
URAL MATHEMATICAL JOURNAL, Vol. 4, No. 2, 2018, pp. 43–55

DOI: 10.15826/umj.2018.2.006

OPTIMIZING THE STARTING POINT IN A PRECEDENCE
CONSTRAINED ROUTING PROBLEM WITH
COMPLICATED TRAVEL COST FUNCTIONS1

Alexander G. Chentsov†, Alexey M. Grigoryev†† and Alexey A. Chentsov†††

Krasovskii Institute of Mathematics and Mechanics,
Ural Branch of the Russian Academy of Sciences,

16 S. Kovalevskaya str., Ekaterinburg, Russia, 620990
†chentsov@imm.uran.ru, ††ag@uran.ru, †††chentsov a a@mail.ru

Abstract: We study the optimization of the initial state, route (a permutation of indices), and track in
an extremal problem connected with visiting a finite system of megalopolises subject to precedence constraints
where the travel cost functions may depend on the set of (pending) tasks. This problem statement is exemplified
by the task to dismantle a system of radiating elements in case of emergency, such as the Chernobyl or Fukushima
nuclear disasters. We propose a solution based on a parallel algorithm, which was implemented on the Uran
supercomputer. It consists of a two-stage procedure: stage one determines the value (extremum) function
over the set of all possible initial states and finds its minimum and also the point where it is achieved. This
point is viewed as a base of the optimal process, which is constructed at stage two. Thus, optimization of the
starting point for the route through megalopolises, connected with conducting certain internal tasks there, is an
important element of the solution. To this end, we employ the apparatus of the broadly understood dynamic
programming with elements of parallel structure during the construction of Bellman function layers.

Key words: Dynamic programming, Route, Sequencing, Precedence constraints, Parallel computation.

Introduction

In this paper, we consider an additive routing problem aimed at applications in nuclear power
generation: the intention is to decrease the exposure of power plant staff to radiation during
a sequence of work-related activities. The considered problem features precedence constraints,
multiple variants of movements, and travel cost functions that could depend on the set of pending
tasks. The mentioned features of the statement stem from the peculiarities of the actual engineering
problem, which exhibits a qualitative difference from its prototype, the well-known intractable
traveling salesman problem (TSP); see [1–6]. In a series of papers, the authors have developed
solution methods based on dynamic programming (DP) combined with parallel computations, see
[7–12] et al. Here, we consider the statement where, in addition to a solution in the form of a
route-track pair, one also has to choose the starting point (the base) for the process of movements.
We found out that the DP-based procedure used in [7–11] could be used just as well to solve such
an “expanded” problem (see also the monograph [13], connected with issues of decreasing staff
exposure to radiation during a sequence of operations).

1. General notation and definitions

We use the quantifiers and logical connectives; ∅ denotes the empty set and
△
= denotes the

equality by definition. To arbitrary objects α and β, assign the set {α;β} that contains α and β and

them only. If x is an object, then {x}
△
= {x;x} is the singleton that contains x. A set is an object,

1This work was supported by Russian Science Foundation (project no. 14-11-00109).

https://doi.org/10.15826/umj.2018.2.006
mailto:chentsov@imm.uran.ru
mailto:ag@uran.ru
mailto:chentsov_a_a@mail.ru

44 Alexander G. Chentsov, Alexey M. Grigoryev and Alexey A. Chentsov

hence [14, p. 59], to objects y and z, one can assign an ordered pair (OP) (y, z)
△
=

{
{y}; {y; z}

}

of these objects; y is the first and z is the second element of this OP. To every OP z, assign the
first element pr1(z) and the second element pr2(z), which are uniquely defined by the condition

z =
(
pr1(z),pr2(z)

)
. If a, b, and c are objects, then (a, b, c)

△
=

(
(a, b), c

)
is the triple of these

objects, constructed as an OP with the first element (a, b) and the second element c.

To every set S, assign the family P(S) of all its subsets; P ′(S)
△
= P(S) \ {∅}; and Fin(S) is the

family of all finite sets from P ′(S). The family Fin(S) consists of the finite nonempty subsets of S
and them only. To nonempty sets A and B, assign the nonempty set BA of all mappings from A

to B (see [14, p. 70]); for g ∈ BA and C ∈ P(A), in the form g1(C)
△
= {g(x) : x ∈ C} ∈ P(B), we

have the image of C under g; g1(C) 6= ∅ when C 6= ∅. If A, B, and C are three nonempty sets,

then [15, p. 5] A×B×C
△
= (A×B)×C; if, in addition, D is a nonempty set and h ∈ DA×B×C , then,

for x ∈ A×B and y ∈ C, we have (x, y) ∈ A×B ×C and the value h(x, y) ∈ D of the mapping h

at the point (x, y) is well-defined; for this value, we also have h(x, y) = h
(
pr1(x),pr2(x), y

)
.

As usual, N
△
= {1; 2; . . .}; set N0

△
= {0} ∪ N and p, q

△
= {j ∈ N0| (p 6 j)&(j 6 q)} ∀p ∈ N0

∀q ∈ N0 (if k ∈ N0, l ∈ N0, and l < k, then k, l = ∅). To every nonempty finite set K assign
its cardinality |K| ∈ N and the nonempty set (bi)[K] of all bijections of the integer interval 1, |K|

onto K; |∅|
△
= 0. By R we denote the real line; R+

△
= {ξ ∈ R| 0 6 ξ}; and R+[T], where T is a

nonempty set, denotes the set of all functions from T to R+, that is, R+[T]
△
= (R+)

T .

2. Problem statement

Fix a nonempty set X and some X0 ∈ Fin(X); the points X0 are viewed as admissible starting
points. Let N ∈ N, N > 2,

M1 ∈ Fin(X), . . . ,MN ∈ Fin(X),

and let M1 ∈ P ′(M1 ×M1), . . . ,MN ∈ P ′(MN ×MN); assume

(X0 ∩ Mj = ∅ ∀j ∈ 1, N)&(Mp ∩ Mq = ∅ ∀p ∈ 1, N ∀q ∈ 1, N \ {p})

and set P
△
= (bi)[1, N]. Consider the processes

(x(0) = x0 ∈ X0) → (x
(1)
1 ∈ Mα(1) x

(1)
2 ∈ Mα(1)) → . . .

→ (x
(N)
1 ∈ Mα(N) x

(N)
2 ∈ Mα(N))

(2.1)

where α ∈ P, z1 ∈ (x
(1)
1 , x

(1)
2) ∈ Mα(1), . . . , zN ∈ (x

(N)
1 , x

(N)
2) ∈ Mα(N). The permutation α

determines the route, that is, the sequence the megalopolises are visited in while z1, . . . , zN de-
termines the track of these visits; x0 is the initial state. A complete solution (see (2.1)) is a
tuple (x0, α, z1, . . . , zN), to be determined. The choice of α ∈ P may be restricted by precedence
constraints; to describe them, fix

K ∈ P(1, N × 1, N),

that is, the set of OPs known as “address pairs” (see [7–11, 13]); the case K = ∅ denotes the
absence of precedence constraints. Assume that

∀K0 ∈ P ′(K) ∃ z0 ∈ K0 : pr1(z0) 6= pr2(z) ∀z ∈ K0.

In the form

A
△
= {α ∈ P|α−1

(
pr1(z)

)
< α−1

(
pr2(z)

)
∀z ∈ K} ∈ P ′(P), (2.2)

Sequence Dependent Generalized TSP with Precedence Constraints 45

we have a (nonempty) set of K-feasible routes. Let X
△
= X0 ∪

(N⋃
i=1

Mi

)
; then, X ∈ Fin(X). Denote

by Z the set of all tuples (zi)i∈0,N : 0, N → X×X, that is, Z
△
= (X×X)0,N . If x0 ∈ X0 and α ∈ P,

then
Zα[x

0]
△
= {z ∈ Z|

(
z(0) = (x0, x0)

)
&
(
z(t) ∈ Mα(t) ∀t ∈ 1, N

)
} ∈ Fin(Z). (2.3)

Therefore, for x0 ∈ X0, in the form

D̃[x0]
△
= {(α, z) ∈ A× Z| z ∈ Zα[x

0]} ∈ Fin(A× Z),

we have a (nonempty finite) set of feasible solutions (FS) of the problem with the fixed initial state.
Next, let us note that

D
△
= {(α, z, x) ∈ A× Z×X0| (α, z) ∈ D̃[x]} ∈ Fin(A× Z×X0) (2.4)

is viewed as the set of all FSs of the complete problem.

Consider the following transportation cost functions. Let N
△
= P ′(1, N); c ∈ R+[X × X ×N];

and let c1 ∈ R+[X× X×N], . . . , cN ∈ R+[X× X×N], f ∈ R+[X]. In terms of the tuple

(c, c1, . . . , cN , f),

we define the additive criterion: for x0 ∈ X0 and (α, z) ∈ D̃[x0], assume

Cα[z]
△
=

N∑

s=1

[
c
(
pr2

(
z(s− 1)

)
,pr1

(
z(s)

)
, α1(s,N)

)
+

+cα(s)
(
z(s), α1(s,N)

)]
+f

(
pr2

(
z(N)

))
;

(2.5)

thus, to each FS (α, z, x0) ∈ D, we assign the value Cα[z] ∈ R+, which does not explicitly depend
on x0 (x0 affects the choice of z). Like in [7–11], for x0 ∈ X0, let us introduce the problem

Cα[z] −→ min, (α, z) ∈ D̃[x0], (2.6)

for which the value V [x0] is determined as the least value among Cα[z], (α, z) ∈ D̃[x0], and also
the (nonempty) set

(SOL)[x0]
△
= {(α0, z0) ∈ D̃[x0]|Cα0

[z0] = V [x0]} ∈ Fin(D̃[x0]). (2.7)

In addition, we have the following complete problem

Cα[z] −→ min (α, z, x) ∈ D, (2.8)

with the value
V

△
= min

(α,z,x)∈D
Cα[z] ∈ R+ (2.9)

and a (nonempty) set

SOL
△
= {(α0, z0, x0) ∈ D|Cα0 [z0] = V} ∈ Fin(D).

In connection with (2.8), it is also of interest to consider the problem

V [x] −→ min, x ∈ X0; (2.10)

46 Alexander G. Chentsov, Alexey M. Grigoryev and Alexey A. Chentsov

(2.10) is the problem of optimizing the starting point, which is of some interest in itself. Indeed,
if (2.10) is solved, we get V (2.9) and the point x0 ∈ X0 such that V is achieved by V [x0]. One
could construct heuristics (when necessitated by the problem’s dimension) for solving (2.6), compare
their results with V, and thereby choose what is deemed admissible. In this connection, note that
(see (2.4))

V = min
x∈X0

min
(α,z)∈D̃[x]

Cα[z] = min
x∈X0

V [x]. (2.11)

To solve the problems of the form (2.6), one can use the broadly understood DP in the spirit
of [7–11, 13]; here, we consider these procedures in their algorithmic form (see [11, 16]).

3. Dynamic programming in starting point optimization problem

This section serves to adapt the DP procedure from papers [7–11, 13, 16] to the needs of
solving problem (2.10). To this end, let us introduce the crossing-out operator I, which acts in N:
for K ∈ N, assume

I(K)
△
= K \ {pr2(z) : z ∈ Ξ[K]}, (3.1)

where Ξ[K]
△
= {z ∈ K|

(
pr1(z) ∈ K

)
&
(
pr2(z) ∈ K

)
} (note that I({t}) = {t} for t ∈ 1, N). In terms

of I (3.1), let us introduce the family

C
△
= {K ∈ N| ∀z ∈ K

(
pr1(z) ∈ K

)
⇒

(
pr2(z) ∈ K

)
}

of feasible (task) sets and its subfamilies Cs
△
= {K ∈ C| s = |K|} ∀s ∈ 1, N . Note that

CN = {1, N} and Cs−1 = {K \ {t} : K ∈ Cs, t ∈ I(K)} ∀s ∈ 2, N (we have (see [16]) a re-

currence procedure for constructing C1, . . . ,CN). For K1
△
= {pr1(z) : z ∈ K}, we have the equality

C1 =
{
{t} : t ∈ 1, N \K1

}
. Let Mt

△
= {pr2(z) : z ∈ Mt} ∀t ∈ 1, N. In addition, let

X
△
= X0 ∪

(N⋃

t=1

Mt

)
. (3.2)

Consider the construction of layers of the state space, that is, the layers of the set X × P(1, N).

To this end, first, denote by M̃ the union of all the sets Mt, t ∈ 1, N \K1; then, set

D0
△
= {(x, ∅) : x ∈ M̃}.

In addition, set DN
△
= {(x, 1, N) : x ∈ X0}; D0 and DN are the boundary state space layers.

Constructing intermediary layers. If s ∈ 1, N − 1 and K ∈ Cs, then let us define, in a
sequential fashion, the three sets

Js(K)
△
= {j ∈ 1, N \K| {j} ∪K ∈ Cs+1},

Ms[K]
△
=

⋃

j∈Js(K)

Mj ,

Ds[K]
△
= {(x,K) : x ∈ Ms[K]}.

(3.3)

In view of (3.3), for s ∈ 1, N − 1, let Ds be the union of all the sets Ds[K], K ∈ Cs; then,
∅ 6= Ds ⊂ X× Cs.

Sequence Dependent Generalized TSP with Precedence Constraints 47

In view of the definitions of D0 and DN , we see that, in particular, (Ds)s∈0,N is a tuple of

subsets of X× P(1, N). Thus we obtain the state space layers. Let us now define the functions

v0 ∈ R+[D0], v1 ∈ R+[D1], . . . , vN ∈ R+[DN]

in a sequential fashion. Set v0(x, ∅)
△
= f(x) ∀x ∈ M̃; thus, we obtain v0.

Under s ∈ 1, N , (x,K) ∈ Ds, j ∈ I(K), and z ∈ Mj, we obtain (see [16, (4.9)])

(
pr2(z),K \ {j}

)
∈ Ds−1.

In view of this property, for s ∈ 1, N , we define the transformation of vs−1 into vs through [16,
Proposition 4.1]:

vs(x,K)
△
= min

j∈I(K)
min
z∈Mj

[
c
(
x,pr1(z),K

)
+cj(z,K)+

+vs−1

(
pr2(z),K \ {j}

)]
∀(x,K) ∈ Ds.

(3.4)

This implements the recurrence procedure v0 → v1 → . . . → vN .

Proposition 3.1. If x0 ∈ X0, then vN (x0, 1, N) = V [x0].

P r o o f. Fix x0 ∈ X0, which implies x0 ∈ X. Consider problem (2.6). The way of solving this
problem is described, in particular, in [16]; in the same paper, there are also constructed the feasible
task set families C,C1, . . . ,CN similar to those mentioned in the beginning of the section. Based on
that (in [16]), state space layers D0,D1, . . . ,DN , similar to D0,D1, . . . ,DN (see, in particular, (3.3)
and [16, Section 4]), are constructed. There is a difference only for DN and DN : here, we have

DN = X0 × {1, N} = {(x, 1, N) : x ∈ X0},

whereas, in [16], DN = {(x0, 1, N)}, whence DN ⊂ DN . Next, the construction of v0, v1, . . . , vN−1

in [16, Section 4] and in the present section is the same (see, in particular, (3.4) and [16, Proposi-
tion 4.1]). Therefore, in particular, vN−1 matches that of [16, Section 4]. At the same time, V [x0]
matches V [16, (3.18)]. Thus, in accordance with [16, (4.12)],

V [x0] = min
j∈I(1,N)

min
z∈Mj

[
c
(
x0,pr1(z), 1, N

)
+cj(z, 1, N) + vN−1

(
pr2(z), 1, N \ {j}

)]
, (3.5)

where
(
pr2(z̃), 1, N \ {j}

)
∈ DN−1 for j ∈ I(1, N) and z̃ ∈ Mj. However, (x0, 1, N) ∈ DN , thus, in

the right-hand side of (3.5), we have (see (3.4)) vN (x0, 1, N), which completes the proof. �

From Proposition 3.1, we see that problem (2.10) takes the following form:

vN (x, 1, N) −→ min, x ∈ X0. (3.6)

In (3.6), we have an exhaustive search for the minimum of the function vN (·, 1, N) over the finite
set X0. In this connection, we propose the following algorithm for solving problem (2.10).

4. Algorithm for optimization of starting point

Algorithm 4.1.

(1) In terms of f , define the function v0.

48 Alexander G. Chentsov, Alexey M. Grigoryev and Alexey A. Chentsov

(2) If s ∈ 1, N and the function vs−1 have been constructed already, conduct the transformation
vs−1 → vs based on (3.4).

(3) After vs has been constructed through the rule (3.4), the values of the function vs−1 are erased
and replaced by the values of the function vs (the Bellman function layers are overwritten).

(4) After the function vN has been constructed, solve the problem (3.6): determine V and the
minimum of the function vN (·, 1, N), which has the form

x 7−→ vN (x, 1, N) : X0 → R+.

As noted before, the solution of problem (2.10) could be used to test the heuristics, which are
to be employed on larger problem instances.

Coming back to the problem (2.8), note that the aforementioned algorithm (which admits a
natural analogy with [16]) must be modified: the layers v1, . . . , vN will have to be retained in the
computer’s memory. We also have to select the point x0 ∈ X0 that is a solution of problem (2.10),
that is, V [x0] = V. Next, use the algorithm [16, Section 4] (see also [17, § 7], where a slightly more
general statement was considered). The logic of constructions here follows that of [7–11, 13].

To construct an optimal solution after the optimal starting point has been found — the pair
of a route and a track — we use the algorithm [16, Section 4] (see also [7, 11]). In this case, we
have to retain in the computer’s memory all the layers of the corresponding (to the found starting
point) “part” of the Bellman function. At this stage, it is also possible to repeat the construction
of the layers of the mentioned “part” that corresponds to the solution of problem (3.6). We omit
this construction and refer the reader to [7, 16, 19] for details.

Using the independent computations scheme. Returning to problem (3.6), note that its
most significant step — the construction of the Bellman function layers — is conducted through the
independent computations scheme (see papers [17, 18]), which transfers to problem (3.6) without
significant modifications because the actual object of construction in [17, 18] (and also [9, 11]) is
the function vN−1. Thus, we omit the theoretical description of the independent computations
scheme in the spirit of [17, 18], and the parallel algorithm itself is only briefly described in con-
nection with its software implementation for a supercomputer. The differences with [17, 18] only
appear in the final computations of the form (3.5) (in [17, 18], a single computation was required,
whereas, for problem (3.6), the number of computations matches the number of elements in the
set X0). A version of parallel implementation as described in [17, 18] can be used both for solving
problem (2.10), (3.6) (when the Bellman function layers get overwritten, see step (1)–(4) of the
Algorithm 4.1), and in subsequent construction of the optimal solution in the form of a route-track
pair “tied” to the minimum of problem (3.6). Following [17, 18], we distribute the sets from CN−1

between the nodes, creating thus a finite collection of independent computation procedures; these
procedures could, in part, overlap (the layers Ds, s ∈ 1, N − 1 are covered by the “individual” state
space layers, which do not normally reduce to a partition; the systems of individual layers, each
connected with a fixed set K ∈ CN−1, denote the “theaters” of the corresponding nodes). Each
of the mentioned computational procedures yields a “part” (to be more precise, a restriction to a
nonempty subset of DN−1) of the function vN−1.

Application to a dismantling problem. One natural version of the general statement
can be connected with the problem of dismantling, one by one, in a sequence, a finite system of
radiating elements. The goal is to minimize the total radiation dose incurred by a staff member, by
means of selecting the starting point, the route (in the form of a permutation of indices), and the
actual trajectory. In this special case, problem (2.10), (3.6) has the following sense: namely, where
specifically should the agent (or a crew) be brought to minimize the total radiation dose in view

Sequence Dependent Generalized TSP with Precedence Constraints 49

of the subsequent optimization of the route and track. At the same time, technology-determined
precedence constraints have to be satisfied, and the travel costs present a rather complicated form
of dependence on the set of tasks that have not been completed yet at the time of travel. Let us
now discuss one fragment of the construction of the mentioned function.

Cost function. Assume that, on a plane, there are given the points x and y, x 6= y; consider
the travel from x to y assuming the set K ∈ Fin(X), where X = R×R, is formed by the radiation
sources that are have not been dismantled yet. Then, the radiation dose c(x, y,K) ∈ R+ for the
mentioned motion is obtained by summing the values c(x, y, {z}) ∈ R+ for z ∈ K. Each single
value c(x, y, {u}), for some u ∈ K, has, in the “regular” case, the following form:

c(x, y, {u}) = γu

∫ T

0

1

(ρ(u,wt))2
dt. (4.1)

Here ρ denotes the Euclidean distance in X; γu ∈ R+, γu 6= 0, is the coefficient that determines
the intensity of the source u ∈ K; the travel time T is uniquely determined by the distance ρ(x, y)
given a travel speed (the latter is fixed); and

t 7−→ wt : [0, T] → X

is the specific (rectilinear, in our case) trajectory of the motion. The “regularity” mentioned in
discussion of the use of (4.1) has the following sense: the point u is assumed to not to belong to

the interval [x; y]
△
= {αx + (1 − α)y : α ∈ [0, 1]}. In absence of this regularity, the cost of travel

from x to y is defined as a sufficiently large penalty constant. In definitions of the interior jobs,
we follow the convention [11, Section 6] in determining the dose incurred by the agent during the
local motion from the entry point (into the near zone of the radiation source; a megalopolis is its
discretization) to the source itself; it is assumed that during the subsequent return travel to the
exit point (from the near zone) there is no radiation from this source since it has been dismantled.
This scheme is described in detail in [19, Section 4].

We use construction of [20, Section 6] for c, c1, . . . , cN . In connection with the construction of
c we use [20, (6.17), (6.20), (6.39)]. For construction of c1, . . . , cN , we use [20, (6.39)]. Of course,
in [20, (6.17), 6.20), (6.39)], impact of the single source is considered. The function f is supposed
identically equal zero. We recall also constructions of [21].

5. Software implementation and computational experiment

In this section, we describe the practical implementation of the procedure that constructs the
Bellman function layers through independent computations by computational nodes and optimizes
the starting point. Let us start by considering the implementation of the independent computations
scheme. Assume that each layer connected with K ∈ CN−1 is processed by several computational
cores that share RAM. These cores together are called a computational node of the cluster; the
latter is thus a union of computational nodes.

Data storage. Let us consider data storage on a single node of the cluster. For every set
of objective points K, we may have to store the shortest paths set (SPS) (that is, the Bellman
function layers) that pass through this set. Every shortest path in SPS differs from other paths
in this SPS by its starting point and is the shortest among all other paths with the same starting
point. An SPS may theoretically have as many paths as the cardinality of the corresponding
set K, however, normally, there are less since not every point of this set can be initial in view of
precedence constraints. In accordance with this, we store SPS in a hash table, with the aim of

50 Alexander G. Chentsov, Alexey M. Grigoryev and Alexey A. Chentsov

decreasing memory usage compared with an array. The key of the hash table is the bit mask of the
set, where, if a bit at position i is set, then the point i is present in this set.

Main algorithm. The main node reads the input data from a file, which describes the objective
sets that must be visited, the set of starting points, and the address pairs (precedence constraints).
Next, the main node constructs the family

CN−1 = {1, N \ {t} : t ∈ I(1, N)},

every element of which is a cardinality N − 1 set. The sets K ∈ CN−1 are distributed between the
nodes through the MPI protocol. Every node has k computational cores with shared RAM. At the
node connected with the set K ∈ CN−1, the Bellman function layers are shared between the cores
in a uniform way. There is no exchange of data between the cores because the RAM is shared by
all of them; the fragments of state space and the Bellman function layers are distributed between
the cores of a single node through the OpenMP library. Then, in a parallel mode that conforms
to the theoretical scheme [17, 18], which was implemented in [11] (see also [9, 10] for one-element
megalopolises), the layers v1, . . . , vN−1 of the “whole” (suitable for all the initial states from X0)
of the Bellman function are computed. After that, a relatively simple optimization procedure for

vN (x, 1, N),

x ∈ X0, is conducted, in the spirit of (3.5). This yields the grobal extremum V and the point
x0 ∈ X0 with the property

V [x0] = V. (5.1)

When an optimal solution in the form of a route-track pair is required, in addition to vN−1, it
is necessary to store all the Bellman function layers, which were determined by the main algorithm
(when only the global extremum V and optimal initial state x0 with property (5.1) are required, it
is not necessary to store the mentioned Bellman function layers; it will suffice to have a procedure
for constructing only the single layer vN−1 permitting the intermediary layers to be overwritten).
Thus, assume v0, v1, . . . , vN−1 are known. Then, the main node constructs the optimal route for
the flow where V [x0] = V by means of finding the local extrema in a way similar to [7, 16, 19].

Computational experiment. In this section, we describe the solution of the routing problem
on plane on the Uran supercomputer. The travel cost function is assumed to depend on the set of
pending tasks; it is determined through relations similar to (4.1) (see also [20]); the function f is
assumed to be zero since after all the megalopolises are visited and the corresponded interior jobs
consisting of dismantling the radiating elements are conducted, the cost of return to base will be
zero (since there is nothing to radiate anymore). Let us consider the case where the number of
megalopolises is 48, i. e., N = 48 (in [11] a solution is given for the case of a significantly smaller
dimension: it was assumed there N = 30 and N = 31). The megalopolises are contained inside
circles on the plane. Thus, let the megalopolises, which imitate the entry and exit points to the
spaces with radiation sources, be obtained by discretizing the circles (the boundaries of the near
zones): on every circle, there are 30 equally spaced (in view of the angular distance). To every
megalopolis, we assign a point object that imitates the radiation source in the space the megalopo-
lis describes. The set of admissible starting points X0 consists of 10 elements. In our example,
the set K contains 45 address pairs that define the precedence constraints. Let this set have the
following address pairs:
(38,45) (42,24) (22,7) (23,26) (32,17) (46,31) (34,8) (4,24) (17,8) (3,45) (0,26) (31,7) (3,20) (2,28)
(18,47) (5,40) (36,25) (20,9) (7,6) (47,32) (46,40) (28,8) (33,5) (26,5) (0,34) (43,35) (9,27) (1,2)
(1,37) (0,31) (7,23) (23,28) (39,31) (24,29) (17,45) (44,6) (29,11) (32,25) (2,14) (2,20) (15,36) (37,46)
(21,10) (35,45) (12,37),

Sequence Dependent Generalized TSP with Precedence Constraints 51

Figure 1. Route and track for visiting 48 megalopolises.

where the first argument specifies the sender and the second argument specifies the receiver. To
verify the theoretical construction in practice, we implemented it in C++ for the Uran supercom-
puter. The program works under a 64-bit Linux operating system. The computational experiment
was conducted on the nodes of the Uran cluster with the following characteristics:

two six-core Intel Xeon X5675 (3.07GHz) processors

192 GB RAM

2 × 12 MB Level 2 cache

8 Tesla M2090 GPUs (6 GB Global Memory)

400 GB local hard disk drive

The experiment used 20 cluster nodes, each of which had 12 cores. Thus, our practical im-
plementation used 240 computational cores. The computations resulted in the starting point,
route and track, see Fig. 1. The following results were obtained: V = 1.417074 (extremum of
the problem); the computation time was 15.772 seconds; the maximum RAM usage for a single
computational node was 26.246 MB.

In a separate computational experiment, we considered the same problem with only 20 points
per megalopolis (recall that those are viewed as exit/entry points into the facility associated with
the megalopolis), equally spaced (with respect to angular distance). The following results were
obtained: V = 1.4208160 (extremum of the problem); the computation time was 13.256 seconds;
the maximum RAM usage for a single computational node was 24.523 MB.

One could note that as the number of cities per megalopolis decreases, the extremum of the
problem increases somewhat; this may be connected with the fact that in the second case there are
fewer possible tracks, which, in its turn, makes the result worse.

52 Alexander G. Chentsov, Alexey M. Grigoryev and Alexey A. Chentsov

In Fig. 1, the squares denote the admissible starting points. Transparent circles denote the
cities in the megalopolises. Filled circles denote the entry and exit points of the megalopolises and
the radiation sources inside them.

6. Computation with application of greedy algorithm

In this section we consider the solution of our basic problem by greedy algorithm similar to
[33, Section 6] (in connection with construction of optimal algorithm on the base of DP, we note
[7, 16, 19]). Now, we note only brief scheme of the clear greedy algorithm.

Namely, we fix x0 ∈ X0, suppose z(0)
△
= (x0, x0), and consider the problem

c(x0,pr1(z), 1, N) + cj(z, 1, N) −→ min, j ∈ I(1, N), z ∈ Mj. (6.1)

Now, we choose j1 ∈ I(1, N) and z(1) ∈ Mj1 for which

c(x0,pr1(z
(1)), 1, N) + cj1(z

(1), 1, N) =

= min
j∈I(1,N)

min
z∈Mj

[
c
(
x0,pr1(z), 1, N

)
+cj(z, 1, N)

]
.

(6.2)

Then, we obtain that
(pr2(z

(1)), 1, N \ {j1}) ∈ DN−1

Now, we have the above-mentioned position. Consider the problem

c(pr2(z
(1)),pr1(z), 1, N \ {j1}) + cj(z, 1, N \ {j1}) −→ min, j ∈ I(1, N \ {j1}), z ∈ Mj.

We choose j2 ∈ I(1, N \ {j1}) and z(2) ∈ Mj2 for which

c(pr2(z
(1)),pr1(z

(2)), 1, N \ {j1}) + cj2(z
(2), 1, N \ {j1}) =

= min
j∈I(1,N\{j1})

min
z∈Mj

[
c
(
pr2(z

(1)),pr1(z), 1, N \ {j1}
)
+cj(z, 1, N \ {j1})

]
.

(6.3)

Then, we obtain the next inclusion

(pr2(z
(2)), 1, N \ {j1; j2}) ∈ DN−2

The further construction are realized similar to (6.2) and (6.3) up to exhaustion of all list 1, N . We
obtain two next finite processions

(jk)k∈1,N : 1, N −→ 1, N,

(z(k))k∈0,N : 0, N −→ X× X.

In addition, i[x0]
△
= (jk)k∈1,N ∈ A and (z(k))k∈0,N ∈ Zi[x0][x

0]. Of course, the value

Ci[x0][(z
(k))k∈0,N] ∈ R+ (6.4)

corresponds to our initial state x0 ∈ X0. Therefore, we introduce designation

w[x0]
△
= Ci[x0][(z

(k))k∈0,N].

The analogous constructions are realized for all x ∈ X0. As a result, we obtain values

w[x], x ∈ X0.

Sequence Dependent Generalized TSP with Precedence Constraints 53

We choose x0 ∈ X0 by the rule

w[x0] = min
x∈X0

w[x] (6.5)

We consider (6.5) as upper estimate for V and use i[x0] as the solution corresponding to greedy
algorithm.

Consider a variant of computation. We preserve parameters of Section 6: N = 48, |Mj | = 30,
|K| = 45 (concrete address pairs are indicated in Section 5), |X0| = 10. Under computation with
employment of greedy algorithm, the result value

min
x∈X0

w[x] = 1.884528 (6.6)

was obtained. The minimizing point x0 (see (6.5)) coincides with (103.12; 5.06). In this connection,
we recall that, for optimal solution (see Section 5), we have x0 = (100.00; 53.26), for best initial
state. In addition, for extremes realized by optimal and greedy algorithms, we obtain the following
ratio: global extremum achievable by the DP procedure improves the value (6.6) about 25%. Of
course, time of computing under employment of greedy algorithm about 173 seq. (recall that
analogous time for optimal algorithm is 15772 seq.). We note that our greedy algorithm can
be used for solving of problems having big detention. This algorithm was used in problem with
254 megalopolises and |K| = 45. In this case, the value (6.5) and point x0 were obtained during
1687 seq (most of this time was spent on calculating the cost function).

7. Conclusion

In this paper, we consider the issues related to the solving a routing problem with precedence
constraints and complicated travel cost functions aimed at applications connected with conducting
a sequence of actions in a high-radiation area. However, similar problem statements are also present
in other applications. For example, in particular, a “more complex” general statement can be used
to solve a problem connected with CNC plate cutting machines; see, in particular, [22–28]. A
comparison with the latter is natural: both statements are very much oriented towards the practice
and conduct routing with “interior” tasks. Travel cost functions’ dependence on the set of pending
tasks can be connected with the need to account for various constraints of dynamic character
(see, [16]), specifically, a system of penalties. In this problem, the starting point is normally known
in advance — if we consider the engineering problems connected with nesting; however, thinking
in perspective, it may be worthwhile to consider statement (2.10) as a way of tackling the problem
of choosing the initial state of the tool. This may be of importance in view of the characteristic
constraints (rigidity of the whole plate and each item). In connection with TSP and TSP-like
problems, let us note [29] and [30] concerned with two versions of dynamic programming and [31],
which deals with the branch-and-bound method. In connection with construction of production-
oriented heuristics, note [32]. However, it appears that real-life problems connected with routing
have many specific issues and peculiarities, and must thus be treated with special methods (first
and foremost, special heuristics); in this paper, we have endeavored to construct some.

REFERENCES

1. Melamed I. I., Sergeev S. I., Sigal I. The traveling salesman problem. Issues in theory. Autom. Remote

Control, 1989. Vol. 50, No. 9. P. 1147–1173.

2. Melamed I. I., Sergeev S. I., Sigal I. The traveling salesman problem. Exact methods. Autom. Remote

Control, 1989. Vol. 50, No. 10. P. 1303–1324.

3. Melamed I. I., Sergeev S. I., Sigal I. The traveling salesman problem. Approximate algorithms. Autom.

Remote Control, 1989. Vol. 50, No. 11. P. 1459–1479.

54 Alexander G. Chentsov, Alexey M. Grigoryev and Alexey A. Chentsov

4. Gutin G., Punnen A.P. The Traveling Salesman Problem and Its Variations. New York: Springer, 2002.
DOI: 10.1007/b101971

5. Cook W. J. In Pursuit of the Traveling Salesman. Mathematics at the Limits of Computation. New
Jersey: Princeton University Press, 2012. p. 248.

6. Gimadi E.Kh., Khachai M.Yu. Ekstremalnye zadachi na mnozhestvax perestanovok [Extremal Problems
on Sets of Permutations], Yekaterinburg: UMC UPI, 2016. p. 220 (in Russian)

7. Chentsov A.G., Chentsov A.A. Route problem with constraints depending on a list of tasks. Doklady

Mathematics, 2015. Vol. 92, No. 3. P. 685–688. DOI: 10.1134/S1064562415060083

8. Chentsov A.G., Chentsov A.A. A discrete-continuous routing problem with precedence conditions. Proc.
Steklov Inst. Math., 2018. Vol. 300, No. 1. P. 56–71. DOI: 10.1134/S0081543818020074

9. Chentsov A.G., Grigoryev A.M. Dynamic Programming Method in a Routing Problem: a Scheme
of Independent Computations. Mekhatronika, Avtomatizatsiya, Upravlenie, 2016. Vol. 17, No. 12. P.
834–846. DOI: 10.17587/mau.17.834-846 (in Russian)

10. Chentsov A.G., Grigoryev A.M. A scheme of independent calculations in a precedence constrained
routing problem. Lecture Notes in Computer Science, Vol. 9869: Intern. Conf. on Discrete Optimization
and Operations Research (DOOR–2016), 2016. P. 121–135. DOI: 10.1007/978-3-319-44914-2 10

11. Chentsov A.G., Grigoryev A.M., Chentsov A. A. Decommissioning of nuclear facilities: minimum accu-
mulated radiation dose routing problem. CEUR-WS Proc., Vol. 1987: 8th Intern. Conf. on Optimization
and Applications (OPTIMA–2017), 2017. P. 123–130. http://ceur-ws.org/Vol-1987/paper19.pdf

12. Chentsov A.G., Khachai M.Y., Khachai D.M. An exact algorithm with linear complexity for a
problem of visiting megalopolises. Proc. Steklov Inst. Math., 2016. Vol. 295, supp. 1. P. 38–46.
DOI: 10.1134/S0081543816090054

13. Korobkin V.V., Sesekin A.N., Tashlykov O.L., and Chentsov A.G. Metody marshrutizacii i ih

prilozheniya v zadachah povysheniya ehffektivnosti i bezopasnosti ehkspluatacii atomnyh stancij [Meth-
ods of Routing with Application to the Problems of Safety Enhancement and Operational Effectiveness
of Nuclear Power Plants], Ed. I.A. Kalyaev. Moscow: Novye Tekhnologii, 2012. (in Russian)

14. Kuratowski K., Mostowski A. Set Theory. Amsterdam: North-Holland Publishing Company, 1968.
p. 417.

15. Dieudonné J. Foundations of Modern Analysis. New York: Academic Press, 1969. 407 p.

16. Chentsov A.G., Chentsov P.A. Routing under constraints: Problem of visit to megalopolises. Autom.

Remote Control, 2016. Vol. 77, No. 11. P. 1957–1974. DOI: 10.1134/S0005117916110060

17. Chentsov A.G. On a parallel procedure for constructing the Bellman function in the generalized
problem of courier with internal jobs. Autom. Remote Control, 2012. Vol. 73, No. 3. P. 532–546.
DOI: 10.1134/S0005117912030113

18. Chentsov A.G. A parallel procedure of constructing Bellman function in the generalized courier problem
with interior works. Vestnik YuUrGU. Ser. Mat. Model. Progr., 2012. No. 18. P. 53–76. (in Russian)

19. Chentsov A.A., Chentsov A.G., and Chentsov P.A. Elements of Dynamic Programming in
the Extremal Problems of Routing. Autom. Remote Control, 2014. Vol. 75, No. 3. P. 537–550
DOI: 10.1134/S0005117914030102

20. Chentsov A.G., Chentsov A.A. A model variant of the problem about radiation sources utilization
(iterations based on optimization insertions). Izv. Inst. Mat. Inform. Udmurt. Gos. Univ., 2017. Vol. 50.
P. 83–109. DOI: 10.20537/2226-3594-2017-50-08 (in Russian)

21. Chentsov A.G., Chentsov A.A., Grigoryev A.M. On one routing problem modeling movement in ra-
diation fields. Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2017. Vol. 27, No. 4. P. 540–557.
DOI: 10.20537/vm170405 (in Russian)

22. Petunin A.A. About some strategy of formation of a route of the cutting tool by development of the
controlling programs for the thermal sheet cutting machines. The UGATU Bulletin. Series: Control,

ADP equipment and informatics, 2009. Vol. 13, No. 2 (35). P. 280–286.

23. Frolovskii V.D. Computer-aided design of the control programs for thermal metal cutting on NPC
machines. Informacionnye tekhnologii v proektirovanii i proizvodstve, 2005. No. 4. P. 63–66.

24. Wang G.G. and Xie S.Q. Optimal process planning for a combined punch-and-laser cutting ma-
chine using ant colony optimization. Int. J. Product. Res., 2005. Vol. 43, No. 11. P. 2195–2216.
DOI: 10.1080/00207540500070376

https://doi.org/10.1007/b101971
https://doi.org/10.1134/S1064562415060083
https://doi.org/10.1134/S0081543818020074
https://doi.org/10.17587/mau.17.834-846
https://doi.org/10.1007/978-3-319-44914-2_10
http://ceur-ws.org/Vol-1987/paper19.pdf
https://doi.org/10.1134/S0081543816090054
https://doi.org/10.1134/S0005117916110060
https://doi.org/10.1134/S0005117912030113
https://doi.org/10.1134/S0005117914030102
https://doi.org/10.20537/2226-3594-2017-50-08
https://doi.org/10.20537/vm170405
https://doi.org/10.1080/00207540500070376

Sequence Dependent Generalized TSP with Precedence Constraints 55

25. Lee M.-K. and Kwon K.-B. Cutting path optimization in NC cutting processes using a two-step genetic
algorithm. Int. J. Product. Res., 2006. Vol. 44, No. 24. P. 5307–5326. DOI: 10.1080/00207540600579615

26. Jing Y. and Zhige C. An optimized algorithm of numerical cutting-path control in garment manufac-
turing. Adv. Mater. Res., 2013. Vol. 796. P. 454–457. DOI: 10.4028/www.scientific.net/AMR.796.454

27. Ganelina N.D. and Frolovskii V.D. On constructing the shortest circuits on a set ofline segments. Sib.
Zh. Vychisl. Mat. [Siberian J. of Numer. Mathematics], 2006. Vol. 9, No. 3. P. 241–252.

28. Verkhoturov M.A. and Tarasenko P.Yu. Software for the problems of optmization of the cutting tool
path for planar figure cutting on the basis of chain cutting. Vestn. UGATU, 2008. Vol. 10, No. 2 (27).
P. 123–130. http://journal.ugatu.ac.ru/index.php/Vestnik/article/view/1274/1103

29. Bellman R. Dynamic programming treatment of the travelling salesman problem. J. ACM. 1962. Vol.
9, No. 1. P. 61–63. DOI: 10.1145/321105.321111

30. Held M. and Karp R.M. A dynamic programming approach to sequencing problems. J. Soc. Ind. Appl.
Math., 1962. No. 10 (1). P. 196–210. DOI: 10.1137/0110015

31. Little J.D.C., Murti K.G., Sweeney D.W., and Karel C. Algorithm for the traveling salesman problem.
Econ. Mat. Metod., 1965. Vol. 1, No. 1. P. 94–107.

32. Escudero L. An inexact algorithm for the sequential ordering problem. Eur. J. Oper. Res., 1988. Vol.
37, No. 2. P. 236–249.

33. Chentsov A.G., Chentsov A.A., Chentsov P.A. Extremal routing problem with internal losses. Proc.
Steklov Inst. Math. 2009. Vol. 264, suppl. 1. P. 87–106. DOI: 10.1134/S0081543809050071

https://doi.org/10.1080/00207540600579615
https://doi.org/10.4028/www.scientific.net/AMR.796.454
http://journal.ugatu.ac.ru/index.php/Vestnik/article/view/1274/1103
https://doi.org/10.1145/321105.321111
http://dx.doi.org/10.1137/0110015
https://doi.org/10.1134/S0081543809050071

	General notation and definitions
	Problem statement
	Dynamic programming in starting point optimization problem
	Algorithm for optimization of starting point
	Software implementation and computational experiment
	Computation with application of greedy algorithm
	Conclusion

