...wtaw
−1
ta+1

...w−1
ta+b

(R3)
≈ wt1 ...vρwtq ...wtaw

−1
ta+1

...w−1
ta+b

(R4)
≈ wt1 ...wtq ...wtavρ+2|wtq ...wta |

w−1
ta+1

...w−1
ta+b

.

Since
(ta+l)u + 1 = ita+l

+ 2|w−1
ta+1

...w−1
ta+l

| − 2|wtq ...wta |+ 1,

we have
ρ+ 2|wtq ...wta | = ita+l

+ 2|w−1
ta+1

...w−1
ta+l

|+ 1.

Suppose tq < ta+l for all q ∈ {1, ..., a}. Then we have

(ta+l)u + 1 = ita+l
+ 2|w−1

ta+1
...w−1

ta+l
|+ 1,

i.e.

vρwt1 ...wtq ...wtaw
−1
ta+1

...w−1
ta+b

(R3)
≈ wt1 ...wtq ...wtavρw

−1
ta+1

...w−1
ta+b

.

Both cases imply

wt1 ...wtq ...wtavita+l
+2|w−1

ta+1
...w−1

ta+l
|+1w

−1
ta+1

...w−1
ta+b

(R4)
≈ wt1 ...wtq ...wtaw

−1
ta+1

...vita+l
+2|w−1

ta+l
|+1w

−1
ta+l

...w−1
ta+b

(R6)
≈ wt1 ...wtq ...wtaw

−1
ta+1

...w−1
ta+l

...w−1
ta+b

,

i.e. we can cancel vρ in ŵ using (R3), (R4), and (R6), a contradiction. �

Lemma 9. Let ρ∈A and let l∈{1, ..., b} such that ta+l 6=m. If ρ∈{(ta+l)u+1, ..., (ta+l+1)u−1}
then

ρ ∈
{

(ta+l)u + 2, ..., (ta+l + 1)u − 1
}

⊆ Aw.

P r o o f. It is a consequence of Lemma 8 that ρ ∈ {(ta+l)u + 2, ..., (ta+l + 1)u − 1} and by
(6q), we have {(ta+l)u + 2, ..., (ta+l + 1)u − 1} ⊆ Aw. �

Lemma 10. Let ρ ∈ A. If ta+1 = m and ρ ∈ {mu + 1, ..., n} then ρ ∈ {mu + 2, ..., n} ⊆ Aw.

P r o o f. Suppose ρ = mu + 1 = (ta+1)u + 1. By Lemma 8, we have ρ /∈ A. Therefore,
ρ ∈ {mu + 2, ..., n} ⊆ Aw by (5q). �
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Lemma 11. If 1 < 1x < 1u then ρ /∈ A for all ρ ∈ {1, ..., 1u − 1x}.

P r o o f. Let ρ ∈ {1, ..., 1u − 1x}. Assume ρ ∈ A. We observe that

1u − 1x = 2|w−1
ta+b

...w−1
ta+1

| − 2|wt1 ...wta | = 2k

for some positive integer k. We put U = wt1 ...wta and X = w−1
ta+b

...w−1
ta+1

, i.e. 2k = 2|X | − 2|U| and
|X | = |U|+ k. Let

w−1
ta+1

...w−1
ta+b

= y1...y|U|y|U|+1...y|U|+k,

where y1, ..., y|U|+k ∈ {x1, ..., xn−2}. Then

vρwt1 ...wtay1...y|U|y|U|+1...y|U|+k

(R4)
≈ wt1 ...wtavρ+2|wt1 ...wta |

y1...y|U|y|U|+1...y|U|+k.

Using Remark 1, it is routine to calculate that

2|w−1
ta+b

...w−1
ta+1

| < ita+1
+ 2|w−1

ta+1
|,

i.e.

(1u − 1x) + 2|wt1 ...wta | = 2|w−1
ta+b

...w−1
ta+1

| < ita+1
+ 2|w−1

ta+1
|.

This implies
ρ+ 2|wt1 ...wta | ≤ ita+1

+ 2|w−1
ta+1

|.

Then

wt1 ...wtavρ+2|wt1 ...wta |
y1...y|U|y|U|+1...y|U|+k

(R4)
≈ wt1 ...wtay1...y|U|vρy|U|+1...y|U|+k.

Note that 1u − 1x is even and there is i ∈ {2, 4, ..., 1u − 1x} such that ρ ∈ {i − 1, i}. If ρ = i − 1
then

ρ− 2|y|U|+1...y|U|+i/2−1| = 1.

If ρ = i then
ρ− 2|y|U|+1...y|U|+i/2−1| = 2.

Thus,

wt1 ...wtay1...y|U|vρy|U|+1...y|U|+k

(R4)
≈ wt1 ...wtay1...y|U|y|U|+1...vρ−2|y|U|+1...y|U|+i/2−1|y|U|+i/2...y|U|+(1u−1x)/2

= wt1 ...wtay1...y|U|y|U|+1...vρ̂y|U|+i/2...y|U|+(1u−1x)/2

(where ρ̂ ∈ {1, 2})
(R6)
≈ wt1 ...wtay1...y|U|y|U|+1...y|U|+i/2...y|U|+(1u−1x)/2,

i.e. we can cancel vρ in ŵ using (R4) and (R6), a contradiction. �

Lemma 12. Let ρ ∈ A with ρ ∈ {1, ..., 1u − 1}. If 1 < 1u ≤ 1x then ρ ∈ {1, ..., 1u − 1} ⊆ Aw

and if 1 < 1x < 1u then ρ ∈ {1u − 1x + 1, ..., 1u − 1} ⊆ Aw.

P r o o f. If 1 < 1u ≤ 1x then {1, ..., 1u − 1} ⊆ Aw by (7q). If 1 < 1x < 1u, it is a consequence
of Lemma 11 that ρ ∈ {1u − 1x +1, ..., 1u − 1} and by (7q), we have {1u − 1x +1, ..., 1u − 1} ⊆ Aw.

�
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Lemma 13. We have (tq)u /∈ A for all q ∈ {1, ..., a}.

P r o o f. Let q ∈ {1, ..., a}. We have

wtq = uitquitq+2...uitq+2|wtq |−2

and (tq)u = itq . Assume (tq)u ∈ A. If itq ≥ 2 then

vitqwt1 ...wtq ...wtaw
−1
ta+1

...w−1
ta+b

(R3)
≈ wt1 ...vitquitquitq+2...uitq+2|wtq |−2wtq+1

...wtaw
−1
ta+1

...w−1
ta+b

(R18)
≈ wt1 ...vitq+2|wtq |+1uitq−1uitq+1...uitq+2|wtq |−3wtq+1

...wtaw
−1
ta+1

...w−1
ta+b

.

If itq = 1 then q = 1 and

vit1wt1wt2 ...wtaw
−1
ta+1

...w−1
ta+b

= v1u1u3...u1+2|wt1 |−2wt2 ...wtaw
−1
ta+1

...w−1
ta+b

(R16)
≈ v1v2...v1+2|wt1 |+1wt2 ...wtaw

−1
ta+1

...w−1
ta+b

.

We observe that we can replace several letters in ŵ by letters with decreasing index by (R18) and
the letters u1, u3, ..., u1+2|wt1 |−2 were canceled in ŵ by (R16), respectively, a contradiction. �

Lemma 14. We have (ta+l)u /∈ A for all l ∈ {1, ..., b}.

P r o o f. Let l ∈ {1, ..., b}. Now assume that (ta+l)u ∈ A. We will have the following two
cases. In the first case, we suppose that there exists q ∈ {1, ..., a} with tq > ta+l and, of course, for
the trivial second case is supposed tq < ta+l for all q ∈ {1, ..., a}. Using (R3) and (R4) in the first
case and (R4) in the second case, together with a few tedious calculations, both cases imply

v(ta+l)uwt1 ...wtq ...wtaw
−1
ta+1

...w−1
ta+b

≈ wt1 ...wtavita+l
+2|w−1

ta+1
...w−1

ta+l
|w

−1
ta+1

...w−1
ta+b

.

It is routine to calculate that

wt1 ...wtavita+l
+2|w−1

ta+1
...w−1

ta+l
|w

−1
ta+1

...w−1
ta+b

(R4)
≈ wt1 ...wtaw

−1
ta+1

...vita+l
+2|w−1

ta+l
|w

−1
ta+l

...w−1
ta+b

.

If ita+l
+ 2|w−1

ta+l
| > 3 then

wt1 ...wtaw
−1
ta+1

...vita+l
+2|w−1

ta+l
|w

−1
ta+l

...w−1
ta+b

= wt1 ...wtaw
−1
ta+1

...vita+l
+2|w−1

ta+l
|xita+l

+2|wta+l
|−2xita+l

+2|wta+l
|−4...xita+l

w−1
ta+l+1

...w−1
ta+b

(R19)
≈ wt1 ...wtaw

−1
ta+1

...vita+l
+2|w−1

ta+l
|+1xita+l

+2|wta+l
|−3xita+l

+2|wta+l
|−5...xita+l

−1w
−1
ta+l+1

...w−1
ta+b

.

If ita+l
+ 2|w−1

ta+l
| = 3 then w−1

ta+b
= x1. Thus,

wt1 ...wtavita+l
+2|w−1

ta+1
...w−1

ta+l
|w

−1
ta+1

...w−1
ta+b

(R4)
≈ wt1 ...wtaw

−1
ta+1

...w−1
ta+b−1

v3x1
(R17)
≈ wt1 ...wtaw

−1
ta+1

...w−1
ta+b−1

v1v2v3v4.

We observe that we can replace several letters in ŵ by letters with decreasing index by (R19) and
the letter x1 can be canceled in ŵ by (R17), respectively, a contradiction. �

If we summarize the previous lemmas, then we obtain:
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Lemma 15. We have A ⊆ Aw.

P r o o f. Let ρ ∈ A. Then it is easy to verify that ρ ∈ {1, ..., 1u} or ρ ∈ {ku + 1, ..., (k + 1)u}
for some k ∈ {1, ....,m − 1} or ρ ∈ {mu + 1, ..., n}. Suppose that ρ ∈ {ku + 1, ..., (k + 1)u − 1}
for some k ∈ {1, ...,m − 1}. Lemmas 13 and 14 show that ku /∈ A. Then we can conclude that
ρ ∈ Aw by Lemmas 6 and 9. Suppose ρ ∈ {mu + 1, ..., n}. Then we can conclude that ρ ∈ Aw by
Lemmas 7 and 10. Finally, we suppose that ρ ∈ {1, ..., 1u − 1}. Then we can conclude that ρ ∈ Aw

by Lemma 12. Eventually, we have ρ ∈ Aw for all ρ ∈ A. Therefore, A ⊆ Aw. �

Lemmas 4 and 15 prove that ŵ = vAŵ1...ŵm ∈ Wn. Consequently, we have:

Proposition 2. P ⊆ Wn.

By the definition of the set P and Proposition 2, it is proved:

Corollary 1. Let w ∈ X∗
n. Then there is w′ ∈ P ⊆ Wn with w ≈ w′.

4. A presentation for IOF par
n

In this section, we exhibit a presentation for IOF par
n . Concerning the results from the previous

sections, it remains to show that |Wn| ≤ |IOF par
n |. For this, we construct a word wα, for all

α ∈ IOF par
n , in the following way.

Let

α =

(

d1 < d2 < · · · < dp
m1 m2 · · · mp

)

∈ IOF par
n \{ε}

for a positive integer p ≤ n. There are a unique l ∈ {0, 1, ..., p − 1} and a unique set {r1, ..., rl} ⊆
{1, ..., p − 1} such that (i)–(iii) are satisfied:

(i) r1 < ... < rl;
(ii) dri+1 − dri 6= mri+1 −mri for i ∈ {1, ..., l};
(iii) di+1 − di = mi+1 −mi for i ∈ {1, ..., p − 1}\{r1, ..., rl}.

Note that l = 0 means {r1, ..., rl} = ∅. Further, we put rl+1 = p. For i ∈ {1, ..., l}, we define

wi =

{

xmri ,((mri+1−mri)−(dri+1−dri))/2
if mri+1 −mri > dri+1 − dri ;

udri ,((dri+1−dri)−(mri+1−mri))/2
if mri+1 −mri < dri+1 − dri .

Obviously, we have wi ∈ Wx∪Wu for all i ∈ {1, ..., l}. If mp = dp then we put wl+1 = ǫ. If mp 6= dp,
we define additionally

wl+1 =

{

xmp,(dp−mp)/2 if dp > mp;

udp,(mp−dp)/2 if dp < mp.

Clearly, wl+1 ∈ Wx ∪Wu. We consider the word

w = w1...wl+1.

From this word, we construct a new word w∗
α by arranging the subwords s ∈ Wx in reverse order

at the end, replacing s by s−1. In other words, we consider the word

w∗
α = ws1 ...wsaw

−1
sa+1

...w−1
sa+b
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such that ws1 , ..., wsa ∈ Wu, wsa+1
, ..., wsa+b

∈ Wx and

{ws1 , ..., wsa , wsa+1
, ..., wsa+b

} = {w1, ..., wa+b},

where s1 < ... < sa, sa+b < ... < sa+1, and a, b ∈ n ∪ {0} with

a+ b =

{

l if dp = mp;

l + 1 if dp 6= mp.

For convenience, a = 0 means w∗
α = w−1

sa+1
...w−1

sa+b
and b = 0 means w∗

α = ws1 ...wsa . Now, we add
recursively letters from the set {v1, ..., vn} ⊆ Xn to the word w∗

α, obtaining new words λ0, λ1, ..., λp.

(1) For dp ≤ n− 2:

(1.1) if mp < dp then λ0 = vdp+2...vnw
∗
α;

(1.2) if n− 1 > mp > dp then λ0 = vmp+2...vnw
∗
α;

(1.3) if mp = dp then λ0 = vmp+1...vnw
∗
α;

otherwise λ0 = w∗
α.

(2) If dp = mp = n− 1 then λ0 = vnw
∗
α. Otherwise λ0 = w∗

α.

(3) For k ∈ {2, ..., p}:

(3.1) if 2 ≤ mk −mk−1 = dk − dk−1 then λp−k+1 = vdk−1+1...vdk−1λp−k;
(3.2) if 2 < mk −mk−1 < dk − dk−1 then λp−k+1 = vdk−(mk−mk−1−2)...vdk−1λp−k;
(3.3) if mk −mk−1 > dk − dk−1 > 2 then λp−k+1 = vdk−1+2...vdk−1λp;

otherwise λp−k+1 = λp−k.

(4) If d1 = 1 or m1 = 1 then λp = λp−1.

(5) If 1 < d1 ≤ m1 then λp = v1...vd1−1λp−1.

(6) If 1 < m1 < d1 then λp = vd1−m1+1...vd1−1λp−1.

The word λp induces a set A = {a ∈ n : va is a letter in λp} and it is easy to verify that ρ /∈ A for
all ρ ∈ dom(α). We put wα = λp. The word wα has the form wα = vAw

∗
α.

Our next aim is to present the relationship between cardinality of Wn and IOF par
n . This

leads us to assume the existence of a map f : IOF par
n \{ε} → Wn\{vn}, where f(α) = wα for all

α ∈ IOF par
n \{ε}. We start by constructing the transformation αvAw∗ for any vAw

∗ ∈ Wn, different
from vn. Let vAw

∗ ∈ Wn\{vn}. We have w ∈ Q0, A ⊆ Aw, and there are w1, ..., wm ∈ Wu ∪ Wx

such that w = w1...wm for some positive integer m. For k ∈ {1, ...,m}, we define ak = ku + 2
and bk = ik + 2jk + 2, whenever wk ∈ Wx. On the other hand, we define ak = ik + 2jk + 2 and
bk = kx + 2, whenever wk ∈ Wu. It is easy to verify that am = bm. We put

αvAw∗ = vA

(

1 + 1u −min{1u, 1x}...1u a1...2u · · · am−1...mu am...n
1 + 1x −min{1u, 1x}...1x b1...2x · · · bm−1...mx bm...n

)

.

For convenience, we also give

αvAw∗ =

(

d1 d2 · · · dp
m1 m2 · · · mp

)

for some positive integer p ≤ n. In the following, we show that αvAw∗ is well-defined in the sense
that the construction of αvAw∗ gives a transformation.

Lemma 16. αvAw∗ is well-defined.
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P r o o f. Let k ∈ {1, ...,m − 1}. Suppose wk, wk+1 ∈ Wu. We have

ku = ik, kx = ik + 2|wk|+ 2|W k
u | − 2|W k

x |,

(k + 1)u = ik+1, (k + 1)x = ik+1 + 2|wk+1|+ 2|W k+1
u | − 2|W k+1

x |,

and ak = ik + 2jk + 2, bk = kx + 2. Then

(k + 1)u − ak = ik+1 − (ik + 2jk + 2),

(k + 1)x − bk = ik+1 + 2|wk+1|+ 2|W k+1
u | − 2|W k+1

x | − kx − 2

= ik+1 + 2|wk+1|+ 2|W k+1
u | − 2|W k+1

x | − ik − 2|wk| − 2|W k
u |+ 2|W k

x | − 2

= ik+1 − ik − 2jk − 2 = ik+1 − (ik + 2jk + 2).

Therefore, (k + 1)u − ak = (k + 1)x − bk.
For the rest cases (wk ∈ Wu and wk+1 ∈ Wx, wk ∈ Wx and wk+1 ∈ Wu as well as

wk, wk+1 ∈ Wx), a proof similar as above will eventually show that (k + 1)u − ak = (k + 1)x − bk.
Furthermore, suppose dp = mp. Let k ∈ {1, ...,m} and wk ∈ Wu. We have

ak − ku = ik + 2jk + 2− ku = ik + 2jk + 2− ik = 2jk + 2,

bk − kx = kx + 2− kx = 2.

Thus, ak − ku 6= bk − kx.
For the case wk ∈ Wx, we can show ak − ku 6= bk − kx in the same way.
Continuously, suppose dp 6= mp. By the previous part of the proof, we have ak − ku 6= bk − kx

for all k ∈ {1, ...,m − 1}. Moreover, we observe that dp /∈ {am, ..., n} and mp /∈ {bm, ..., n} because
n− am = n− bm. This implies dp = mu and mp = mx. By any of the above, we can conclude that
αvAw∗ is well-defined. �

The proof of Lemma 16 shows (k + 1)u − ak = (k + 1)x − bk for all k ∈ {1, ...,m − 1}. Then
ak − ku 6= bk − kx for all k ∈ {1, ...,m}, whenever dp = mp, and ak − ku 6= bk − kx for all
k ∈ {1, ...,m − 1} and dp = mu,mp = mx, whenever dp 6= mp. Furthermore, observing by trivial
calculation, ak − ku ≥ 2 and bk − kx ≥ 2. Therefore, if there exists i ∈ {1, ..., p − 1}, where
di+1 − di 6= mi+1 −mi, then di ∈ {1u, ..., (m − 1)u}(∪{mu}), mi ∈ {1x, ..., (m − 1)x}(∪{mx}) and
we put ku = drk , kx = mrk for all k ∈ {1, ...,m − 1}(∪{m}) (we put rm = p, whenever dp 6= mp).
This gives the unique set {r1, ..., rm} as required by the definition of wαvAw∗ . Moreover, we need

to show that αvAw∗ ∈ IOF par
n \{ε} by checking (i)-(iv) of Proposition 1. We will now show that

αvAw∗ ∈ IOF par
n as well as wαvAw∗ = vAw

∗. This gives the tools to calculate that |Wn| ≤ |IOF par
n |.

Lemma 17. αvAw∗ ∈ IOF par
n \{ε}.

P r o o f. Clearly, αvAw∗ 6= ε. We will prove that αvAw∗ satisfies the conditions (i)–(iv) in
Proposition 1. We observe that d1 < d2 < · · · < dp and m1 < m2 < · · · < mp by definition of
αvAw∗. We have 1u − d1 = 1x −m1, i.e. 1u − 1x = d1 − m1. By the definition of ku and kx, for
k ∈ {1, ...,m}, we observe that 1u − 1x is even, i.e. d1 − m1 is even. Thus, d1 and m1 have the
same parity.

Let di+1−di = 1 for some i ∈ {1, ..., p−1}. Then di ∈ dom(α)\{1u, ...,mu} implies mi+1−mi =
di+1 − di = 1.

Let mi+1−mi = 1 for some i ∈ {1, ..., p−1}. Then mi ∈ im(α)\{1x, ...,mx} implies di+1−di =
mi+1 −mi = 1.

Let di+1 − di is even. Suppose di+1 − di 6= mi+1−mi. This gives di = ku and mi = kx for some
k ∈ {1, ...,m − 1}. By the definition of ku and kx, we observe that ku − kx is even.
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Moreover, (k + 1)u − di+1 = (k + 1)x − mi+1 since (k + 1)u − (k + 1)x is even, we have
di+1 − mi+1 is even. Then di+1, di and di, mi as well as di+1,mi+1 have the same parity. This
implies that mi+1,mi have the same parity, i.e. mi+1 −mi is even. Conversely, we can prove sim-
ilarly that, if mi+1−mi is even then di+1−di is even. By Proposition 1, we get αvAw∗ ∈ IOF par

n . �

We can construct f(αvAw∗) = wαvAw∗ , where wαvAw∗ = vÃŵ
∗
αvAw∗ with ŵ = ŵ1...ŵm for

ŵ1, ..., ŵm ∈ Wu ∪Wx and Ã ⊆ n. We will prove that f is surjective in the next lemma.

Lemma 18. Let vAw
∗ ∈ Wn\{vn}. Then there is α ∈ IOF par

n \{ε} with vAw
∗ = wα.

P r o o f. We have wαvAw∗ = vÃŵ
∗
αvAw∗ , where ŵ = ŵ1...ŵm with ŵ1, ..., ŵm ∈ Wu ∪Wx and

Ã ⊆ n. First, our goal is to show that ŵ = w. Suppose dp = mp and let k ∈ {1, ...,m} such that
bk − kx > ak − ku. By the definition of ŵk, we have ŵk = xkx,((bk−kx)−(ak−ku))/2 and kx = ik. Then

(bk − kx)− (ak − ku)

2
=

ik + 2jk + 2− ik − ku − 2 + ku
2

= jk,

i.e. ŵk = xik,jk = wk. For the case bk − kx < ak − ku, we can prove that ŵk = wk in a similar way.
This gives ŵ1...ŵm = w1...wm.

Suppose dp 6= mp. We have ak− ku 6= bk− kx for all k ∈ {1, ...,m− 1} and by a similar proof as
above, we have ŵ1...ŵm−1 = w1...wm−1. If mp < dp then ŵm = xmp,(dp−mp)/2 and mp = mx = im.
Then

dp −mp

2
=

mu −mx

2
=

im + 2jm − im
2

= jm,

i.e. ŵm = xim,jm = wm. For the case mp > dp, we can prove ŵm = wm in a similar way. Thus,
ŵ1...ŵm−1ŵm = w1...wm−1wm. Then w = ŵ, i.e. w∗ = ŵ∗

αvAw∗ . The next goal is to show that

A = Ã.

1) To show that A ⊆ Ã: let a ∈ A. We have A ⊆ Aw since vAw
∗ ∈ Wn. Therefore, we have the

following cases: a ∈ {am, ..., n} = A1 or a ∈ {ak, ..., (k + 1)u − 1} = A2 for some k ∈ {1, ...,m − 1}
or

a ∈ {1 + 1u −min{1u, 1x}, ..., 1u − 1} = A3.

If a ∈ A1 andmp 6= dp then a ∈ Ã since (1.1) and (1.2), respectively. If a ∈ A1 and a ∈ {dp+1, ..., n}
with mp = dp then a ∈ Ã since (1.3) and (2), respectively.

Suppose a ∈ A2 with a ∈ {ak, ..., drk+1 − 1}. If 2 < drk+1 − drk < mrk+1 −mrk then wk ∈ Wx.
Note that ak = ku + 2 = drk + 2. Thus, a ∈ Ã since (3.3). If 2 < mrk+1 −mrk < drk+1 − drk then
wk ∈ Wu.

Note

drk+1 − ak = mrk+1 − bk, bk = kx + 2,

ak = ak − bk + bk = drk+1 −mrk+1 + kx + 2 = drk+1 −mrk+1 +mrk + 2.

Thus, a ∈ Ã since (3.2).

Suppose a ∈ A3. If 1 < d1 ≤ m1 and a ∈ {1, ..., d1 − 1} then a ∈ Ã since (5). If 1 < m1 < d1
and a ∈ {d1 −m1 + 1, ..., 1u − 1} then a ∈ Ã since (6) (note that 1u − 1x = d1 −m1).

Suppose a ∈ A1 ∪A2 ∪A3 and there exists s ∈ {2, ..., p} such that ds − ds−1 = ms −ms−1 ≥ 2
with a ∈ {ds−1 + 1, ..., ds − 1}. Then a ∈ Ã since (3.1). By any of the above, we have A ⊆ Ã.
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2) To show that Ã ⊆ A: let

A1 = {1 + 1u −min{1u, 1x}, ..., 1u − 1},

A2 = {a1, ..., 2u − 1} ∪ {a2, ..., 3u − 1} ∪ ... ∪ {am−1, ...,mu − 1},

A3 = {am, ..., n}.

Because A ⊆ Aw, we have A ⊆ A1 ∪ A2 ∪ A3 and A ∩ {d1, ..., dp} = ∅. This implies A ⊆ A1 ∪
A2 ∪A3\{d1, ..., dp}. Conversely, we have A1 ∪A2 ∪A3\{d1, ..., dp} ⊆ A by the definition of αvAw∗.
Thus, A = A1 ∪A2 ∪A3\{d1, ..., dp}.

Let a ∈ Ã. By the definition of Ã, we can observe that a 6= di for all i ∈ {1, ..., p}.
Suppose a is given by (1.1) or (1.2) or (1.3) or (2). Then a ∈ A3\{d1, ..., dp}.
Suppose a is given by (3.1). Then a ∈ A1 ∪A2 ∪A3\{d1, ..., dp}.
Suppose a is given by (3.2), i.e. a ∈ {ds −ms +ms−1 + 2, ..., ds − 1} for some s ∈ {2, ..., p}.
We have already shown that there is k ∈ {1, ...,m − 1} such that ds − ms + ms−1 + 2 = ak.

Then a ∈ A2\{d1, ..., dp}.
Suppose a is given by (3.3). Then a ∈ A2\{d1, ..., dp}.
Suppose a is given by (5). Then a ∈ A1\{d1, ..., dp}.
Suppose a is given by (6). Then a ∈ A1\{d1, ..., dp} (note that d1 −m1 = 1u − 1x). Therefore,

we have a ∈ A, i.e. Ã ⊆ A.
By 1) and 2), we get A = Ã. This implies vAw

∗ = vÃŵ
∗ = wαvAw∗ . �

Lemma 18 establishes that f is surjective, which implies |Wn| ≤ |IOF par
n |. We will now adjust

our alphabet and relations to meet the requirements of Theorem 1. As mentioned previously,
Xn = {s : s ∈ Xn} is a generating set for the monoid IOF par

n . Building on the insights from
Lemma 1, we can conclude that Xn satisfies all the relations from R = {s1 ≈ s2 : s1 ≈ s2 ∈ R}.

Corollary 1 further shows that for any w ∈ X
∗
n, there exists a corresponding w′ ∈ Wn, for

which w ≈ w′ is a consequence of R. This implies that R ⊆ X
∗
n×X

∗
n and that Wn ⊆ X

∗
n meet the

conditions 1–3 in Theorem 1. We now possess all the necessary items to conclude our main result.

Theorem 2. 〈Xn |R〉 is a monoid presentation for IOF par
n .
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13. Ruškuc N. Semigroup Presentations. Ph. D. Thesis. St Andrews: University of St Andrews, 1995.

14. Rutkowski A. The formula for the number of order-preserving selfmappings of a fence. Order, 1992.
Vol. 9. P. 127–137. DOI: 10.1007/BF00814405

15. Sareeto A., Koppitz J. The rank of the semigroup of order-, fence- and parity-preserving partial injections
on a finite set. Asian-Eur. J. Math., 2023. DOI: 10.1142/S1793557123502236

16. Srithus R., Chinram R., Khongthat C. Regularity in the semigroup of transformations pre-
serving a zig-zag order. Bull. Malays. Math. Sci. Soc., 2020. Vol. 43, No. 2. P. 1761–1773.
DOI: 10.1007/s40840-019-00772-2

17. Wagner V. V. Generalized groups. Dokl. Akad. Nauk SSSR, 1952. Vol. 84, No. 6. P. 1119–1122. (in Rus-
sian)

https://doi.org/10.4134/CKMS.2015.30.4.349
https://doi.org/10.30755/NSJOM.05333
https://doi.org/10.1142/S021949882150167X
https://doi.org/10.1007/BF00814405
https://doi.org/10.1142/S1793557123502236
https://doi.org/10.1007/s40840-019-00772-2


URAL MATHEMATICAL JOURNAL, Vol. 9, No. 2, 2023, pp. 193–208

DOI: 10.15826/umj.2023.2.016

GRACEFUL CHROMATIC NUMBER OF SOME CARTESIAN
PRODUCT GRAPHS1

I Nengah Supartaa,†, Mathiyazhagan Venkathacalamb,††, I Gede Aris Gunadia,†††,

Putu Andi Cipta Pratamaa,††††

aDepartment of Mathematics, Universitas Pendidikan Ganesha,
Jl. Udayana 11, Singaraja-Bali 81117, Indonesia

bDepartment of Mathematics, Kongunadu Arts and Science College,
Coimbatore–641029, Tamil Nadu, India

†nengah.suparta@undiksha.ac.id ††venkatmaths@kongunaducollege.ac.in
†††igedearisgunadi@undiksha.ac.id ††††andicipta25@gmail.com

Abstract: A graph G(V, E) is a system consisting of a finite non empty set of vertices V (G) and a set of
edges E(G). A (proper) vertex colouring of G is a function f : V (G) → {1, 2, . . . , k}, for some positive integer
k such that f(u) 6= f(v) for every edge uv ∈ E(G). Moreover, if |f(u)−f(v)| 6= |f(v)−f(w)| for every adjacent
edges uv, vw ∈ E(G), then the function f is called graceful colouring for G. The minimum number k such that
f is a graceful colouring for G is called the graceful chromatic number of G. The purpose of this research is to
determine graceful chromatic number of Cartesian product graphs Cm × Pn for integers m ≥ 3 and n ≥ 2, and
Cm × Cn for integers m,n ≥ 3. Here, Cm and Pm are cycle and path with m vertices, respectively. We found
some exact values and bounds for graceful chromatic number of these mentioned Cartesian product graphs.

Keywords: Graceful colouring, Graceful chromatic number, Cartesian product.

1. Introduction

A graph G(V,E) is a system consisting of a finite non empty set of vertices V (G) and a set of
edges E(G). Let G and H be two disjoint graphs. The Cartesian product of G and H, denoted by
G×H, is the graph with vertex set V (G)× V (H), and edges xy, uv ∈ V (G)× V (H) are adjacent
in G×H, if x = u and yv ∈ E(H) or y = v and xu ∈ E(G). A (proper) vertex colouring of G is a
way of colouring vertices in G such that each adjacent vertices are assigned to different colours.

If for a vertex colouring of G we have that every adjacent edges in G have different induced
colours, then the vertex colouring is called graceful. We may think a graceful colouring of G as a
function f : V (G) → {1, 2, . . . , k}, for some positive integer k, such that for every edge uv ∈ E(G)
we have f(u) 6= f(v), and for any vertex u ∈ V (G) we have |f(u) − f(v)| 6= |f(u) − f(w)| for
every vertices v,w ∈ V (G) which are adjacent to u. The absolute value |f(u) − f(v)| for every
uv ∈ E(G), is the induced label of the edge uv ∈E(G). In this sense, the terms colour and label are
interchangeable. The smallest value of k for which the function f is a graceful vertex colouring of
G is called the graceful chromatic number of G. The graceful colouring is a variation of graceful
labeling which was introduced by Alexander Rosa in 1967 (see Gallian in [5]). Whereas, the notion
of graceful colouring was introduced by Gary Chartrand in 2015, as a variant of the proper vertex
k-colouring problem (see [3]). Since then, researches on graceful colouring numbers started to be
celebrated.

Byers in [3] derived exact values for the graceful chromatic number of some graphs: path,
cycle, wheel, and caterpillar; and introduced some bounds for certain connected regular graphs.

1This work was supported by LP2M of Universitas Pendidikan Ganesha.
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Moreover, English, et al. in [4] invented graceful chromatic number of some classes of trees, and
gave a lower bound for the graceful chromatic number of connected graphs with certain minimum
degree. Mincu et al. in [6] derived graceful chromatic number of some well-known graph classes,
such as diamond graph, Petersen graph, Moser spindle graph, Goldner-Harary graph, friendship
graphs, and fan graphs. Graceful chromatic number of some particular unicyclic class graphs were
presented by Alfarisi et al. (2019) in [1].

Furthermore, in 2022, Asy’ari et al. in [2] presented graceful chromatic numbers of several types
of graphs, including star graphs, diamond graphs, book graphs. In addition, Asy’ari, et al. also
stated some open problems. One of the problems is to determine the graceful chromatic number of
some Cartesian product of certain graphs. Here we derive graceful chromatic number of Cartesian
product graph Cm × Pn, m ≥ 3, n ≥ 2, where Cm is the cycle with m vertices and Pn is the
path with n vertices. The Cartesian product graph Cm × Pn is known as prism for n = 2 and
as generalized prism for n ≥ 3. We also introduce bounds for Cartesian product graph Cm × Cn,
m,n ≥ 3.

To proceed with the main results, we need to introduce some introductory facts which will be
beneficial for our further discussion.

Let G be a graph and x be a vertex of G. All vertex which are adjacent to x are called the
neighbors of x, and denoted by N(x). The degree of the vertex x, denoted by deg(x), is equal to
the cardinality of N(x), deg(x) = |N(x)|. We will start with the following lemma.

Lemma 1. Let G be a graph and u be a vertex in G with degree d ≥ 1. Let f be a graceful
colouring for G. If f(u) = a, 1 ≤ a ≤ d, then there is a vertex v ∈ N(u) with colour f(v) ≥ d+ a.

P r o o f. Let f(u) = a with 1 ≤ a ≤ d. If a = 1, the smaller possible colours we can assign for
the all d neighbors v ∈ N(u) of u, are 2, 3, . . . , d and the colour d+ 1. This means that, there is a
vertex v ∈ N(u) with f(v) ≥ d+ 1 = d+ a. We are done for the case a = 1.

Now, assume f(u) = a, 1 < a ≤ d. Note that the colours k and 2a−k, for every k, 1 ≤ k ≤ a−1,
can not be assigned simultaneously for the vertices in N(u), since they give the same difference
from the colour a. Therefore, the maximum number of colours we may assign from the first
2(a− 1) smallest colours {k, 2a− k : 1 ≤ k ≤ a− 1} is equal to a− 1. It implies that the remaining
vertices in N(u) which are not coloured yet, is at least d − (a − 1) vertices. The colours we need
for these vertices are started from a colour ≥ 2a. This means that the next d − (a − 1) smallest
colours we should assign are 2a, 2a + 1, . . . , 2a + (d − (a− 1) − 1). So, there is a vertex v ∈ N(u)
such that its colour f(v) ≥ 2a+ (d− (a− 1)− 1) = d+ a. �

In a specific case, the colour of a vertex u is equal to the degree of u, f(u) = deg(u), we have
the following corollary.

Corollary 1. In a graph G with graceful colouring f , if the vertex u has degree d ≥ 1 and
colour d, then there is a vertex v ∈ N(u) with colour f(v) ≥ 2d.

P r o o f. Let G be a graph and u be a vertex of G with deg(u) = d. Let f be a graceful colour-
ing for G where f(u) = d. By Lemma 1, we found a neighbor v of u such that f(v) ≥ d+ d = 2d.�

The following result was introduced by Byers (2018) in [3].

Lemma 2 (Byers in [3]). The graceful chromatic number of cycle Cn on n ≥ 3 vertices is

χg(Cn) =

{

4, if n 6= 5,
5, if n = 5.

(1.1)
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Then, we will introduce some terminologies related with certain ladder graphs.

A ladder of 2m vertices, m ≥ 2, denoted by Lm, is the Cartesian product graph of the path on
m vertices and the path on two vertices. The ladder L2 is the cycle graph of four vertices. Assume
that the vertices of Lm are v1, v2, . . . , vm, w1, w2, . . . , wm such that its edges are vivi+1, wiwi+1 :
1 ≤ i ≤ m− 1, viwi : 1 ≤ i ≤ m. For m ≥ 4, if the vertices v1 and vm, and the vertices w1 and wm

are identified, then we obtain a prism Cm−1 ×P2. In this resulting Cm−1 ×P2, v1 = vm, w1 = wm,
and edge v1w1 = vmwm. Due to this, we may call the ladder Lm as the open graph of Cm−1 × P2

about the edge v1w1.

On the other side, let Cm × P2,m ≥ 3, be a prism. This prism has vertex set
{v1, v2, . . . , vm, w1, w2, . . . , wm} and edge set

{vivi+1, wiwi+1 : 1 ≤ i ≤ m− 1} ∪ {v1vm, w1wm, } ∪ {viwi : 1 ≤ i ≤ m}.

After opening Cm × P2 about the edge v1w1 into the ladder Lm+1, the vertices v1 and w1 copy
themselves into two copies each; the first copy of v1(resp. w1) is adjacent with v2(resp. w2), and
the second copy of v1(resp. w1) is adjacent with vm(resp. wm). These last vertex copies in the
ladder Lm+1 are named as vm+1 and wm+1, respectively. Therefore, if f a colouring for the prism
Cm × P2, then in the ladder Lm+1 we have f(v1) = f(vm+1 as well as f(w1) = f(wm+1). In this
case, we may also call Cm × P2 as the closed graph of Lm+1 about the edges v1w1 and vmwm.

In the following lemma we will show that a ladder of 2m vertices, with m 6≡ 0 (mod 4), can not
be gracefully coloured using 4 colours.

Lemma 3. Using four different colours, the graph Cm × P2, with m ≥ 3, m 6≡ 0 (mod 4), can
not be gracefully coloured.

P r o o f. Let a, b, c and d be four different colours, and let m = 4k + r, 1 ≤ r ≤ 3. Consider
the ladder Lm+1 as the opened graph of Cm×P2. Let the vertex and edge sets of the ladder Lm+1

be {vi, wi : 1 ≤ i ≤ m + 1} and {vivi+1, wiwi+1 : 1 ≤ i ≤ m, viwi : 1 ≤ i ≤ m + 1}, respectively.
Observe that the colour of vj (resp. wj) must be the same with the colour of wj+2 (resp. vj+2) or
of wj−2 (resp. vj−2) for realizable integer j (realizable means in the range of discussion). Without
loss of generality, let the colour of v1 is a. Therefore, the colour of w4s+3 and of v4t+1 is a, for some
realizable non-negative integers s, t. Now let us see cases: r = 1, r = 2, and r = 3. Suppose that f
is a graceful colouring for Cm × P2.

Case r = 1. If we take t = k, then we have f(v1) = a = f(v4k+1) = f(vm). Note that
vm+1 = v4k+2 is adjacent with vm. Thus, f(vm+1) can not be a to maintain proper colouring
property. But, in Cm × P2, vertices v1 and vm+1 are identical which insist f(vm+1) = f(v1) = a.
This implies a contradiction. So, for r = 1 the graph Cm × P2 can not be gracefully coloured.

Case r = 2. Applying a similar argument, by assuming the colour of v1 is a, we have that
f(wm+1) = f(w4k+3) = f(v1) = a. In graph Cm × P2, vertices w1 and wm+1 are identical. On the
other side, w1 is adjacent with v1, so that they can not get the same colour. Thus, a contradiction
occurs.

Case r = 3. Again by using a similar reason, we have that f(wm) = f(w4k+3) = f(v1) = a. We
know that wm+1 in Cm × P2 is identified with w1, and therefore is adjacent with both wm and v1.
This implies that the induced edge colours of v1w1(= v1wm+1) and w1wm are the same which then
contradicts the gracefulness property.

In any case we have proven that Cm × P2, m 6≡ 0(mod 4), can not be gracefully coloured using
only 4 colours. �



196 I N. Suparta, M. Venkathacalam, I Gede A. Gunadi and Putu A.C. Pratama

Figure 1. A graceful colouring of C8 × P2.

2. Results on prism and generalized prism graphs

In this section, we will be dealing with the graceful chromatic number of prism Cm × P2

first, m ≥ 3, and then with the graceful chromatic number of generalized prism graphs Cm × Pn,
m,n ≥ 3. As for some consequences, we also derive some bounds for graceful chromatic number of
graph Cm ×Cn, m,n ≥ 3, for some specific values of m and n.

Our main discussion will be separated into two subsections: For Cm×P2,m ≥ 3 and for Cm×Pn,
with m,n ≥ 3.

2.1. Prism graph Cm × P2 for m ≥ 3.

Theorem 1. If m ≡ 0 (mod 4), then the graceful chromatic number of graph Cm×P2 is equal
to 5.

P r o o f. Note that the graph Cm × P2 contains subgraph C4. Based on Lemma 2, we may
conclude that χg(Cm × P2) ≥ 4. Since all vertices of Cm × P2 has degree 3, if the colour 3 is used,
then by Corollay 1, the colour greater than 6 should occur. Therefore, the four colours we will use
are 1, 2, 4, and 5. Now we will prove that using these four colours, we are able to colour Cm × P2

gracefully. To confirm this, we will do by introducing the following graceful colouring technique for
Cm × P2 using only labels 1, 2, 4, and 5.

Let the vertices of Cm × P2 is the set

{

v1+i, v2+i, v3+i, v4+i, w1+i, w2+i, w3+i, w4+i : i = 4k, k = 0, 1, 2, . . . ,m/4− 1
}

and its edge set is

{

v1vm, w1wm, vmwm, vivi+1, wiwi+1, viwi : i = 1, 2, . . . ,m− 1
}

.

Define a colouring f for Cm × P2 as follows.

f(vi) =















1, if i ≡ 1 (mod 4),
4, if i ≡ 2 (mod 4),
5, if i ≡ 3 (mod 4),
2, if i ≡ 0 (mod 4),

f(wi) =















5, if i ≡ 1 (mod 4),
2, if i ≡ 2 (mod 4),
1, if i ≡ 3 (mod 4),
4, if i ≡ 0 (mod 4).

(2.1)
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Based on the above function f , it is clear that for every adjacent vertices u and v we have
f(u) 6= f(v). We can immediately observe that for any adjacent edges uw and wv in Cm we have

{

|f(u)− f(w)|, |f(w)− f(v)|
}

= {1, 3}.

Furthermore, we also have

{

|f(vi)− f(wi)| : 1 ≤ i ≤ m
}

= {2, 4}.

Remember that each vertex u in Cm ×P2 has degree 3; say x1, x2, and x3 are the vertices adjacent
to u. From the function f we can immediately conclude that the set

{

|f(u)− f(x1)|, |f(u)− f(x2)|, |f(u)− f(x3)|
}

is equal to {1, 2, 3} or to {1, 3, 4}. Thus, the function f satisfies the property to become graceful
colouring for Cm × P2. Therefore, χg(Cm × P2) = 5. �

Theorem 2. If m 6≡ 0 (mod 4), then the graceful chromatic number of graph Cm×P2 is equal
to 6.

P r o o f. The proof of Theorem 2 will make use of the result described in the proof of Theo-
rem 1.

For some positive integer k ≥ 1, consider C4k ×P2 which is coloured as in (2.1). Let the ladder
L4k+1 be the open graph of C4k×P2 about v1w1. Since Cm×P2 contains subgraph C4, to colour it
gracefully, one needs at least 4 colours. But, when m ≡ 1, 2 or 3 (mod 4), based on Lemma 3, we
can not colour the graph C4k×P2 gracefully using only 4 colours. Therefore, we have to use at least
5 colours. The smallest five colours are 1, 2, 3, 4, and 5. But, based on Corollary 1, whenever we
apply 3 for a vertex colour, the colour 6 or greater colour must occur. Thus, the graceful chromatic
number of Cm × P2 is at least 6. To conclude that χg(Cm × P2) = 6, we will proceed by showing
that a graceful colouring exist with maximum colour 6, as follows.

Case 1 : m ≡ 1 (mod 4). First, consider C5×P2 with vertex set {a1, a2, a3, a4, a5, b1, b2, b3, b4, b5}
and with edge set {a1a5, b1b5, aiai+1, bibi+1 : i = 1 ≤ i ≤ 4} ∪ {aibi : 1 ≤ i ≤ 5}. Now, we colour
vertices using the following function f :

f(ai) =























1, if i = 1,
4, if i = 2,
3, if i = 3,
5, if i = 4,
2, if i = 5,

f(bi) =























5, if i = 1,
2, if i = 2,
6, if i = 3,
1, if i = 4,
4, if i = 5.

The coloured C5×P2 will be used as the seed of our general construction for Case 1, and its diagram
is depicted in Fig. 2.

Consider the opened ladder L6 from the coloured C5 ×P2 above about a1b1. In L6, the colours
of a1, a2, a3, a4, a5, and a6 are 1, 2, 5, 3, 4, and 1, while the colours of b1, b2, b3, b4, b5, and b6 are
5, 4, 1, 6, 2, and 5.

Then, consider the open ladder L4k+1, for some positive integer k ≥ 1, from the coloured
C4k × P2 in Theorem 1 about v1w1. Here, the colours of v1 and w1 are also 1 and 5, respectively.
The same colours are also for v4k+1 which is 1, and for w4k+1 which is 5. Based on (2.1), we have
f(v4k) = 2, and f(w4k) = 4. By identifying v4k+1 with a6 and w4k+1 with b6, and maintaining the
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Figure 2. A graceful colouring of C5 × P2.

other vertex colours, then we get a new ladder on 4(k + 1) + 2 vertices, L4(k+1)+2, with graceful
colouring.

Furthermore, we know that f(v2) = 4, f(w2) = 2, f(a2) = 2, and f(b2) = 4. Thus by
identifying v1 with a1 and w1 with b1 in the ladder L4(k+1)+2, we obtain C4(k+1)+1 × P2 with a
graceful colouring.

From here, we may infer that the graceful chromatic number of the graph Cm × P2, for m ≡ 1
(mod 4) is equal to 6.

Case 2 : m ≡ 2 (mod 4). First, consider C6 × P2 with vertex set

{a1, a2, a3, a4, a5, a6, b1, b2, b3, b4, b5, b6},

and with edge set
{

a1a6, b1b6, aiai+1, bibi+1 : i = 1 ≤ i ≤ 5, aibi : 1 ≤ i ≤ 6
}

.

As a seed graph, we define the following colouring for C6 × P2 as follows.

f(ai) =































1, if i = 1,
3, if i = 2,
4, if i = 3,
1, if i = 4,
3, if i = 5,
4, if i = 6,

f(bi) =































5, if i = 1,
6, if i = 2,
2, if i = 3,
5, if i = 4,
6, if i = 5,
2, if i = 6.

By inspection we can verify that the above colouring for C6 × P2 is graceful. The diagram of the
coloured graph is shown in Fig. 3.

Let the ladder of 7 vertices, L7, is the open graph from the C6 × P2 above about v1w1. We
emphasize here that in this ladder L7, vertices a7 and b7 have colours 1 and 5, respectively; the
same as the colours of a1 and b1, respectively.

We use again the same ladder L4k+1, k ≥ 1, as in Case 1. Now we identify v4k+1 with a7 and
w4k+1 with b7, and maintaining the other vertex colours. Then we get a new ladder on 4(k+1)+3
vertices, L4(k+1)+3, with graceful colouring.

Furthermore, we identify v1 with a1 and w1 with b1 in the ladder L4(k+1)+3. Based on the
previous colours, we know that the colours of v2, w2, a2, b2, v1 = a1, w1 = b1, are 4, 2, 3, 6, 1, 5,
respectively. This means that after the last identification, the gracefulness colouring of C4(k+1)+2

are maintained. Thus, we may conclude that C4(k+1)+2 × P2 is with graceful colouring.
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Figure 3. A graceful colouring of C6 × P2.

Figure 4. A graceful colouring of C10 × P2.

A graceful labeled C10 × P2 which is constructed using this method is depicted in Fig. 4.

From here, we may infer that the graceful chromatic number of the graph Cm × P2, for
m ≡ 2 (mod 4) is equal to 6.

Case 3 : m ≡ 3 (mod 4). Here we will introduce a construction for graceful colouring of
Cm×P2 with m ≡ 3 (mod 4). We start with C3×P2 with vertex set {a1, a2, a3, b1, b2, b3} and edge
set {a3a1, a1a2, a2a3, b3b1, b1b2, b2b3, a1b1, a2b2, a3b3}. Then we colour C3 × P2 using the following
colouring f .

f(ai) =







1, if i = 1,
3, if i = 2,
4, if i = 3,

f(bi) =







5, if i = 1,
6, if i = 2,
2, if i = 3.

We can immediately check that this colouring f is graceful. The diagram of the gracefully
coloured graph C3 × P2 is shown in Fig. 5. We can verify that the graceful chromatic number of
this graph is 6.

We should mention again that this above colouring of C3×P2 is graceful. As we did for Case 1
and Case 2, first we will observe the open ladder L4 from C3 × P2 about a1b1. In this L4, the
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Figure 5. A graceful colouring of C3 × P2.

Figure 6. A graceful colouring of C7 × P2.

colour of vertices a4 = a1 = 1 and b4 = b1 = 5. Observe back the open ladder L4k+1 in Case 1 (and
Case 2).

Now we identify v4k+1 with a4 and w4k+1 with b4 to obtain a graceful colouring ladder L4k+4.
Let us denote the colouring as α. We can easily see that in this ladder we have α(a1) = α(v1) = 1
and α(b1) = α(w1) = 5. Moreover, we have also α(a2) = f(a2) = 3, α(b2) = f(b2) = 6, α(v2) = 4,
and α(w2) = 2. Thus, by identifying v1 with a1 and w1 with b1, we get a graceful colouring
C4k+3 × P2, with graceful chromatic number is 6. See the labeled graph C7 × P2 in Fig. 6 as an
example of the graph resulted from the construction.

Therefore, we may conclude that the graceful chromatic number of the graph Cm × P2, with
m ≡ 3 (mod 4) is also 6.

Since in all cases of m we proved that Cm × P2 has graceful chromatic number 6, we may
conclude that χg(Cm × P2) = 6. �

2.2. Results on generalized prism graphs Cm × Pn, m,n ≥ 3.

For a graph G, let f be a graceful colouring for G. It is obvious that for a vertex u ∈ V (G),
if v,w ∈ N(u), then f(v) 6= f(w). Therefore, we can immediately observe that the graph P3 × P3

can not be coloured by only four different colours. This observation gives

χg(P3 × P3) ≥ 5.
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But, if we use only five colours 1, 2, 3, 4 and 5, the center vertex of P3 × P3 must be 1 or 5. Then,
by inspection we can show that using only five colours, we can not colour P3 × P3 gracefully. This
gives the following lemma.

Lemma 4. The graceful chromatic number of the graph P3 × P3, χg(P3 × P3) ≥ 6.

The following Lemma 5 will be an important tool for the proofs of our main results encountered
in this section.

Lemma 5. The graceful chromatic number of the graph P5 × P5, χg(P5 × P5) ≥ 7.

P r o o f. Let the vertices of P5 × P5 be V (P5 × P5) = {vij : i, j = 0, 1, 2, 3, 4} and
E(P5 × P5) = {vijvi(j+1), vijv(i+1)j : i, j = 0, 1, 2, 3}. Now, observe the subgraph P3 × P3 with
V (P3 × P3) = {vij : i, j = 1, 2, 3} and

E(P3 × P3) = {vijv(i+1)j , vijv(i)(j+1) : i, j = 1, 2}.

In P5 × P5, every vertex of the subgraph P3 × P3 has degree 4. Based on Lemma 4, for gracefully
colouring P3 × P3, we need at least five colours. If the colour 3 or 4 is assigned for a vertex of
P3 × P3, then based on Lemma 1 the colour greater than or equal to 4 + 3 = 7 must appear in
P5 × P5. If the colors 3 and 4 both are not assigned for any vertex of P3 × P3, then, since we need
at least five colours, we need some color greater than or equal to 7 for gracefully colouring P5×P5.�

Now, observe the graph P4×P3. We will make use of this observation for facilitating the result
which will be formulated in Lemma 6. Let V (P4 × P3) = {vij : i = 0, 1, 2, 3; j = 0, 1, 2}, and
E(P4 × P3) = {vijvi(j+1) : i = 0, 1, 2, 3; j = 0, 1} ∪ {vijv(i+1)j : i = 0, 1, 2; j = 0, 1, 2}. The picture
in Fig. 7 is the diagram of graph P4 × P3 with vertex names.

Figure 7. The graph P4 × P3 with vertex names.

In here, we will restrict a vertex colouring α for P4×P3 as α(v0j) = α(v3j),∀j = 0, 1, 2. We will
show that under this restriction, using only six colours, the vertex colouring α can not be graceful.

Let the six colours be 1, 2, 3, 4, 5 and 6. Based on Lemma 1, since the degree of vertices v11 and
v21 each is four, the colours 3 and 4 both can not be used for these two vertices. So, there are
four colours: 1, 2, 5, and 6 that can be assigned for the vertices v11 and v21. In total, there are six
different combinations for colouring these two vertices: {α(v11), α(v21)} = {a, b}, a, b ∈ {1, 2, 5, 6},
with a 6= b. We can check by inspection that any one of these combinations results in the colouring
α is not graceful. But, for the space consideration, we will only describe the detail process for
combination {α(v11), α(v21)} = {1, 2} as in Fig. 8. Note that the case α(v11) = a and α(v21) = b is
similar to the case α(v11) = b and α(v21) = a.

The explanation of the colouring process in Fig. 8 is the following:
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1) The colours α(v11) = 1 and α(v21) = 2 are fixed as the initial combination.

2) The next vertex colouring follows the following vertices order: v20, v10, v00, v01, v02, v12, v22.
Note that α(v3j) := α(v0j),∀j = 0, 1, 2, based on the restriction imposed for α.

3) For some colours x, y and z, a notation x/y/z means that we assign the colour y(indicated
with bold face) for the related vertex among the possible colours x, y and z.

4) The colour which stands alone (written in red bold face), indicates that the colour is the only
possible colour for the related vertex.

5) The red cross sign X informs that the colouring process is discontinue at the related vertex,
since there is no possible choice of colours to colour the vertex. The appearance ofX indicates
that the colouring fails to be graceful.

From Fig. 8 we can see that each colouring process ends to be not graceful which is in-
dicated by the appearance of the sign X. Thus, we may conclude that under the restriction
α(v1j) = α(v4j), j = 0, 1, 2, using exactly six different colours, we can not colour the graph P4 ×P3

gracefully.

Figure 8. The colouring process for P4 × P3 with α(v11) = 1 and α(v21) = 2.

If we extend this last observation to graph P4 × Pn, n ≥ 3, with

V (P4 × Pn)={vij : i=0, 1, 2, 3; j=0, 1, . . . , n− 1},

and

E(Pm×Pn) = {vijvi(j+1) : i=0, 1, 2, 3; j=0, 1, . . . , n−2}∪{vijv(i+1)j : i = 0, 1, 2; j = 0, 1, . . . , n−1},

under restriction that α(v0j) = α(v3j), j = 0, 1, . . . , n − 1, we may also conclude that we need at
least seven colours to maintain the colouring α becomes graceful for P4 × Pn.
From this last observation we can formulate the following result.

Lemma 6. For n ≥ 3, the graceful chromatic number of the graph C3 × Pn, χg(C3 × Pn) ≥ 7.
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P r o o f. The generalized prism graph C3 × Pn, n ≥ 3, can be obtained by identifying vertices
v0j and v3j for every j = 0, 1, 2, . . . , n− 1 as it is in the last observation. By considering a graceful
colouring α for the graph P4 × Pn under the above mentioned restriction, we are done. �

For facilitating the discussion of our main results in this section, we need the following definition,
as we defined a ladder as an open graph of Cm × P2 in the previous section. Here we will define
a similarone as an open graph from the graph Cm × Pn, m,n ≥ 3. Let the vertex set of graph
Cm × Pn, m,n ≥ 3, be

{vij , 0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1},

and its edge set be

{vijvkl, if i = k and |j − l| = 1 or j = l and |i− k| ≡ 1 (mod m)}.

Consider the open graph of Cm × Pn, m,n ≥ 3, about the path P which has end vertices v00 and
v0n, and has vertex set and edge set {v0j , j = 0, 1, . . . , n − 1} and {v0jv0(j+1), j = 0, 1, . . . , n − 2},
respectively. Denote this open graph by Lm+1,n. This graph is a grid graph having (m + 1) × n
vertices which involves two copies of path P . These two copies of path P , each has vertices
v0j , j = 0, 1, . . . , n−1 and edges v0jv0(j+1), j = 0, 1, . . . , n−2. In the open graph Lm+1,n, the vertices
and edges of the second copy of P will be denoted by vmj , j = 0, 1, . . . , n − 1, and vmjv(m)(j+1),
j = 0, 1, . . . , n − 1, respectively. It is clear that the vertex vmj is adjacent with v(m−1)j for every
j = 0, 1, . . . , n − 2. In this case, Cm × Pn can be reconstructed from Lm+1,n by identifying vertex
v0j and vmj for every j = 0, 1, . . . , n− 1.

Theorem 3. For any positive integers m,n ≥ 3, with m ≡ 0 (mod 3), χg(Cm × Pn) = 7.

P r o o f. From Lemma 4 we know that the graceful chromatic number of Cm × Pn is at least
seven. Now we will show that a graceful colouring exists for Cm × Pn such that it uses only seven
different colours, and therefore χg(Cm × Pn) = 7.

Let the vertex set of Cm × Pn is {vij |0 ≤ i ≤ m− 1; 0 ≤ j ≤ n− 1}, and edge set
{

vijvrs|i = r and |s− j| ≡ 1 (mod n) or j = s and |i− r| ≡ 1 (mod m)
}

.

To this end, here we define a colouring function f for Cm × Pn as follows.

f(vij) =



































































































































1, if i ≡ 0 (mod 3), j ≡ 0 (mod 6),
5, if i ≡ 0 (mod 3), j ≡ 1 (mod 6),
6, if i ≡ 0 (mod 3), j ≡ 2 (mod 6),
2, if i ≡ 0 (mod 3), j ≡ 3 (mod 6),
3, if i ≡ 0 (mod 3), j ≡ 4 (mod 6),
7, if i ≡ 0 (mod 3), j ≡ 5 (mod 6),
3, if i ≡ 1 (mod 3), j ≡ 0 (mod 6),
7, if i ≡ 1 (mod 3), j ≡ 1 (mod 6),
1, if i ≡ 1 (mod 3), j ≡ 2 (mod 6),
5, if i ≡ 1 (mod 3), j ≡ 3 (mod 6),
6, if i ≡ 1 (mod 3), j ≡ 4 (mod 6),
2, if i ≡ 1 (mod 3), j ≡ 5 (mod 6),
6, if i ≡ 2 (mod 3), j ≡ 0 (mod 6),
2, if i ≡ 2 (mod 3), j ≡ 1 (mod 6),
3, if i ≡ 2 (mod 3), j ≡ 2 (mod 6),
7, if i ≡ 2 (mod 3), j ≡ 3 (mod 6),
1, if i ≡ 2 (mod 3), j ≡ 4 (mod 6),
5, if i ≡ 2 (mod 3), j ≡ 5 (mod 6).

(2.2)
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An example of a graceful coloured graph C6 × Pn using (2.2) is shown in Fig. 9. In this figure
we may also see the related open graph L7,n of C6 × Pn.

Figure 9. A graceful colouring of C6 × Pn, n ≥ 3.

Fig. 9 also helps us to be able to check by inspection that f is a graceful colouring for the
graph Cm × Pn, with m ≡ 0 (mod 3). Therefore, we may conclude that this graph has chromatic
number 7. �

Furthermore, based on (2.2) we see that for every i, 0 ≤ i ≤ m − 1, we have f(vij) = f(vik)
provided |j − k| ≡ 0 (mod 6).

Corollary 2. For any positive integers m,n ≥ 3, with m ≡ 0 (mod 3) and with n ≡ 0 (mod 6),
χg(Cm × Cn) = 7.

P r o o f. The proof of this corollary may be derived from (2.2). From Theorem 3 we conclude
that χg(Cm × Pn) = 7, if m ≡ 0 (mod 3), and n ≥ 3. From (2.2) we know that f(vij) = f(vik)
whenever |j − k| ≡ 0 (mod 6). Thus, if n ≡ 0 (mod 6), then if we identify vertex vi0 and vin for
every i, 0 ≤ i ≤ m− 1 in Cm×Pn, then we get a graceful coloured graph Cm×Cn, m ≡ 0 (mod 3)
and n ≡ 0 (mod 6). Therefore, we may conclude that χg(Cm ×Cn) = 7 where m ≡ 0 (mod 3) and
n ≡ 0 (mod 6). �

In the remaining part of this section we will see the graceful colouring number for Cm × Pn,
with m 6≡ 0 (mod 3), n ≥ 3. We start to observe the case m ≡ 1 (mod 3) as we formulate in the
following theorem.

Theorem 4. If m ≡ 1 (mod 3), then 7 ≤ χg(Cm × Pn) ≤ 8.

P r o o f. We will make use of prism graph C4 × Pn as the seed of our graceful colouring
construction. We first introduce a colouring for the graph C4 × Pn, n ≥ 3.
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Figure 10. A graceful colouring of C4 × Pn.

Let the vertex set of C4 × Pn is
{

vij|0 ≤ i ≤ 3; 0 ≤ j ≤ n− 1
}

,

and edge set
{

vijvrs| i = r and |s − j| ≡ 1 (mod n) or j = s and |i− r| ≡ 1 (mod 4)
}

.

To this end, we define a colouring function f as follows.

f(vij) =



















































































































1, if i ≡ 0 (mod 4), j ≡ 0 (mod 4),
2, if i ≡ 0 (mod 4), j ≡ 1 (mod 4),
6, if i ≡ 0 (mod 4), j ≡ 2 (mod 4),
5, if i ≡ 0 (mod 4), j ≡ 3 (mod 4),
3, if i ≡ 1 (mod 4), j ≡ 0 (mod 4),
4, if i ≡ 1 (mod 4), j ≡ 1 (mod 4),
8, if i ≡ 1 (mod 4), j ≡ 2 (mod 4),
7, if i ≡ 1 (mod 4), j ≡ 3 (mod 4),
6, if i ≡ 2 (mod 4), j ≡ 0 (mod 4),
7, if i ≡ 2 (mod 4), j ≡ 1 (mod 4),
3, if i ≡ 2 (mod 4), j ≡ 2 (mod 4),
2, if i ≡ 2 (mod 4), j ≡ 3 (mod 4),
4, if i ≡ 3 (mod 4), j ≡ 0 (mod 4),
5, if i ≡ 3 (mod 4), j ≡ 1 (mod 4),
1, if i ≡ 3 (mod 4), j ≡ 2 (mod 4),
8, if i ≡ 3 (mod 4), j ≡ 3 (mod 4).

(2.3)

For an illustration one can see in Fig. 10
Fig. 10 helps us to see that (2.3) gives a graceful colouring for C4 × Pn for every n ≥ 3 with

χg(C4 × Pn) ≤ 8. Therefore, based on Lemma 4, we may conclude that 7 ≤ χg(C4 × Pn) ≤ 8.
Furthermore, the graceful colouring of Cm × Pn, with m ≡ 1 (mod 3) and n ≥ 3 in general, is

obtained by extending graceful coloured graph C4 × Pn using the prism graph C3 × Pn which has
colouring as we will show below.

Let the vertex set of C3 × Pn is
{

vij| 0 ≤ i ≤ 2; 0 ≤ j ≤ n− 1
}

,
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Figure 11. A graceful colouring of C3 × Pn.

and edge set

{

vijvrs| i = r and |s− j| ≡ 1 (mod n) orj = s and |i− r| ≡ 1 (mod 3)
}

.

To this end, we define a colouring function f as follows.

f(vij) =



















































































1, if i ≡ 0 (mod 3), j ≡ 0 (mod 4),
2, if i ≡ 0 (mod 3), j ≡ 1 (mod 4),
6, if i ≡ 0 (mod 3), j ≡ 2 (mod 4),
5, if i ≡ 0 (mod 3), j ≡ 3 (mod 4),
3, if i ≡ 1 (mod 3), j ≡ 0 (mod 4),
4, if i ≡ 1 (mod 3), j ≡ 1 (mod 4),
8, if i ≡ 1 (mod 3), j ≡ 2 (mod 4),
7, if i ≡ 1 (mod 3), j ≡ 3 (mod 4),
6, if i ≡ 2 (mod 3), j ≡ 0 (mod 4),
7, if i ≡ 2 (mod 3), j ≡ 1 (mod 4),
3, if i ≡ 2 (mod 3), j ≡ 2 (mod 4),
2, if i ≡ 2 (mod 3), j ≡ 3 (mod 4).

(2.4)

The diagram of coloured graph L4,n from C3×Pn is depicted in Fig. 11. The coloured graph C3×Pn

is obtained by identifying v0j and v3j for all j, 0 ≤ j ≤ n − 1. We can immediately observe that
(2.4) gives a graceful colouring for the prism graph C3 ×Pn with χg(C3 ×Pn) ≤ 8. Again based on
Lemma 4, we conclude that 7 ≤ χg(C3 × Pn) ≤ 8.

For producing a graceful colouring for Cm × Pn, m ≡ 1 (mod 3) we use L5,n from C4 × Pn

and L4,n from C3 × Pn, by identifying v5j of L5,n and v0j of L4,n for all j, 0 ≤ j ≤ n − 1. This
identification results in a graceful coloured grid graph L8,n. Then, if we identify v8j of L8,n and
v0j of L4,n for all j, 0 ≤ j ≤ n − 1, we get a graceful coloured grid graph L11,n. Continuing the
same procedure, then we get a graceful coloured grid graph L(m+1),n. Then by identifying vertex
v0j and vmj from L(m+1),n we obtain Cm × Pn with m ≡ 1 (mod 3) and n ≥ 3. �

As one consequence, as we formulated Corollary 2 based on Theorem 3, we also formulate a
corollary based on Theorem 4 as the following.

Corollary 3. If m ≡ 1 (mod 3) and n ≡ 0 (mod 4), then 7 ≤ χg(Cm × Cn) ≤ 8.

Now we go to the next case m ≡ 2 (mod 3). The result is formulated in the following theorem.
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Figure 12. A graceful colouring of grid graph L6,n of C5 × Pn.

Theorem 5. If m ≡ 2 (mod 3), then 7 ≤ χg(Cm × Pn) ≤ 8.

P r o o f. To proof this theorem, we will start with a graceful colouring for C5 × Pn, m ≡ 2
(mod 3), n ≥ 3. We introduce the following colouring for the graph C5 × Pn, n ≥ 3.

f(vij) =



















































































































































1, if i ≡ 0 (mod 5), j ≡ 0 (mod 4),
2, if i ≡ 0 (mod 5), j ≡ 1 (mod 4),
6, if i ≡ 0 (mod 5), j ≡ 2 (mod 4),
5, if i ≡ 0 (mod 5), j ≡ 3 (mod 4),
3, if i ≡ 1 (mod 5), j ≡ 0 (mod 4),
4, if i ≡ 1 (mod 5), j ≡ 1 (mod 4),
8, if i ≡ 1 (mod 5), j ≡ 2 (mod 4),
7, if i ≡ 1 (mod 5), j ≡ 3 (mod 4),
6, if i ≡ 2 (mod 5), j ≡ 0 (mod 4),
7, if i ≡ 2 (mod 5), j ≡ 1 (mod 4),
3, if i ≡ 2 (mod 5), j ≡ 2 (mod 4),
2, if i ≡ 2 (mod 5), j ≡ 3 (mod 4),
4, if i ≡ 3 (mod 5), j ≡ 0 (mod 4),
5, if i ≡ 3 (mod 5), j ≡ 1 (mod 4),
1, if i ≡ 3 (mod 5), j ≡ 2 (mod 4),
8, if i ≡ 3 (mod 5), j ≡ 3 (mod 4),
7, if i ≡ 4 (mod 5), j ≡ 0 (mod 4),
8, if i ≡ 4 (mod 5), j ≡ 1 (mod 4),
4, if i ≡ 4 (mod 5), j ≡ 2 (mod 4),
3, if i ≡ 4 (mod 5), j ≡ 3 (mod 4).

(2.5)

The diagram for coloured grid graph L6,n of C5 × Pn, which is derived from (2.5), can be seen
in Fig. 12. Using this diagram we may conclude that the colouring is graceful. It is clear that
χg(C5 × Pn) ≤ 8.

The process of expanding to get coloured graph Cm × Pn, m ≡ 2 (mod 3), n ≥ 3, is similar to
the previous process as was described in the proof of Theorem 4. Here we use graceful coloured
grid graph L6,n from graceful coloured graph C5 × Pn, and graceful coloured grid graph L4,n

from graceful coloured graph C3 × Pn. Again by considering Lemma 4,we then conclude that
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7 ≤ χg(C5 × Pn) ≤ 8. �

Similar to the previous corollaries, here we formulate the following corollary as a consequence
of Theorem 5.

Corollary 4. If m ≡ 2 (mod 3) and n ≡ 0 (mod 4), then 7 ≤ χg(Cm × Cn) ≤ 8.

3. Conclusion

In the discussion above, it has been proven that prism graph Cm ×P2 has a chromatic number
equal to 5 when m ≡ 0 (mod 4), and equal to 6 when m 6≡ 0 (mod 4). While for generalized prism
Cm × Pn we found that its chromatic number is equal to 7 while m ≡ 0 (mod 3). Whereas for
m 6≡ 0 (mod 3), we got that 7 ≤ χg(Cm × Pn) ≤ 8. Based on these results, we could also derive
some exact and bound values of graceful chromatics number of Cm × Cn for certain m,n ≥ 3.
Regarding this last observation, we propose the following open problem and conjecture.

Conjecture. If m 6≡ 0 (mod 3) and n ≥ 3, then χg(Cm × Pn) = 8.
Open problem. What is χg(Cm × Cn), if m 6≡ 0 (mod 3), m, n ≥ 3?
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