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1. Statement of the Problem

Consider the population model represented by the Hutchinson–Wright equation

dN(t)
dt

= r

(
1− 1

k
N(t− h)

)
N(t), t ∈ R, (1.1)

where N : R→ R+ = (0,+∞) is the population size, r is the intrinsic growth rate (the birth rate),
k is the carrying capacity, h is the delay parameter (the breeding age).

The work [1] is devoted to the investigation of various biological factors affecting changes in
the number of population. In the analysis of regularities of the change of population the results of
observations of the size of biological populations [2] are used. Full-scale observation of changes of
population size requires significant material and labor costs. Mathematical modeling can facilitate
solution of the problem of studying the dynamics of the quantitative change of population size [3].

The Hutchinson–Wright equation describes a mathematical model of the single-species bioceno-
sis, when the influence of predators is slight, the habitat is homogenous, migration processes do
not have a significant impact on the change of population size and the quantity of available food is
restored regularly up to a certain level.

The works [3, 4] are devoted to the investigation of various qualitative problems of the change
of population size for the Hutchinson’s equation. The computer simulation of such changes was
held in [5]. The motivation of these works is joint with the forecast of changes of population size.
The correctness of the initial problem for the Hutchinson’s equation helps to solve this problem
successfully. The main qualitative result is that the population size tends to constant when time
increase or periodic oscillations take place. It is depend on the value of parameter h. If the
population is on the stage of a transient of changes of the population size, the inverse problem of
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determining its size in the previous periods of time is of interest. From the mathematical point of
view this problem is more difficult, because it belongs to a class of ill-posed problems [6].

In the present paper the ill-posed problem of reconstruction of the population size in the
Hutchinson–Wright equation is solved.

It is supposed that an information about the population size is known on the time interval
[t0−h, t0]. In the sequel, without loss the generality we assume that t0 = 0. The population size on
the interval [−h, 0] is defined by a positive function ϕ which belongs to a separable Hilbert space
H = L2[−h, 0)× R with inner product (ϕ,ψ) = ψ(0)ϕ(0) +

∫ 0
−h ψ(s)ϕ(s)ds. When reconstructing

the number of population we use the method of steps in the direction of decreasing time. Then for
the finding functions xm(ϑ) = N(mh + ϑ), ϑ ∈ [−h, 0], m ≤ −1, we have a system of equations

U(xm) = xm+1, m ≤ −1, x0 = ϕ, (1.2)

where the operator U : H → H is determined by the formula

U(x)(ϑ) = exp
(

r(h + ϑ)− r

k

ϑ∫

−h

x(s) ds

)
x(0), ϑ ∈ [−h, 0].

Thus, the reconstruction of population size is associated with solving the ill-posed problem

U(x) = ϕ.

2. Determining System of Equations for Finding the Values of the
Regularizing Operator

We use the regularization method of A.N. Tikhonov to solve the ill-posed problem. So we
choose a stabilizing functional of the form

Ω[x] = Gx2(0) +

0∫

−h

(Qx2(s) + Px′2(s))ds, x ∈ W 1
2 [−h, 0],

where G, P , and Q are positive numbers, x′ is the derivative of the function x. One needs to find
an element xα ∈ W 1

2 [−h, 0] minimizing the smoothing functional

Mα[ϕ, x] = (U(x)− ϕ,U(x)− ϕ) + αΩ[x], x ∈ W 1
2 [−h, 0],

for a fixed positive value of the regularization parameter α.
We obtain the necessary condition for a minimum of the functional [7, p. 113] when finding the

Gâteaux derivative of the smoothing functional

Mα
x [ϕ, y]′ = lim

µ→0
µ−1((U(x)− ϕ + µU ′

x(x)y, U(x)− ϕ + µU ′
x(x)y) + αΩ[x + µy]

− (U(x)− ϕ,U(x)− ϕ)− αΩ[x] + O(µ2)) = (U(x)− ϕ,U ′
x(x)y)

+ α

(
y(0)Gx(0) +

0∫

−h

(y(s)Qx(s) + y′(s)Px′(s)) ds

)
.

As a result we have

(U ′∗
x (x)U(x)− U ′∗

x (x)ϕ, y) + α

(
y(0)Gx(0) +

0∫

−h

(y(s)Qx(s) + y′(s)Px′(s)) ds

)
= 0.
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Here the Gâteaux derivative of the operator U in the point x determined by the formula

(U ′
x(x)y)(ϑ) = exp

(
r(h + ϑ)− r

k

ϑ∫

−h

x(s) ds

)(
y(0)− r

k
x(0)

ϑ∫

−h

y(s) ds

)
, ϑ ∈ [−h, 0].

The adjoint operator U ′∗
x (x) given by the formulas

(U ′∗
x (x)y)(ϑ) =





exp
(

rh− r

k

0∫

−h

x(s) ds

)(
y(0)

+

0∫

−h

exp
(

rs− r

k

s∫

0

x(s1) ds1

)
y(s) ds

)
, ϑ = 0,

− r

k
x(0) exp

(
rh− r

k

0∫

−h

x(s) ds

)(
y(0)

+

0∫

ϑ

exp
(

rs− r

k

s∫

0

x(s1) ds1

)
y(s) ds

)
, ϑ ∈ [−h, 0).

By using the definition of inner product of the space H, we reduce the necessary condition for
the minimum of the smoothing functional to the form

y(0)((U ′∗
x (x)U(x))(0)− (U ′∗

x (x)ϕ)(0)) +

0∫

−h

y(s)((U ′∗
x (x)U(x))(s)− (U ′∗

x (x)ϕ)(s)) ds

+ αy(0)Gx(0) + α

0∫

−h

(y(s)Qx(s) + y′(s)Px′(s)) ds = 0, x ∈ W 1
2 [−h, 0], (2.1)

which must be valid for any y ∈ W 1
2 [−h, 0]. For the functions x ∈ W 2

2 [−h, 0] we reduce the integral
of the last summand by applying the integration by parts formula. Then the condition (2.1) takes
the form

y(0)((U ′∗
x (x)U(x))(0)− (U ′∗

x (x)ϕ)(0) + α(Gx(0) + Px′(0)))− αy(−h)Px′(−h)

+

0∫

−h

y(s)((U ′∗
x (x)U(x))(s)− (U ′∗

x (x)ϕ)(s) + α(Qx(s)− Px′′(s))) ds = 0,

and must be valid for any y ∈ H. A possible minimizing element xα satisfies the system of equations

(U ′∗
x (x)U(x))(ϑ) + α(Qx(ϑ)− Px′′(ϑ)) = (U ′∗

x (x)ϕ)(ϑ), ϑ ∈ [−h, 0),
(U ′∗

x (x)U(x))(0) + α(Gx(0) + Px′(0)) = (U ′∗
x (x)ϕ)(0), x′(−h) = 0.

(2.2)

By introducing auxiliary functions ψ and χ by the formulas

ψ(ϑ) = (U ′∗
x (x)(χ− ϕ))(ϑ), ϑ ∈ [−h, 0), ψ(0) = ψ(−0),

χ(ϑ) = (Ux)(ϑ), ϑ ∈ [−h, 0],

and by using the representations of the operators U and U ′∗
x (x), one can replace system of equa-

tions for the minimizing element by an equivalent boundary value problem for ordinary differential
equations.
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Assertion 1. The possible minimizing element xα is a component of the solution of the fol-
lowing system of ordinary differential equations

x′′ = P−1Qx + α−1P−1ψ,

ψ′ =
r

k
χ(χ− ϕ(ϑ)),

χ′ = r(1− 1
k
x)χ

(2.3)

with the boundary conditions

x′(−h) = 0, ψ(−h)− α
r

k
x(0)(Gx(0) + Px′(0)) = 0,

ψ′(0) + ψ(0) = 0, x(0) = χ(−h).
(2.4)

Here ϕ ∈ H, the component χα of the solution of the boundary value problem (2.3), (2.4) satisfies
the condition χα = Uxα, and α is a small positive parameter.

P r o o f. By using the auxiliary function ψ and continuing the first equation of the system (2.2)
to [−h, 0], we obtain

ψ(ϑ) + α(Qx(ϑ)− Px′′(ϑ)) = 0, ϑ ∈ [−h, 0].

As it appears from the definition of the function χ it satisfies to the differential equation

χ′(ϑ) = rχ(ϑ)(1− 1
k
x(ϑ)), ϑ ∈ [−h, 0],

with the boundary condition χ(−h) = x(0).
Once again, from the definition of the function ψ we have that it satisfies to the differential

equation
ψ′(ϑ) =

r

k
χ(ϑ)(χ(ϑ)− ϕ(ϑ)), ϑ ∈ [−h, 0],

with the boundary condition

ψ(0) = ψ(−0) = − r

k
χ(0)(χ(0)− ϕ(0)) = −ψ′(0).

By using the auxiliary functions we rewrite the second equation of the system (2.2)

exp
(

rh− r

k

0∫

−h

x(s) ds

)(
χ(0)− ϕ(0) +

0∫

−h

exp
(

rs− r

k

s∫

0

x(s1) ds1

)
(χ(s)− ϕ(s)) ds

)

+ α(Gx(0) + Px′(0)) = 0.

By taking into account the value of the auxiliary function ψ(−h), we reduce the last equation
to the form

ψ(−h)− α
r

k
x(0)(Gx(0) + Px′(0)) = 0. ¤

Let us eliminate the auxiliary variables ψ and χ from the system of equations (2.3) and the
bounadry conditions (2.4). When finding a solution of this problem we impose additional conditions
on the initial function and solution of the boundary value problem, such as ϕ ∈ W 1

2 [−h, 0] and
maxϑ∈[−h,0] |χ(ϑ) − ϕ(ϑ)| is a small value. The last restriction is compatible with a statement of
the problem of regularization and allows to find the following

χ =
1
2

(
ϕ(ϑ) +

√
ϕ2(ϑ) + 4

k

r
ψ′

)
, (2.5)
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from the second equation of the system (2.3), as well as guarantee the fulfillment of the condition
minϑ∈[−h,0](ϕ2(ϑ) + (4k/r) ψ′(ϑ)) > 0.

By calculating a derivative of the last expression and by substituting it into the third equation
of the system (2.3), we obtain

ϕ′(ϑ) +
(

ϕ2(ϑ) + 4
k

r
ψ′

)−1/2(
ϕ(ϑ)ϕ′(ϑ) + 2

k

r
ψ′′

)

=
(

ϕ(ϑ) +
(

ϕ2(ϑ) + 4
k

r
ψ′

)1/2)(
r − r

k
x

)
. (2.6)

When differentiating the first equation of the system (2.3) twice, we find

ψ′ = αPx′′′ − αQx′, ψ′′ = αPxIV − αQx′′.

By eliminating ψ from equation (2.6) and by introducing variables x1 = x, x2 = α1/4x′, x3 = α1/2x′′,
x4 = α3/4x′′′, we obtain the system of differential equations

α1/4x′1 = x2, α1/4x′2 = x3, α1/4x′3 = x4,

α1/4x′4 =
r

2kP

(
ϕ2(ϑ) + 4

k

r
(α1/4Px4 − α3/4Qx2)

)1/2(
ϕ(ϑ)

(
r − r

k
x1

)
− ϕ′(ϑ)

)
(2.7)

+ α1/2 Q

P
x3 +

r

2kP

(
ϕ2(ϑ) + 4

k

r
(α1/4Px4 − α3/4Qx2)

)(
r − r

k
x1

)
− r

2kP
ϕ(ϑ)ϕ′(ϑ).

We pass the above-introduced new variables in the boundary conditions (2.4). So we have

x2(−h) = 0, Px4(0)− α1/2Qx2(0) + α1/4Px3(0)− α3/4Qx1(0) = 0,

Px3(−h)− α1/2Qx1(−h)− α1/4 r

k
Px1(0)x2(0)− α1/2 r

k
Gx2

1(0) = 0,

2x1(0)− ϕ(−h)−
(

ϕ2(−h) + 4
r

k
(α1/4Px4(−h)− α3/4Qx2(−h))

)1/2

= 0.

(2.8)

By introducing the vector X = ‖xj‖4
1, we rewrite the system (2.7) in the vector form

dX

dϑ
= α−1/4A(ϑ)X + α−1/4Φ̃1(ϑ) + Φ̃2(ϑ, α,X), (2.9)

where

A(ϑ) =




0 1 0 0
0 0 1 0
0 0 0 1

−r2ϕ2(ϑ)/(k2P ) 0 0 0


 , Φ̃>1 (ϑ) = (0, 0, 0, rϕ(ϑ)(rϕ(ϑ)− ϕ′(ϑ))/(kP )),

Φ̃>2 (ϑ, α, X) =
(

0, 0, 0,
2(rϕ(ϑ)(1− (1/k) x1)− ϕ′(ϑ))(Px4 − α1/2Qx2)
(ϕ2(ϑ) + (4k/r) (α1/4Px4 − α3/4Qx2))1/2 + ϕ(ϑ)

+ α1/4 Q

P
x3

+
2r

P
(Px4 − α1/2Qx2)(1− 1

k
x1)

)
.

Let us make a replacement of variables in the system (2.9):

X = T (ϑ)y, ϑ ∈ [−h, 0], (2.10)
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where T (ϑ) = ‖tij(ϑ)‖4
1 = ‖ei−1

j λi−1(ϑ)‖4
1 is a matrix reducing A(ϑ) to the Jordan form, λ(ϑ) =

(rϕ(ϑ)/(k
√

P ))1/2, e1 = ē, e2 = e, e3 = −ē, e4 = −e, and e = (1 + i)/
√

2.
Then we obtain the system

dy

dϑ
= α−1/4J(ϑ)y + α−1/4Φ1(ϑ) + Φ2(ϑ, α, y), (2.11)

where

J(ϑ) = diag(e1λ(ϑ), e2λ(ϑ), e3λ(ϑ), e4λ(ϑ)),

Φ1(ϑ) = T−1(ϑ)Φ̃1(ϑ) = r/(4kP ) λ−3(ϑ)ϕ(ϑ)(rϕ(ϑ)− ϕ′(ϑ))‖e−3
j ‖4

1,

Φ2(ϑ, α, y) = T−1(ϑ)(Φ̃2(ϑ, α, T (ϑ)y)− T ′(ϑ)y), ϑ ∈ [−h, 0].

Theorem 1. Let ϕ ∈ W 2∞[−h, 0]. Then the components of the solution of the system (2.11)
are determined by the asymptotic formulas

yj(ϑ, α,D) = exp
(

α−1/4ej

ϑ∫

ϑj

λ(τ) dτ

)
Dj − e−1

j λ−1(ϑ)Φj
1(ϑ)

+ O(α1/4; ϑ,D1, . . . , D4), j = 1, 4, ϑ ∈ [−h, 0], (2.12)

where D = ‖Ds‖4
1, Ds, s = 1, 4 are arbitrary vectors belonging to Cn.

P r o o f. Solutions of the system

dy

dϑ
= α−1/4J(ϑ)y

are defined by the formulas

yj(ϑ, α, D̂j) = exp
(

α−1/4ej

ϑ∫

ϑj

λ(τ) dτ

)
D̂j , ϑ ∈ [−h, 0], j = 1, 4, (2.13)

where D̂j are arbitrary constants belonging to Cn, ϑ1 = ϑ2 = 0, and ϑ3 = ϑ4 = −h.
By using the method of variation of constants for the nonlinear system (2.11), we have

D̂′
j(ϑ) = exp

(
− α−1/4ej

ϑ∫

ϑj

λ(τ) dτ

)
(α−1/4Φj

1(ϑ) + Φj
2(ϑ, α, y(ϑ, α, D̂(ϑ)))), j = 1, 4.

By integrating the last equalities, we obtain

D̂j(ϑ) = D̃j +

ϑ∫

ϑj

exp
(
− α−1/4ej

s∫

ϑj

λ(τ) dτ

)
(α−1/4Φj

1(s) + Φj
2(s, α, y(s, α, D̂(s)))) ds,

ϑ ∈ [−h, 0], j = 1, 4,

where D̃j are new constants.
By substituting the last expression into (2.13), we find

yj(ϑ, α, D̂j(ϑ)) = exp
(

α−1/4ej

ϑ∫

ϑj

λ(τ) dτ

)
D̃j + I1 + I2, ϑ ∈ [−h, 0], j = 1, 4, (2.14)
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where

I1 = α−1/4

∫ ϑ

ϑj

exp(α−1/4ej

∫ ϑ

s
λ(τ) dτ)Φj

1(s) ds,

I2 =
∫ ϑ

ϑj

exp
(

α−1/4ej

∫ ϑ

s
λ(τ) dτ

)
Φj

2(s, α, y(s, α, D̂(s)))) ds.

By applying the integration by parts formula to I1, we have

I1 = −(ejλ(ϑ))−1Φj
1(ϑ) + exp

(
α−1/4ej

ϑ∫

ϑj

λ(τ) dτ

)
(ejλ(ϑj))−1Φj

1(ϑj) + O(α1/4;ϑ).

By substituting the last formula into (2.14), we obtain a system of nonlinear integral equations

ŷj(ϑ) = fj(ϑ, α, Dj) +

ϑ∫

ϑj

exp
(

α−1/4ej

ϑ∫

s

λ(τ) dτ

)
Φj

2(s, α, ŷ(s)) ds = (Aŷ)j(ϑ), (2.15)

ϑ ∈ [−h, 0], j = 1, 4,

where

ŷj(ϑ) = yj(ϑ, α, D̂j(ϑ)),

fj(ϑ, α, Dj) = exp(α−1/4ej

∫ ϑ

ϑj

λ(τ) dτ)Dj − (ejλ(ϑ))−1Φj
1(ϑ) + O(α1/4;ϑ),

Dj = D̃j + (ejλ(ϑj))−1Φj
1(ϑj)

are new arbitrary constants.
By using the principle of contraction mapping [8], we will show that the system of equa-

tions (2.15) has a unique solution in the space L∞([−h, 0],Rn) for small values of α on the
set Ω = {ŷ(·) : ‖ŷ(·) − f(·, α,D)‖∞ ≤ ε}. Here f(·, α,D) = ‖fj(·, α,Dj)‖4

1, D = ‖Dj‖4
1,

‖ŷ(·)‖∞ = vrai sup
ϑ∈[−h, 0]

max
1≤j≤4

|ŷj(ϑ)|, and ε is a some small positive number. Indeed, for small

values of α the condition AΩ ⊆ Ω is fulfilled because

|(Aŷ)j(ϑ)− fj(ϑ, α, Dj)| ≤ vrai sup
ϑ∈[−h,0]

max
1≤j≤4

∣∣∣∣
ϑ∫

ϑj

λ(s) exp
(

α−1/4 Re ej

ϑ∫

s

λ(τ) dτ

)
ds

∣∣∣∣Ψ

≤ Ψ
√

2α1/4 vrai sup
ϑ∈[−h,0]

max
1≤j≤4

(
1− exp

(
α−1/4 Re ej

ϑ∫

ϑj

λ(τ) dτ

))
≤
√

2α1/4Ψ,

where Ψ = vrai sup
s∈[−h, 0]

max
1≤j≤4

|Φj
2(s, α, ŷ(s))/λ(s)|.

By using the Lipschitz condition

|Φj
2(s, α, ŷ1(s))− Φj

2(s, α, ŷ2(s))| ≤ L|ŷ1(s)− ŷ2(s)|, s ∈ [−h, 0], 1 ≤ j ≤ 4,

we obtain
|(Aŷ1)j(ϑ)− (Aŷ2)j(ϑ)|

≤ vrai sup
ϑ∈[−h,0]

max
1≤j≤4

∣∣∣∣
ϑ∫

ϑj

exp
(

α−1/4 Re ej

ϑ∫

s

λ(τ) dτ

)
(Φj

2(s, α, ŷ1(s))− Φj
2(s, α, ŷ2(s))) ds

∣∣∣∣
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≤ L vrai sup
ϑ∈[−h,0]

max
1≤j≤4

|ŷ1(s)− ŷ2(s)| vrai sup
ϑ∈[−h,0]

max
1≤j≤4

∣∣∣∣
ϑ∫

ϑj

exp
(

α−1/4 Re ej

ϑ∫

s

λ(τ) dτ

)
ds

∣∣∣∣

≤
√

2Lα1/4

min
ϑ∈[−h,0]

λ(ϑ)
vrai sup

ϑ∈[−h,0]
max
1≤j≤4

(
1− exp

(
α−1/4 Re ej

ϑ∫

ϑj

λ(τ) dτ

))
‖ŷ1 − ŷ2‖∞

≤ L
√

2α1/4

min
ϑ∈[−h,0]

λ(ϑ)
‖ŷ1 − ŷ2‖∞.

Consequently, the operator A is the contracting operator on Ω. Then by using the method of
successive approximations [8] and by using the equality ‖Af − f‖∞ = O(α1/4), we find

‖y(·, α, D)− f(·, α,D)‖∞ = O(α1/4). ¤

Theorem 2. Let the assumptions of Theorem 1 be satisfied. Then the components of solution
of the boundary value problem (2.7), (2.8) are defined by the asymptotic formulas

xs(ϑ, ϕ, α) = Ss(ϑ, α, ϕ)∆(ϕ) + δs1
k

r

(
r − ϕ′(ϑ)

ϕ(ϑ)

)
+ O(α1/4; ϑ, ϕ), (2.16)

ϑ ∈ [−h, 0], s = 1, 4,

where

Ss(ϑ, α, ϕ) = (
√

2/2)
2∑

j=1

es−2
j exp(α−1/4ej

∫ ϑ

0
λ(τ) dτ)λs−1(ϑ)

and
∆(ϕ) = ϕ(−h)− (k/r) (r − ϕ′(0)/ϕ(0)).

P r o o f. By using the asymptotic representations of the components of solution (2.12) and
the change of variables (2.10), we find the components of solution of system (2.7)

xs(ϑ, α) =
4∑

j=1

es−1
j λs−1(ϑ) exp

(
α−1/4ej

ϑ∫

ϑj

λ(τ) dτ

)
Dj + δs1

k

r

(
r − ϕ′(ϑ)

ϕ(ϑ)

)

+ O(α1/4; ϑ,D1, . . . , D4), s = 1, 4, (2.17)

By substituting the obtained asymptotic representations into the boundary conditions (2.8),
we have the system of algebraic equations

e3D3 + e4D4 + O(α1/4; D1, . . . , D4) = 0,

e2
3D3 + e2

4D4 + O(α1/4; D1, . . . , D4) = 0,

e3
1D1 + e3

2D2 + O(α1/4; D1, . . . , D4) = 0,

D1 + D2 + O(α1/4; D1, . . . , D4) = ∆(ϕ).

(2.18)

The last system for α = 0 has a unique solution. Then by taking into account the asymptotics
of equations of the system (2.18), we find

D1 =
√

2
2

e2∆(ϕ) + O(α1/4), D2 =
√

2
2 e1∆(ϕ) + O(α1/4),

D3 = O(α1/4), D4 = O(α1/4).

By substituting the found values of constants into (2.17), we obtain (2.16). ¤
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3. Dependence of the Regularization Parameter on the Admissible Error

Since Uxα = χα, it follows that the discrepancy equation (Ux − ϕ,Ux − ϕ) = δ2 acquires the
form

δ2 = (χα(0, ϕ)− ϕ(0))2 +

0∫

−h

(χα(s, ϕ)− ϕ(s))2ds.

By using the variables x2 and x4 in (2.5), we have

(χα(ϑ, ϕ)− ϕ(ϑ))2 =
4k2P 2x2

4(ϑ, α, ϕ)
r2ϕ2(ϑ)

α1/2 − 4k3P 3x3
4(ϑ, α, ϕ)

r3ϕ4(ϑ)
α3/4 + O(α; ϑ, ϕ). (3.1)

By taking into account the formulas (2.16), we find

x4(ϑ, α, ϕ) =
√

2
2

λ3(ϑ)∆(ϕ)
2∑

j=1

e2
j exp

(
α−1/4ej

ϑ∫

0

λ(τ) dτ

)
+ O(α1/4; ϑ, ϕ),

x2
4(ϑ, α, ϕ) =

λ6(ϑ)∆2(ϕ)
2

2∑

k,j=1

e2
ke

2
j exp

(
α−1/4(ek + ej)

ϑ∫

0

λ(τ) dτ

)

+
√

2λ3(ϑ)∆(ϕ)
2∑

j=1

e2
j exp

(
α−1/4ej

ϑ∫

0

λ(τ) dτ

)
O(α1/4; ϑ, ϕ) + O(α1/2;ϑ, ϕ),

x3
4(ϑ, α, ϕ) =

√
2

4
λ9(ϑ)∆3(ϕ)

2∑

k,j,m=1

e2
ke

2
je

2
m exp

(
α−1/4(ek + ej + em)

ϑ∫

0

λ(τ) dτ

)
+ O(α1/4; ϑ, ϕ).

Hence x4(0) = O(α1/4; ϕ) and (χα(0, ϕ) − ϕ(0))2 = O(α; ϕ). By taking into account the written
above asymptotic formulas in (3.1), we obtain

0∫

−h

(χα(s, ϕ)− ϕ(s))2ds = α3/4 2k2P 2

r2
∆2(ϕ)

2∑

k,j=1

e2
je

2
k

ej + ek

λ5(0)
ϕ2(0)

+ O(α;ϕ).

As a result the discrepancy equation acquires the form

δ2 = α3/4γ(ϕ) + O(α; ϕ),

where γ(ϕ) =
√

2∆2(ϕ)
√

rP 3/2ϕ(0)/k.
For ∆(ϕ) 6= 0 the obtained equation has a unique continuous solution for a small positive δ,

which is determined by the formula

α(δ, ϕ) = γ−4/3(ϕ)δ8/3 + O(δ10/3, ϕ). (3.2)

Theorem 3. Let ϕ ∈ W 2∞[−h, 0]. Then the values of the regularizing operator for the equation
Ux = ϕ on the set D = {ϕ : ∆(ϕ) 6= 0, ϕ ∈ W 2∞[−h, 0]} are given by the asymptotic formula

R(ϕ, δ)(ϑ) = S(ϑ, δ, ϕ)∆(ϕ) +
k

r

(
r − ϕ′(ϑ)

ϕ(ϑ)

)
+ O(δ2/3;ϑ, ϕ), ϑ ∈ [−h, 0], (3.3)

where

S(ϑ, δ, ϕ) = (
√

2/2)
2∑

j=1

e−1
j exp(δ−2/3γ1/3(ϕ)(1 + O(δ2/3, ϕ))ej

∫ ϑ

0
λ(τ) dτ).
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P r o o f. A possible minimizing element corresponding to ϕ ∈ W 2∞[−h, 0] is defined by the
asymptotic formula

xα(ϑ, ϕ) = S1(ϑ, α, ϕ)∆(ϕ) +
k

r

(
r − ϕ′(ϑ)

ϕ(ϑ)

)
+ O(α1/4; ϑ, ϕ), ϑ ∈ [−h, 0]. (3.4)

It can be shown, that the sufficient condition [8, p. 125] for the minimum of the functional Mα[ϕ, ·]
is fulfilled. By substituting (3.2) into (3.4) we find the asymptotic formulas for the values of the
regularized operator on the set D. ¤

Let us introduce an operator R1 : W 2∞ → H by the formulas

R1(ϕ)(ϑ) =
k

r

(
r − ϕ′(ϑ)

ϕ(ϑ)

)
, ϑ ∈ [−h, 0), R1(ϕ)(0) = ϕ(−h),

and an operator R2 : W 2∞ → H by the formulas

R2(ϕ, δ)(ϑ) =
√

2
2

2∑

j=1

e−1
j exp

(
γ1/3(ϕ)δ−2/3ej

ϑ∫

0

λ(τ) dτ

)
∆(ϕ) + R1(ϕ)(ϑ), ϑ[−h, 0),

R2(ϕ, δ)(0) = R2(ϕ, δ)(−0).

Theorem 4. Let the assumptions of Theorem 2 be satisfied. Then R1 : D → H and R2 : D →
H are regularizing operators for the equation Ux = ϕ.

P r o o f. The set of ϕp for which the exact solutions xp of equation Ux = ϕp exist is everywhere
dense in H [9]. The inequalities

||R1(ϕδ)− xp|| ≤ ||R1(ϕδ)−R(ϕδ, δ)||+ ||R(ϕδ, δ)− xp||,
||R2(ϕδ, δ)− xp|| ≤ ||R2(ϕδ, δ)−R(ϕδ, δ)||+ ||R(ϕδ, δ)− xp||.

(3.5)

hold for an arbitrary approximation ϕδ to ϕp satisfying the conditions ϕδ ∈ D and ‖ϕδ−ϕp‖2 ≤ δ.
By using the formula (3.3), we obtain the differences

R(ϕδ, δ)(0)−R1(ϕδ)(0) = O(δ2/3; ϕδ),

and

R(ϕδ, δ)(ϑ)−R1(ϕδ)(ϑ) =
√

2
2

2∑

j=1

e−1
j exp

(
δ−2/3(γ1/3(ϕδ) + O(δ2/3))ej

ϑ∫

0

λ(τ) dτ

)
∆(ϕδ)

+ O(δ2/3;ϑ, ϕδ), ϑ ∈ [−h, 0).

Let us estimate the integral
0∫

−h

(R1(ϕδ)(s)−R(ϕδ, δ)(s))2ds

=
1
2

2∑

p,q=1

e−1
p e−1

q ∆2(ϕδ)

0∫

−h

exp
(

δ−2/3(γ1/3(ϕδ) + O(δ2/3))ej

s∫

0

λ(τ) dτ

)
ds.

Since
(ep + eq)

∫ s

0
λ(τ) dτ 6= 0
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for p, q = 1, 2, s ∈ [−h, 0], then the equality is valid

0∫

−h

(R1(ϕδ)(s)−R(ϕδ, δ)(s))2ds = O(δ2/3; ϕδ).

As a result, we have the asymptotic estimate

||R1(ϕδ)−R(ϕδ, δ)|| = O(δ2/3, ϕδ).

In a similar way we find that

||R2(ϕδ, δ)−R(ϕδ, δ)|| = O(δ2/3, ϕδ).

By taking into account the resulting estimates, the property of the regularizing operator R, and
inequality (3.5) we complete the proof of the theorem. ¤

4. Asymptotic of regularized solutions

Let Hloc be the space of functions defined on the half-line (−∞,−h] restriction of which to any
finite interval [t−,−h], t− < −h, is the Hilbert space Ht− with inner product

〈x, y〉t− =
∫ −h

t−
y(s)x(s)µ(ds),

where µ(s) = s/h + m, s ∈ [(m − 1)h,mh), m ≤ −1, µ(−h) = −1. For an arbitrary solution
xm(ϑ, ϕ, δ), ϑ ∈ [−h, 0], m ≤ −1, of the finite-difference equation (1.2), consider the function
x(·, ϕ, δ) ∈ Hloc defined by the formulas x(mh + ϑ, ϕ, δ) = xm(ϑ, ϕ, δ), ϑ ∈ (−h, 0], m ≤ −1.

Let xp(·) be en exact solution of system (1.1) on the interval [t−,−h], corresponding to the
initial function ϕp ∈ D. The relations

‖x(·, ϕδ, δ)−xp(·)‖t− = 〈x(·, ϕδ, δ)−xp(·), x(·, ϕδ, δ)−xp(·)〉1/2
t− =

( −h∫

t−

(x(s, ϕδ, δ)−xp(s))2µ(ds)
)1/2

≤
N∑

j=1

( 0∫

−r

(x−j(ϑ, ϕδ, δ)− xp(−jh + ϑ))2µ(d(−jh + ϑ))
)1/2

=
N∑

j=1

‖x−j(·, ϕδ, δ)− xp(−jh + ·)‖ =
N∑

j=1

‖R(x−j+1(·, ϕδ, δ), δ)(·)− xp(−jh + ·)‖.

hold for an arbitrary approximation ϕδ ∈ D to the initial function.
Here N coincides with an integer part of the number |t−|/h, ||ϕ|| = (ϕ,ϕ)1/2. For the regu-

larizing operator R the last sum can be made arbitrarily small. Consequently, in the problem of
finding solutions of the system (1.1) for any t− < −h the map D → Ht− defined by the formula
ϕ → x(·, ϕ, δ) is regularizing. The functions x(·, ϕ, δ) ∈ Hloc are referred to as regularized solutions
of the system (1.1) on the negative half-line.

For the initial function ϕ ∈ WN+1∞ [−h, 0], N ≥ 2, we introduce the sequence of functions

ϕm(ϑ) =
k

r

(
r − ϕ′m+1(ϑ)

ϕm+1(ϑ)

)
, m = −N,−1, ϕ0(ϑ) = ϕ(ϑ), ϑ ∈ [−h, 0].

By using this sequence, we define new sequences

x1
m(ϑ, ϕ) = R1(ϕm+1)(ϑ), m = −N,−1, ϑ ∈ [−h, 0],
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x2
m(ϑ, ϕ, δ) = R2(ϕm+1, δ)(ϑ), m = −N,−1, ϑ ∈ [−h, 0].

Let us introduce the functions x1(·, ϕ), x2(·, ϕ, δ) ∈ Ht− , by the formulas

x1(t, ϕ) = x1
m(t−mh,ϕ), x2(t, ϕ, δ) = x2

m(t−mh,ϕ, δ), t ∈ ((m− 1)h,mh], m=−N+1,−1,

x1(t, ϕ) = x1
m(t−mh,ϕ), x2(t, ϕ, δ) = x2

m(t−mh,ϕ, δ), t ∈ [t−,−Nh].

Theorem 5. Let ϕ ∈ WN+1∞ [−h, 0]. Then ϕ → x1(·, ϕ) and ϕ → x2(·, ϕ, δ) from
{ϕ : ∆(ϕm) 6= 0} → Ht−, m = −N + 1,−1, are regularizing mappings for the Cauchy problem to
the system (1.1) on the interval [t−,−h].

P r o o f. Let xp(·) be an exact solution of the system (1.1) on the interval [t−,−h], corre-
sponding to theinitial function ϕp. The inequalities

‖x1(·, ϕδ)− xp(·)‖t− =
( −h∫

t−

(x1(s, ϕδ)− xp(s))2µ(ds)
)1/2

≤
N∑

j=1

( 0∫

−h

(x1
−j(ϑ, ϕδ)− xp(−jh + ϑ))2µ(ds)

)1/2

=
N∑

j=1

‖x1
−j(·, ϕδ)− xp(−jh + ·)‖ =

N∑

j=1

‖R1(ϕ−j+1)(·)− xp(−jh + ·)‖,

‖x2(·, ϕδ, δ)− xp(·)‖t− =
( −h∫

t−

(x2(s, ϕδ, δ)− xp(s))2µ(ds)
)1/2

≤
N∑

j=1

( 0∫

−h

(x2
−j(ϑ, ϕδ, δ)− xp(−jh + ϑ))2µ(d(−jh + ϑ))

)1/2

=
N∑

j=1

‖x2
−j(·, ϕδ, δ)− xp(−jh + ·)‖ =

N∑

j=1

‖R2(ϕ−j+1, δ)(·)− xp(−jh + ·)‖.

hold for an arbitrary approximation ϕδ to ϕp satisfying the conditions ϕδ ∈ {ϕ : ∆(ϕm) 6= 0},
m = −N + 1,−1 and ‖ϕδ − ϕp‖ ≤ δ.

For the regularizing operators R1 and R2 the last sum can be made arbitrary small. The proof
of the theorem is complete. ¤

The functions x1(·, ϕ) ∈ Ht− and x2(·, ϕ, δ) ∈ Ht− are referred to as asymptotic regularized
solutions of the system (1.1) on the interval [t−,−h].

5. Example

In the report [2] one can find the following statistic data of the population size of elk in the
Vologda region

year 1999 2000 2001 2002 2003 2004 2005 2006 2007
number of elks 22050 22320 23130 20000 20530 22850 26200 28750 32150

For the analysis of these data we use the obtained results of the paper. Firstly, we solve an
identification problem for the Hutchinson–Wright equation. The breeding age of elks h = 2.5 [10,
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p. 231]. For the finding of the Malthusian factor r and the capacity of the habitat k we use the
formula

N(t) = N(t0) exp
(

r

t∫

t0

(
1− ϕ(s− h)

k

)
ds

)
, t ∈ [t0, t0 + h].

We choose the initial moment t0 = 2004, and we approximate the initial function ψ on the interval
[2001.5, 2004] by cubic splines. Then, by using the above statistical data we obtain

ψ(t) =





10
39

(135690 + 76739t + 30789t2 + 3421t3), t ∈ [2001.5, 2002],

−10
39

(−85674− 1715t + 6723t2 + 2831t3), t ∈ [2002, 2003],

10
39

(89115 + 12038t + 3600t2 + 610t3), t ∈ [2003, 2004].

We find the factors r and k from the equations

N(2005) = N(2004) exp
(

r

2005∫

2004

(
1− ψ(s− 2.5)

k

)
ds

)
,

N(2006) = N(2004) exp
(

r

2006∫

2004

(
1− ψ(s− 2.5)

k

)
ds

)
.

As a result of the numerical solution of this system of nonlinear algebraic equations we obtain
r = 2.427 and k = 21400.

Let us show how we solve the problem of reconstruction of prehistory of the population size on
the interval [1999, 2004]. For a new value of the initial moment t0 = 2006.5 and a new function ϕ
approximated by cubic splines on the interval [2004, 2006.5] we have the identified model

Ṅ(t) = 2.427
(

1− 1
21400

N(t− 2.5)
)

N(t).

So, the initial function is defined by the formulas

ϕ(t) =





−10
39

(−89115− 12038t− 3600t2 + 2573t3), t ∈ [2004, 2005],

10
39

(83997 + 27392t− 11754t2 + 2545t3), t ∈ [2005, 2006],

−10
39

(−113733 + 17212t− 10548t2 + 1172t3), t ∈ [2006, 2006.5].

By following the posed approach in this work, on the first step of applying the method of
reconstruction of the prehistory we find γ(ϕ) = 970.173, ∆(ϕ) = 2459.48. Then the value of the
first regularizing operator is defined by the formulas

R1(ϕ)(t) =





21400.6(−2.29388 + t)(18.4693 + 7.15864t + t2)
(−1.82855 + t)(21.575 + 7.9294t + t2)

, t ∈ [2004, 2005),

21400.6(3.72797 + t)(11.8098− 2.08253t + t2)
(4.09592 + t)(11.3947− 1.21439t + t2)

, t ∈ [2005, 2006),

21400.6(−6.55253 + t)(14.6794 + 3.81644t + t2)
(−6.10399 + t)(16.5387 + 4.60399t + t2)

, t ∈ [2006, 2006.5).
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On the second step we obtain γ(ϕ) = 252.37, ∆(ϕ) = −1254.41, and

R1(ϕ)(t) =





21400.6(−2.55816 + t)(−1.56402 + t)(16.7092 + 6.65895t + t2)(23.651

+ 8.42885t + t2)/((−2.29388 + t)(−1.82855 + t)(18.4693 + 7.15864t + t2)

× (21.575 + 7.9294t + t2)), t ∈ [2004, 2005),

21400.6(3.48096 + t)(4.34313 + t)(12.3607− 2.59903t + t2)(11.2027

− 0.698089t + t2)/((3.72797 + t)(4.09592+)(11.8098− 2.08253t + t2)

× (11.3947− 1.21439t + t2)), t ∈ [2005, 2006),

21400.6(−6.81369 + t)(−5.84275 + t)(13.7488 + 3.31375t + t2)(17.793

+ 5.10659t + t2)/((−6.55253 + t)(−6.10399 + t)(14.6794 + 3.81644t + t2)

× (16.5387 + 4.60399t + t2)), t ∈ [2006, 2006.5).

The figure shows the results of computation for the value δ = 10−2 of the admissible error. The
graph of the modeled initial function is given by the black line and the graph of the asymptotic
regularized solution x2(·, δ, ϕ) by the grey line, and the statistical data is given by black points.

1999 2000 2001 2002 2003 2004 2005 2006
t

20 000

22 000

24 000

26 000

28 000

30 000

N

Fig. 1

The error of reconstruction of the prehistory is defined by the formula

δN =
1
k

√√√√
2003∑

j=1999

(x2(j, δ, ϕ)−N(j))2 = 0.11.
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