DOI: 10.15826/umj.2019.1.005

COMMUTATIVE WEAKLY INVO-CLEAN GROUP RINGS

Peter V. Danchev

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria, danchev@math.bas.bg; pvdanchev@yahoo.com

Abstract: A ring R is called *weakly invo-clean* if any its element is the sum or the difference of an involution and an idempotent. For each commutative unital ring R and each abelian group G, we find only in terms of R, G and their sections a necessary and sufficient condition when the group ring R[G] is weakly invo-clean. Our established result parallels to that due to Danchev-McGovern published in J. Algebra (2015) and proved for weakly nil-clean rings.

Keywords: Invo-clean rings, Weakly invo-clean rings, Group rings.

Introduction and conventions

Throughout the current paper, we shall assume that all rings R are associative, containing the identity element 1 which differs from the zero element 0. Our standard terminology and notation are in agreement with [9] and [10], while the specific notions and notations will be stated explicitly below. As usual, J(R) denotes the Jacobson radical of a ring R and G is a multiplicative group. Both objects R and G forming the symbol R[G] will stand for the group ring of G over R.

The next concept appeared in [1], [2] and [3], respectively.

Definition 1. A ring R is said to be invo-clean if, for every $r \in R$, there exist an involution v and an idempotent e such that r = v + e. If r = v + e or r = v - e, the ring is called weakly invo-clean.

The next necessary and sufficient condition for a commutative ring R to be invo-clean was established in [1, 2], namely: A ring R is invo-clean if, and only if, $R \cong R_1 \times R_2$, where R_1 is a nil-clean ring with $z^2 = 2z$ for all $z \in J(R_1)$, and R_2 is a ring of characteristic 3 whose elements satisfy the equation $x^3 = x$.

Let us recall that a ring is *nil-clean* if every its element is a sum of a nilpotent and an idempotent, and it is *weakly nil-clean* if every its element is a sum or a difference of a nilpotent and an idempotent (see, for more details, [6]).

A criterion for an arbitrary commutative group ring to be nil-clean was recently obtained in [8]. Specifically, the following holds: A commutative ring R[G] is nil-clean if, and only if, the ring R is nil-clean and the group G is a 2-group. This was generalized in [6, Theorem 2.1] by finding a suitable criterion when R[G] is weakly nil-clean.

Some other related results in this subject can be found by the interested reader in [4] too.

So, the aim of this brief article is to obtain a paralleling result for the class of weakly invo-clean rings. This is successfully done below in our main Theorem 1.

1. The characterization result and a problem

We begin here with the following key formula from [7]: Suppose that R is a commutative ring and G is an abelian group. Then

$$J(R[G]) = J(R)[G] + \langle r(g-1) \mid g \in G_p, \, pr \in J(R) \rangle,$$

where G_p designates the *p*-primary component of *G*.

The next technicality already was mentioned above, but for the sake of completeness and reader's convenience, we will state it once again.

Lemma 1. [1, 2] Let R be a commutative ring. Then the following two points hold: (i) If $2 \in J(R)$, then R is invo-clean $\iff R$ is nil-clean and $z^2 = 2z$ for each $z \in J(R)$.

(ii) If char(R) = 3, then R is invo-clean $\iff x^3 = x$ for all $x \in R$.

We also need the following two technical claims.

Lemma 2. The direct product $K \times L$ of two rings K, L is invo-clean \iff both K and L are invo-clean rings.

P r o o f. It is straightforward by using of results from [1] and [2].

Lemma 3. A ring R is weakly invo-clean \iff either R is invo-clean or R can be decomposed as $R = K \times \mathbb{Z}_5$, where $K = \{0\}$ or K is invo-clean.

P r o o f. It is straightforward by the utilization of results from [2] and [3]. \Box

We are now ready to proceed by proving the following preliminary statement (see [5] as well).

Proposition 1. Suppose R is a non-zero commutative ring and G is an abelian group. Then R[G] is invo-clean if, and only if, R is invo-clean having the decomposition $R = R_1 \times R_2$ such that precisely one of the next three items holds:

(0) $G = \{1\}$

or

(1) |G| > 2, $G^2 = \{1\}$, $R_1 = \{0\}$ or R_1 is a ring of char $(R_1) = 2$, and $R_2 = \{0\}$ or R_2 is a ring of char $(R_2) = 3$

or

(2) |G| = 2, $2r_1^2 = 2r_1$ for all $r_1 \in R_1$ (in addition 4 = 0 in R_1), and $R_2 = \{0\}$ or R_2 is a ring of char $(R_2) = 3$.

P r o o f. If G is the trivial identity group, there is nothing to do, so we shall assume hereafter that G is non-identity.

"Necessity." Since there is an epimorphism $R[G] \to R$, and an epimorphic image of an invoclean ring is obviously an invo-clean ring (see, e.g., [1]), it follows at once that R is again an invo-clean ring. According to the criterion for invo-cleanness alluded to above, one writes that $R = R_1 \times R_2$, where R_1 is a nil-clean ring with $a^2 = 2a$ for all $a \in J(R_1)$ and R_2 is a ring whose elements satisfy the equation $x^3 = x$. Therefore, it must be that $R[G] \cong R_1[G] \times R_2[G]$, where it is not too hard to verify by Lemma 2 that both $R_1[G]$ and $R_2[G]$ are invo-clean rings.

First, we shall deal with the second direct factor $R_2[G]$ being invo-clean. Since char $(R_2) = 3$, it follows immediately that char $(R_2[G]) = 3$ too. Thus an application of Lemma 1 (ii) (which is an assemble of facts from [1, 2]) allows us to deduce that all elements in $R_2[G]$ also satisfy the equation $y^3 = y$. So, given $g \in G \subseteq R[G]$, it follows that $g^3 = g$, that is, $g^2 = 1$.

Next, we shall treat the invo-cleanness of the group ring $R_1[G]$. Since $\operatorname{char}(R_1)$ is a power of 2 (see [1]), it follows the same for $R_1[G]$. Consequently, utilizing once again Lemma 1 (i) (being an assortment of results from [1, 2]), we infer that $R_1[G]$ should be nil-clean, so that $z^2 = 2z$ for all $z \in J(R_1[G])$. That is why, invoking the criterion from [8], listed above, we have that G is a 2-group. We claim that even $G^2 = 1$. In fact, for an arbitrary $g \in G$, we derive with the aid of the aforementioned formula from [7] that $1 - g \in J(R_1[G])$, because $2 \in J(R_1)$. Hence $(1-g)^2 = 2(1-g)$ which forces that $1-2g+g^2=2-2g$ and that $g^2=1$, as desired. We now assert that $\operatorname{char}(R_1) = 2$ whenever |G| > 2. To that purpose, there are two nonidentity elements $g \neq h$ in G with $g^2 = h^2 = 1$. Furthermore, again appealing to the formula from [7], the element 1-g+1-h=2-g-h lies in $J(R_1[G])$, because $2 \in J(R_1)$. Thus $(2-g-h)^2 = 2(2-g-h)$ which yields that 2-2g-2h+2gh=0. Since $gh \neq 1$ as for otherwise $g = h^{-1} = h$, a contradiction, this record is in canonical form. This assures that 2 = 0, as wanted.

However, in the case when |G| = 2, i.e. when $G = \{1, g \mid g^2 = 1\} = \langle g \rangle$, we can conclude that $2r^2 = 2r$ for any $r \in R_1$. Indeed, in view of the already cited formula from [7], the element r(1-g) will always lie in $J(R_1[G])$, because $2 \in J(R_1)$. We therefore may write $[r(1-g)]^2 = 2r(1-g)$ which ensures that $2r^2 - 2r^2g = 2r - 2rg$ is canonically written on both sides. But this means that $2r^2 = 2r$, as pursued. Substituting r = 2, one obtains that 4 = 0. Notice also that $2r^2 = 2r$ for all $r \in R_1$ and $a^2 = 2a$ for all $a \in J(R_1)$ will imply that $a^2 = 0$.

"Sufficiency." Foremost, assume that (1) is true. Since R_1 has characteristic 2, whence it is nil-clean, and G is a 2-group, an appeal to [8] allows us to get that $R_1[G]$ is nil-clean as well. Since $z^2 = 2z = 0$ for every $z \in J(R_1)$, it is routinely checked that $\delta^2 = 2\delta = 0$ for each $\delta \in J(R_1[G])$, exploiting the formula from [7] for $J(R_1[G])$ and the fact that $R_1[G]$ is a modular group algebra of characteristic 2. That is why, by a consultation with Lemma 1 (i), one concludes that $R_1[G]$ is invo-clean, as expected. Further, by the usage of Lemma 1 (ii) above, we derive that $R_2[G]$ is an invo-clean ring of characteristic 3. To see that, given $x \in R_2[G]$, we write $x = \sum_{g \in G} r_g g$ with $r_g \in R_2$ satisfying $r_g^3 = r_g$. Since $G^2 = 1$ will easily imply that $g^3 = g$, one obtains that

$$x^{3} = (\sum_{g \in G} r_{g}g)^{3} = \sum_{g \in G} r_{g}^{3}g^{3} = \sum_{g \in G} r_{g}g = x,$$

as needed. We finally conclude with the help of Lemma 2 that $R[G] \cong R_1[G] \times R_2[G]$ is invo-clean, as expected.

Let us now point (2) be fulfilled. Since $G^2 = 1$, similarly to (1), R_2 being invo-clean of characteristic 3 implies that $R_2[G]$ is invo-clean, too. In order to prove that $R_1[G]$ is invo-clean, we observe that R_1 is nil-clean with $2 \in J(R_1)$. According to [8], the group ring $R_1[G]$ is also nil-clean. What remains to show is that for any element δ of $J(R_1[G])$ the equality $\delta^2 = 2\delta$ is valid. Since in conjunction with the explicit formula quoted above for the Jacobson radical, an arbitrary element in $J(R_1[G])$ has the form j + j'g + r(1-g), where $j, j' \in J(R_1)$ and $r \in R_1$, we have that $[j + j'g + r(1-g)]^2 \in (J(R_1)^2 + 2J(R_1))[G] + r^2(1-g)^2$. However, using the given conditions, $z^2 = 2z = 2z^2$ and thus $z^2 = 2z = 0$ for any $z \in J(R_1)$. Consequently, one checks that $[j + j'g + r(1-g)]^2 = r^2(1-g)^2 = 2r^2(1-g) = 2r(1-g) = 2[j + j'g + r(1-g)]$, because $2r^2 = 2r$, as required. Therefore, $R_1[G]$ is invo-clean with Lemma 1 (i) at hand. Finally, Lemma 2 gives that $R[G] \cong R_1[G] \times R_2[G]$ is invo-clean, as promised. It is worthwhile noticing that concrete examples of an invo-clean ring of characteristic 4, such that its elements are solutions of the equation $2r^2 = 2r$, are the rings \mathbb{Z}_4 and $\mathbb{Z}_4 \times \mathbb{Z}_4$.

We will prove now the following reduction of weak invo-cleanness.

Proposition 2. Suppose that R is a commutative non-zero ring and G is an abelian group. Then R[G] is weakly invo-clean which is not invo-clean if, and only if, R is a weakly invo-clean ring which is not invo-clean and $G = \{1\}$.

P r o o f. "Necessity." As it is well known and easy to establish that there is a surjection $R[G] \to R$, we may apply [2] to get that R is weakly invo-clean as well. According now to Lemma 3 we obtain that R is either invo-clean, or isomorphic to \mathbb{Z}_5 , or decomposed as $K \times \mathbb{Z}_5$, where K is non-zero invo-clean. We will consider these three possibilities separately:

Case 1: R is invo-clean. Since both R[G] and R have equal characteristics, it follows once again with the aid of Lemma 3 that R[G] must be invo-clean too, a contrary to our assumption.

Case 2: $R \cong \mathbb{Z}_5$. It follows that $R[G] \cong \mathbb{Z}_5[G]$ has to be weakly invo-clean of characteristic 5. Employing [2], one infers that $\mathbb{Z}_5[G] \cong \mathbb{Z}_5$ whence these two rings have equal cardinalities. This, however, implies by a simple comparison of elements that $G = \{1\}$.

Case 3: $R \cong K \times \mathbb{Z}_5$ with $K \neq \{0\}$ invo-clean. Hence $R[G] \cong K[G] \times \mathbb{Z}_5[G]$. It follows as is Case 1 that K[G] is necessarily invo-clean, whereas $\mathbb{Z}_5[G]$ is weakly invo-clean. Similarly to Case 2, we detect once again that $G = \{1\}$.

"Sufficiency." It is immediate, because of the fulfillment of the isomorphism $R[G] \cong R$. \Box

So, combining both Propositions 1 and 2, we come to our chief result. Specifically, the following assertion is true:

Theorem 1. Let G be an abelian group and let R be a commutative non-zero ring. Then the group ring R[G] is weakly invo-clean if, and only if, at most one of the following points is true:

(1) $G = \{1\}$ and R is weakly invo-clean.

(2) $G \neq \{1\}$ and $R \cong R_1 \times R_2$ is invo-clean such that either

(2.1) |G| > 2, $G^2 = \{1\}$, $R_1 = \{0\}$ or R_1 is a ring of char $(R_1) = 2$, and $R_2 = \{0\}$ or R_2 is a ring of char $(R_2) = 3$

or

(2.2) |G| = 2, $2r_1^2 = 2r_1$ for all $r_1 \in R_1$ (in addition 4 = 0 in R_1), and $R_2 = \{0\}$ or R_2 is a ring of char $(R_2) = 3$.

P r o o f. If G is trivial, there is nothing to prove because of the isomorphism $R[G] \cong R$, so let us assume henceforth that G is non-trivial.

"Necessity." As already observed in Proposition 2 alluded to above, if $G \neq \{1\}$, then the ring R must be invo-clean but *not* properly weakly invo-clean, i.e., it does not contain \mathbb{Z}_5 as a (proper) direct factor. Thus R[G] has to be invo-clean too, as $\operatorname{char}(R[G]) = \operatorname{char}(R)$. We, therefore, appeal to Proposition 1 getting the listed above two items, as desired.

"Sufficiency." As in the previous direction, Proposition 1 is in use to infer that R[G] is invo-clean and hence weakly invo-clean, as wanted.

In closing, we state one more intriguing problem.

Problem 1. Find a suitable criterion only in terms of the commutative unital ring R and the abelian group G when the group ring R[G] is feebly invo-clean as defined in [3].

In that direction, similarly to Lemma 3, the question of whether or not any (commutative) feebly invo-clean ring R which is possibly *not* weakly invo-clean possesses the decomposition $R = K \times P$, where K is a weakly invo-clean ring and P is a ring whose elements satisfy the equation $x^5 = x$ such that $P \not\cong \mathbb{Z}_5$, is of some interest.

REFERENCES

- Danchev P. V. Invo-clean unital rings. Commun. Korean Math. Soc., 2017. Vol. 32, No. 1. P. 19–27. DOI: 10.4134/CKMS.c160054
- Danchev P. V. Weakly invo-clean unital rings. Afr. Mat., 2017. Vol. 28, No. 7–8. P. 1285–1295. DOI: 10.1007/s13370-017-0515-7
- 3. Danchev P. V. Feebly invo-clean unital rings. Ann. Univ. Sci. Budapest (Math.), 2017. Vol. 60. P. 85–91.
- Danchev P. V. Weakly semi-boolean unital rings. JP J. Algebra Number Theory Appl., 2017. Vol. 39, No. 3. P. 261–276. DOI: 10.17654/NT039030261
- Danchev P. V. Commutative invo-clean group rings. Univ. J. Math. Math. Sci., 2018. Vol. 11, No. 1. P. 1–6. DOI: 10.17654/UM011010001
- Danchev P. V., McGovern W. Wm. Commutative weakly nil clean unital rings. J. Algebra, 2015. Vol. 425, No. 5. P. 410–422. DOI: 10.1016/j.jalgebra.2014.12.003
- Karpilovsky G. The Jacobson radical of commutative group rings. Arch. Math. (Basel), 1982. Vol. 39, No. 5. P. 428–430. DOI: 10.1007/BF01899543
- McGovern W. Wm., Raja Sh., Sharp A. Commutative nil clean group rings. J. Algebra Appl., 2015. Vol. 14, No. 6, art. no. 1550094. DOI: 10.1142/S0219498815500942
- 9. Milies C. P., Sehgal S. K. An Introduction to Group Rings. Netherlands: Springer, 2002. 371 p.
- 10. Passman D.S. The Algebraic Structure of Group Rings. Dover Publications, 2011. 752 p.