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Abstract: We present a new proof for the main claim made in the author’s paper “On the identity bases
of Brandt semigroups” (Ural. Gos. Univ. Mat. Zap., 14, no.1 (1985), 38–42); this claim provides an identity
basis for an arbitrary Brandt semigroup over a group of finite exponent. We also show how to fill a gap in the
original proof of the claim in loc. cit.
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1. Introduction

We assume the reader’s acquaintance with the concepts of an identity and an identity basis as
well as other rudiments of the theory of varieties; they all may be found, e.g., in [3, Chapter II].
Our paper deals with identity bases of a certain species of semigroups which we introduce now.

Let G be a group, I a set with at least 2 elements, and 0 a “fresh” symbol that does not belong
to G ∪ I. We define a multiplication on the set B(G, I) = I ×G× I ∪ {0} as follows:

(i, g, j)(k, h, ℓ) =

{

(i, gh, ℓ) if j = k,

0 otherwise,
for all i, j, k, ℓ ∈ I and all g, h ∈ G,

0x = 0, x0 = 0 for all x ∈ B(G, I).

(1.1)

It is easy to verify that the multiplication (1.1) is associative so that B(G, I) becomes a semigroup.
The semigroup is called the Brandt semigroup over the group G, and the group G in this context
is referred to as the structure group of B(G, I) while I is called the index set.

Recall that an element a of a semigroup S is said to be regular if there exists an element b ∈ S
satisfying aba = a and bab = b; it is common to say that b is an inverse of a. A semigroup is called
regular [respectively, inverse] if every its element has an inverse [respectively, a unique inverse].
The semigroup B(G, I) is inverse: one can easily check that for all i, j ∈ I and all g ∈ G, the unique
inverse of (i, g, j) is (j, g−1, i) and the unique inverse of 0 is 0.

Brandt semigroups arose from a concept invented by Brandt [2] in his studies on composition
of quaternary quadratic forms; a distinguished role played by Brandt semigroups in the structure
theory of inverse semigroups was revealed by Clifford [4] and Munn [19]. From the varietal view-
point, Brandt semigroups are of importance as well (see, e.g., [26, Section 7]), and this justifies
the study of their identities. Since Brandt semigroups happen to be inverse, there is a bifurcation
in this study: along with plain identities u = v, in which the terms u and v are plain semigroup
words, that is, products of variables, one can consider also inverse identities whose terms involve
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both multiplication and the unary operation of taking the inverse. We notice that even though
plain identities form a special instance of inverse ones, this does not imply that the study of the
former fully reduces to the study of the latter; see Section 4 for a more detailed discussion.

Kleiman [13] comprehensively analyzed inverse identities of Brandt semigroups. In particular,
he showed how to derive a basis for such identities of B(G, I) from any given identity basis of the
group G. Mashevitzky [17] gave a characterization of the set of all plain identities holding in a given
Brandt semigroup modulo the plain identities of its structure group. Trahtman [27] found a basis
for plain identities of the 5-element Brandt semigroup B2 in which the construction B(G, I) results
provided that G is the trivial group E and |I| = 2; this basis consists of the following identities:

x2 = x3, xyx = xyxyx, x2y2 = y2x2. (1.2)

This fact was frequently cited and used in many applications, including quite important ones such
as the positive solution to the finite basis problem for 5-element semigroups [15, 28, 29].

In [30], the present author applied Kleiman’s result from [13] along with a generalization of
Trahtman’s argument from [27] in order to obtain a basis of plain identities for an arbitrary Brandt
semigroup over a group of finite exponent. Recall that a group G is said to be of finite exponent
if there exists a positive integer n such that gn = 1 for all g ∈ G. The least number n with this
property is called the exponent of G. Clearly, if G is a group of exponent n > 1, then g−1 = gn−1

for all g ∈ G, whence every terms, which is built from certain variables with the help of the
unary operation of taking the inverse along with the multiplication, is equal in G to a semigroup
word over the same variables. In particular, identities of G (both inverse and plain) admit a basis
{wλ = 1}λ∈Λ such that each wλ is a plain semigroup word; we refer to such a basis as a positive
identity basis of G. The following is the main result of [30]:

Theorem 1. Let G be a group of exponent n > 1, {wλ = 1}λ∈Λ a positive identity basis of G,
and I a set with at least 2 elements. The identities

w2
λ = wλ (λ ∈ Λ), (1.3)

x2 = xn+2, (1.4)

xyx = (xy)n+1x, (1.5)

xnyn = ynxn (1.6)

constitute a basis for plain identities of the Brandt semigroup B(G, I).

This result also has some important consequences, e.g., it implies a classification of finite inverse
semigroups whose plain identities admit a finite basis ([30, Corollary 3], see also Section 4).

For more than 25 years there was no doubt in the validity of Trahtman’s argument in [27]
until Reilly [24] observed that the argument in fact contained a lacuna. Nevertheless, the claim
made in [27] turned out to persist since Reilly managed to prove that the identities (1.2) do form
a basis for plain identities of the semigroup B2, see [24, Theorem 5.4]. A crucial step in Reilly’s
proof employs a solution to the word problem in the free objects of the variety generated by B2;
this solution (first provided by Mashevitsky in [17]) has quite a complicated formulation and a
somewhat bulky justification. Independently and simultaneously, Lee and the present author [16]
invented an alternative way to save Trahtman’s claim; their approach bypassed the word problem
and resulted in a proof which was short and rather straightforward modulo an elementary yet
powerful argument known as Kublanovskii’s Lemma, see [7, Lemma 3.2]. This technique stems
from the present author’s paper [32].

Since the proof of Theorem 1 in [30] uses a version of Trahtman’s argument, it suffers from the
same problem as the proof in [27], and therefore, cannot be considered as truly complete. In fact,



82 Mikhail V. Volkov

the gap in the proof in [30] can be filled, and we show below how to rescue that proof. However,
the main aim of the present paper is to present a new proof of Theorem 1; this new proof follows
the approach in [16, 32] and relies on a suitable version of Kublanovskii’s Lemma. We have made
a fair effort to make our proof self-contained so that, in particular, it should be understandable
without any acquaintance with [30] as a whole nor with specific results therein.

2. Preliminaries

Here we collect a few auxiliary results that we need; they all either are known or constitute
minor variations of known facts. Some of these results and/or their proofs involve certain concepts
of semigroup theory, which all can be found in the early chapters of any general semigroup theory
text such as, e.g., [5, 8].

Lemma 1. Let G be an arbitrary group, I a set with at least 2 elements. An identity u = v
holds in the Brandt semigroup B(G, I) if and only if u = v holds in both G and the 5-element
Brandt semigroup B2.

P r o o f. This was established in [13, Lemma 5] for inverse identities. As plain identities are
special instances of inverse ones, the claim holds for plain identities as well. �

Lemma 2. Let G be a group and I a set such that |G|, |I| ≥ 2. If G satisfies the identity w = 1
where w is a semigroup word, then the Brandt semigroup B(G, I) satisfies the identity w2 = w.

P r o o f. This fact was also mentioned in [13, p. 214] for inverse identities, and we could have
specialized it to plain identities as we did in the proof of Lemma 1. However, the proof in [13] is
only briefly outlined, and the outline involves several advanced notions and results from the theory
of inverse semigroups. For the sake of completeness, we provide here a direct and elementary proof.

Clearly, G satisfies the identity w2 = w. In view of Lemma 1 it remains to verify that the
identity holds in the semigroup B2. Let P(G) stand for the set of all non-empty subsets of G. We
define a multiplication · on the set P(G) ×G by the following rule: for A,B ⊆ G, g, h ∈ G,

(A, g) · (B,h) = (A ∪ gB, gh) where gB = {gb : b ∈ B}. (2.1)

It is routine to verify that · is associative so that (P(G) × G, ·) becomes a semigroup which, for
brevity, we denote by S.

Let alph(w) denote the set of variables that occur in the word w. If we evaluate the variables
x1, x2, · · · ∈ alph(w) at some elements (A1, g1), (A2, g2), . . . of S and calculate the corresponding
value of w, then, according to (2.1), we get an element of the form (A,w(g1, g2, . . . )) for a certain
set A ∈ P(G). Since the identity w = 1 holds in G, we have w(g1, g2, . . . ) = 1, so that the value is
actually of the form (A, 1). Clearly, (A, 1) · (A, 1) = (A∪A, 1) = (A, 1) for every A ∈ P(G), whence
S satisfies the identity w2 = w.

Consider the Brandt semigroup B(E,G) over the trivial group E = {1}; observe that here we
make the set G play the role of the index set! Let J = {(A, g) ∈ S : |A| ≥ 2} and define a map
ϕ : S → B(E,G), letting sϕ = 0 for all s ∈ J and ({a}, g)ϕ = (a, 1, g−1a) for all ({a}, g) ∈ S \J . It
is easy to see that ϕ is onto: indeed, an arbitrary triple (k, 1, ℓ) ∈ B(E,G)\{0}, where k, ℓ ∈ G, has
a unique preimage in S\J , namely, the pair ({k}, kℓ−1), and for 0, every element of J is a preimage.
Let us verify that ϕ is a semigroup homomorphism. Clearly, (s · t)ϕ = 0 = sϕ tϕ whenever at least
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one of the elements s and t lies in J . For ({a}, g), ({b}, h) ∈ S \ J , we have

(

({a}, g) · ({b}, h)
)

ϕ =
(

({a, gb}, gh)
)

ϕ =

{

[if a = gb] (a, 1, (gh)−1a) =
[if a 6= gb] 0 =

(a, 1, h−1b) [if g−1a = b]
0 [if g−1a 6= b]

}

= (a, 1, g−1a)(b, 1, h−1b) = ({a}, g)ϕ ({b}, h)ϕ.

Summing up the established properties of ϕ, we conclude that the Brandt semigroup B(E,G) is a
homomorphic image of the semigroup S, and therefore, B(E,G) also satisfies the identity w2 = w.

Since |G| ≥ 2, we can fix any 2-element subset K in G and “restrict” B(E,G) to K, that is,
consider the subsemigroup {(k, 1, ℓ) ∈ B(E,G) : k, ℓ ∈ K} ∪ {0} of B(E,G). Then the identity
w2 = w holds in this subsemigroup, which clearly is isomorphic to B2. �

Remark 1. The reader may wonder why Lemma 2 could not have been proved by a direct
evaluation of the word w in the Brandt semigroup B(G, I). The difficulty is that on this way one
should have verified that w and w2 take value 0 under the same evaluations of the variables from
alph(w) in B(G, I). Of course, not every word w enjoys this property so that one should have
analyzed the structure of w, relying entirely on the fact that the identity w = 1 holds in some non-
trivial group. Such an analysis is possible but is rather cumbersome (it amounts to characterizing
words w such that the normal closure of w in the free group on the set alph(w) coincides with the
whole group).

Lemma 3. Let G be a group and I a set with at least 2 elements. If the Brandt semigroup
B(G, I) satisfies an identity u = v such that u = u′yu′′ where y is a variable with y /∈ alph(u′u′′)
and alph(u′) ∩ alph(u′′) = ∅, then v can be decomposed as v = v′yv′′ with alph(v′) = alph(u′),
alph(v′′) = alph(u′′), and the identities u′ = v′ and u′′ = v′′ hold in B(G, I).

P r o o f. One could have deduced Lemma 3 by combining Proposition 3.2(ii) of [16] with its
left-right dual. However, since the proof of Proposition 3.2(ii) is omitted in [16], we prefer to prove
the lemma from scratch by a straightforward argument.

Fix two elements k, ℓ ∈ I. Suppose that there exists a variable that occurs in only one of the
words u and v. Evaluating this variable at 0 and other variables at (k, 1, k), we get that one of
the words u and v takes value 0 while the value of the other is (k, 1, k), a contradiction. Hence,
alph(u) = alph(v). Define an evaluation ζ : alph(u)→ B(G, I) as follows:

xζ =











(k, 1, k) if x ∈ alph(u′),

(k, 1, ℓ) if x = y,

(ℓ, 1, ℓ) if x ∈ alph(u′′).

Using the multiplication rules (1.1), one readily calculates that the value of the word u under ζ
is (k, 1, ℓ). Since B(G, I) satisfies the identity u = v, the value of v under ζ is (k, 1, ℓ) as well.
This value is a product of the triples (k, 1, k), (k, 1, ℓ), and (ℓ, 1, ℓ) in the same order in which the
variables from alph(u′), the variable y, and the variables from alph(u′′), respectively, occur in the
word v. Fix an occurrence of y in v and let v′y be the prefix of v ending with this occurrence and
yv′′ the suffix of v starting with this occurrence. Then v = v′yv′′. Since

(k, 1, ℓ)(k, 1, ℓ) = (k, 1, ℓ)(k, 1, k) = (k, 1, k)(ℓ, 1, ℓ) = (ℓ, 1, ℓ)(k, 1, ℓ) = (ℓ, 1, ℓ)(k, 1, k) = 0,

none of the factors y2, yx, xz, zy, zx with x ∈ alph(u′) and z ∈ alph(u′′) may occur in v. Therefore,
every variable that appears in v′ must come from alph(u′) while every variable that appears in
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v′′ must belong to alph(u′′). We see that alph(v′) ⊆ alph(u′), alph(v′′) ⊆ alph(u′′), and from the
equality alph(u) = alph(v) shown above, we conclude that alph(v′) = alph(u′), alph(v′′) = alph(u′′).

It remains to verify that the identities u′ = v′ and u′′ = v′′ hold in B(G, I). The semigroup
B(G, I) is inverse, and every inverse semigroup is isomorphic to its left-right dual via the bijection
that maps each element to its unique inverse. Therefore B(G, I) satisfies an identity p = q if and
only if it satisfies its mirror image←−p =←−q , where←−w denotes the word w read backwards. In view of
this symmetry, it suffices to verify that u′ = v′ holds in B(G, I). Arguing by contradiction, consider
an evaluation ϕ : alph(u′)→ B(G, I) such that the values of u′ and v′ under ϕ are different. Then
one of these values is not equal to 0; assume, for certainty, that the value of u′ is some triple
(i, g, j) ∈ B(G, I) \ {0}. We extend ϕ to an evaluation ψ : alph(u) → B(G, I), letting xψ = xϕ
for all x ∈ alph(u′) and yψ = zψ = (j, 1, j) for all z ∈ alph(u′′). The value of u under ψ is
(i, g, j)(j, 1, j) = (i, g, j); we aim to show that the value of v under ψ is different from (i, g, j).
Indeed, if the value of v′ under ϕ is 0, so is the value of v under ψ. If the value of v′ under ϕ is a
triple (i′, g′, j′) 6= (i, g, j), then the value of v under ψ is

(i′, g′, j′)(j, 1, j) =

{

(i′, g′, j) if j′ = j,

0 if j′ 6= j,
6= (i, g, j).

This contradicts the premise of u = v holding in B(G, I). �

A [0]-minimal ideal of a semigroup S is its minimal (with respect to the set inclusion) non-zero
ideal if S has a zero and its least ideal otherwise. A non-trivial semigroup S is [0]-simple if S = S2

and S is a [0]-minimal ideal of itself. A [0]-simple semigroup is completely [0]-simple if it contains
an idempotent e such that every idempotent f satisfying ef = fe = f is equal to either e or 0.

Lemma 4. If a semigroup satisfies the identities (1.5) and (1.6) for some n ≥ 1, then every
its [0]-minimal ideal that contains a regular element is an inverse completely [0]-simple semigroup.

P r o o f. It suffices to combine a few standard facts of semigroup theory. First, in any semi-
group, a [0]-minimal ideal with a regular element is a [0]-simple semigroup, see [5, Theorem 2.29]
or [8, Proposition 3.1.3]. Second, every [0]-simple semigroup that satisfies (1.5) is completely [0]-
simple; this is a special case of Munn’s theorem, see [5, Theorem 2.55] or [8, Theorem 3.2.11]. Each
completely [0]-simple semigroup is regular, and a regular semigroup with commuting idempotents
is inverse, see [5, Theorem 1.17] or [8, Theorem 5.1.1]. It remains to observe that idempotents
commute in every semigroup satisfying (1.6). �

We say that a map ϕ : S → T separates elements a, b ∈ S if aϕ 6= bϕ.

Lemma 5. If a semigroup S satisfies the identities (1.5) and (1.6) for some n ≥ 1, then any
distinct regular elements a, b ∈ S are separated by a homomorphism of S onto an inverse completely
[0]-simple semigroup.

P r o o f. This is a version of Kublanovskii’s Lemma [7, Lemma 3.2] adapted for the purposes
of the present paper. For the reader’s convenience, we provide a complete proof, even though it
quite closely follows the proof of Kublanovskii’s Lemma in [7].

For each regular element z ∈ S, we let Iz = {u ∈ S : z /∈ SuS}. Observe that z /∈ Iz: indeed, if
z′ is an inverse of z, we have z = zz′zz′z ∈ SzS. The set Iz may be empty but if it is not empty,
it forms an ideal of S. Indeed, SutS ⊆ SuS and StuS ⊆ SuS for any u, t ∈ S, and hence, if u lies
in Iz, so do ut and tu for every t ∈ S. Define the following equivalence relation on S:

x ≡ y (mod Iz) if and only if either x = y or x, y ∈ Iz.
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Clearly, it is just the equality relation if Iz is empty; otherwise it is nothing but the Rees congruence
ιz corresponding to the ideal Iz. Now define a further equivalence relation ρz on S as follows:

ρz = {(x, y) ∈ S × S : xt ≡ yt (mod Iz) for every t ∈ SzS} .

It can be easily verified that ρz is a congruence on S; in fact, as observed in [7], ρz is the kernel of
the so-called Schützenberger representation for S, see [5, Section 3.5].

Clearly, ρz = S × S if z = 0. Now we aim to prove the following claim: if z 6= 0, then the
quotient semigroup S/ρz is an inverse completely [0]-simple semigroup.

If Iz 6= ∅, the congruence ρz contains the Rees congruence ιz. Then we may substitute S by
its quotient S/ιz as the quotient also satisfies the identities (1.5) and (1.6); in other words, we may
(and will) assume that either Iz = ∅ or Iz = {0}. Then by the definition of the set Iz, every non-
zero element u ∈ SzS must fulfil z ∈ SuS whence SuS = SzS. We see that SzS is a [0]-minimal
ideal of S; as SzS contains z which is a regular element, Lemma 4 applies showing that SzS is an
inverse completely [0]-simple semigroup. So is any homomorphic image of SzS; in particular, so is
the image of SzS in the quotient semigroup S/ρz. Therefore, it remains to show that the image of
S in S/ρz coincides with that of SzS, which means that for each x ∈ S, there exists y ∈ SzS such
that (x, y) ∈ ρz.

If x ∈ SzS, there is nothing to prove. If x /∈ SzS, then in particular, x /∈ Iz whence z = pxq for
some p, q ∈ S. We have z = pxqz′pxq, where, as above, z′ stands for an inverse of z. Put w = qz′p;
then w ∈ SzS because z′ = z′zz′ ∈ SzS and xwx 6= 0 because z = pxwxq 6= 0. Now take an
arbitrary element t ∈ SzS. We have already noticed (in the preceding paragraph) that SuS = SzS
for every non-zero element u ∈ SzS. Applying this to u = xwx, we conclude that t = rxwxs for
some r, s ∈ S. Now we have the following chain of equalities:

xt = xrxwxs = (xr)n+1(xw)n+1xs by applying (1.5) to xrx and xwx

= xr(xr)n(xw)nxwxs

= xr(xw)n(xr)nxwxs by applying (1.6)

= xr(xw)n(xr)n−1xrxwxs

= xr(xw)n(xr)n−1xt.

We see that
(

x, xr(xw)n(xr)n−1x
)

∈ ρz, and the element xr(xw)n(xr)n−1x lies in the ideal SzS
because so does w. Thus, xr(xw)n(xr)n−1x can play the role of y, and our claim is proved.

Now we are ready to complete the proof of the lemma. Given an arbitrary pair (a, b) of distinct
regular elements is S, we will show that at least one of the congruences ρa and ρb excludes (a, b).
Then the natural homomorphism of S onto the quotient over this congruence separates a and b,
and the quotient is an inverse completely [0]-simple semigroup by the claim just proved. (One has
to take into account that if a congruence of the form ρz excludes some pair, then z 6= 0 and the
claim applies.)

If a /∈ SbS, then b ∈ Ia. Let a
′ be an inverse of a. We have then a′a ∈ SaS and a(a′a) = a /∈ Ia

while b(a′a) ∈ Ia since Ia is an ideal. Hence (a, b) /∈ ρa. Similarly, if b /∈ SaS, we have (a, b) /∈ ρb.
Now suppose that a ∈ SbS and b ∈ SaS. In this case, SaS = SbS and a, b /∈ Ia = Ib. If we assume
that (a, b) ∈ ρa, then for every element t ∈ SaS such that either at /∈ Ia or bt /∈ Ia, we must have
at = bt. In particular, the latter equality must hold for t = a′a since a(a′a) = a /∈ Ia and for
t = b′b, where b′ is an inverse of b, since b(b′b) = b /∈ Ia. Taking into account that both a′a and b′b
are idempotents and that idempotents commute in every semigroup satisfying the identity (1.6),
we have

a = a(a′a) = b(a′a) = b(b′b)(a′a) = a(b′b)(a′a) = a(a′a)(b′b) = a(b′b) = b(b′b) = b,
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a contradiction. �

Remark 2. One can call our Lemma 5 “Kublanovskii’s Lemma with commuting idempotents”.
The presence of the identity (1.6) ensures that idempotents commute, and this streamlines the
proof. The most important simplification in comparison with the proof of Kublanovskii’s Lemma
in [7] is that we manage to avoid invoking, along with the congruences ρa and ρb, their dual versions,
that is, the kernels of the corresponding Schützenberger anti-representations.

If S is an arbitrary semigroup and 0 is a “fresh” symbol that does not belong to S, we let S0

stand for the semigroup on the set S ∪{0} with multiplication that extends the multiplication of S
and makes all products involving 0 be equal to 0. If G is a group, G0 is known under the (standard
though somewhat oxymoronic) name “group with zero”. The following fact is a classical result of
semigroup theory, see [5, Theorem 3.9] or [8, Theorem 5.1.8].

Lemma 6. An inverse completely [0]-simple semigroup is either a group, or a group with zero,
or a Brandt semigroup.

3. Proof of Theorem 1

Recall that we aim to prove that for every group G of exponent n > 1 and every set I with at
least 2 elements, the identities (1.3)–(1.6) constitute a basis of the plain identities of the Brandt
semigroup B(G, I), provided that the set {wλ = 1}λ∈Λ is a positive identity basis of G.

To start with, observe that the identities (1.3)–(1.6) hold in B(G, I). For (1.3) this follows from
Lemma 2. As for the identities (1.4)–(1.6), it is obvious that they hold in each group of exponent n.
On the other hand, comparing these identities with the identity basis (1.2) of the semigroup B2,
one readily sees that they hold in B2 as well. Now the “if” part of Lemma 1 ensures that (1.4)–(1.6)
hold in B(G, I).

Let A be the semigroup variety defined by the identities (1.3)–(1.6) and B the variety generated
by the Brandt semigroup B(G, I). The fact established in the preceding paragraph is equivalent
to the inclusion B ⊆ A and the theorem being proved means the equality B = A. Arguing by
contradiction, assume that the inclusion is strict. Then there exists an identity that holds in the
semigroup B(G, I) but fails in the variety A. We choose an identity u = v with this property and
with the least value of | alph(u)|. We first check that the words u and v are repeated, where a word
w is called repeated if each variable from alph(w) occurs in a factor of w of the form ypy where
y is a variable and p is a (possibly empty) word2. It is convenient to have a short name for such
factors; let us refer to them as to cells.

Assume for a moment that, say, u is not repeated. This means that there exists a variable y
that occurs in u but does not occur in any cell of u. In particular, y occurs in u exactly once, and
moreover, u = u′yu′′ with alph(u′) ∩ alph(u′′) = ∅. We are in a position to employ Lemma 3 to
conclude that v decomposes as v = v′yv′′ where alph(v′) = alph(u′), alph(v′′) = alph(u′′) and both
the identities u′ = v′ and u′′ = v′′ hold in B(G, I). Since | alph(u′)|, | alph(u′′)| < | alph(u)|, our
choice of the identity u = v ensures that the identities u′ = v′ and u′′ = v′′ hold in the variety A.
However, together they imply the identity u = v that cannot hold in A, a contradiction.

Let F stand for the free semigroup of countable rank and let α denote the fully invariant
congruence on F that corresponds to the variety A. Then the quotient semigroup F/α satisfies
the identities (1.3)–(1.6) and the α-classes uα = {w : (w, u) ∈ α} and vα = {w : (w, v) ∈ α} are
different in F/α. For the next step of our proof we need the following fact:

2The term “repeated” comes from [27, 30]; in [16] words with this property were called “semiconnected”.
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Lemma 7. Every α-class that contains a repeated word is a regular element of F/α.

We proceed with proving Theorem 1 modulo Lemma 7 and prove the lemma afterwards.

By Lemma 7, the α-classes uα and vα are regular elements of F/α. Applying Lemma 5, we
conclude that uα and vα are separated by an onto homomorphism χ : F/α → T , where T is an
inverse completely [0]-simple semigroup. Lemma 6 implies the existence of a group Q such that
either 1) T = Q, or 2) T = Q0, or 3) T = B(Q,J) for some set J with |J | ≥ 2. In any case, Q is
a subgroup of a homomorphic image of F/α, whence the identities (1.3) hold in Q. Clearly, if for
some word w, a group satisfies the identity w2 = w, then the group satisfies the identity w = 1 as
well. Therefore the group Q satisfies the identities wλ = 1 for all λ ∈ Λ. Since these identities form
a basis for the identities of the structure group G of our semigroup B(G, I), the group Q belongs
to the semigroup variety generated by G, and hence, to the variety B generated by B(G, I). The
5-element Brandt semigroup B2 also belongs to B; this follows, for instance from the “only if” part
of Lemma 1. Applying the “if” part of Lemma 1, we conclude that the Brandt semigroup B(Q,J)
lies in B. From this, we have T ∈ B as T is isomorphic to a subsemigroup in B(Q,J) in the cases
1) or 2) and T = B(Q,J) in the case 3). In particular, T satisfies the identity u = v. However, the
composition of the natural homomorphism F → F/α with the homomorphism χ : F/α → T gives
rise to an evaluation under which the values of the words u and v are different. This contradiction
completes the proof of Theorem 1 modulo Lemma 7.

P r o o f of Lemma 7. Take any α-class h that contains a repeated word, say, w. If some
variable y occurs in w only once, then by the definition of a repeated word, y occurs in some cell
zpz of w, where p is non-empty. Using the identity (1.5), we substitute the factor zpz by the factor
(zp)n+1z and get a new word in the same α-class h in which y occurs at least twice. If this new
word still contains some variable x with a single occurrence, we apply the same transformation
again, etc. Thus, we may assume that h contains a word q in which every variable occurs at least
twice. Now we prove that h contains also a word which is a product of cells, that is, has the form

y1p1y1 · y2p2y2 · . . . · ykpkyk, (3.1)

where y1, y2, . . . , yk are variables and p1, p2, . . . , pk are (possibly empty) words. For this, we employ
a sort of greedy algorithm. Let y1 be the leftmost variable of the word q. If q ends with y1, the
word q itself is a cell. Otherwise we find the rightmost occurrence of y1 in q so that q = y1p1y1 · q1
where q1 is a non-empty word in which y1 does not occur, and so | alph(q1)| < | alph(q)|. Let y2 be
the leftmost variable of q1. There are two cases to consider, depending on whether y2 occurs in q1
at least twice or only once. In the former case, we find the rightmost occurrence of y2 in q1 and
represent q as q = y1p1y1 ·y2p2y2 ·q2, where y1, y2 do not occur in q2, and so | alph(q2)| < | alph(q1)|.
Let us show that h contains a word with a similar structure also in the latter case. Indeed, the
variable y2 occurs in q at least twice and if it occurs in q1 only once, then it must occur in p1.
Hence, p1 = ry2s for some (possibly empty) words r and s. Then q contains the word y2sy1y2 as
a factor. Using the identity (1.5), we substitute this factor by (y2sy1)

n+1y2 and transform q into a
new word q′ in the same α-class h; this new word can be represented as q′ = y1p

′

1y1 ·y2p
′

2y2 ·q
′

2, where
p′1 = r(y2sy1)

n−1y2s, p
′

2 = sy1, and q
′

2 is obtained from q1 by removing its leftmost variable. Then
y1, y2 do not occur in q′2, whence | alph(q

′

2)| < | alph(q1)|. Now we can apply the same procedure to
the leftmost variable of q2 or q′2, and so on. On the i-th step of the procedure we create a new cell
yipiyi while the yet unprocessed “remainder” omits the variables y1, . . . , yi. Clearly, the procedure
terminates after a finite number of steps and yields a word of the form (3.1) in the α-class h.

Now let h∗ be the α-class that contains the word

(pkyk)
2n−2pk · (pk−1yk−1)

2n−2pk−1 · . . . · (p1y1)
2n−2p1.
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We show that h∗ is an inverse of h by induction on k. If k = 1, that is, h = (y1p1y1)
α, the α-class

hh∗h contains the word

y1p1y1 · (p1y1)
2n−2p1 · y1p1y1 = (y1p1)

2n+1y1.

Applying the identity (1.4) if the word p1 is empty and the identity (1.5) otherwise, we can transform
this word to the word y1p1y1 ∈ h. Thus, hh

∗h = h. Similarly, the α-class h∗hh∗ contains the word

(p1y1)
2n−2p1 · y1p1y1 · (p1y1)

2n−2p1 = (p1y1)
4n−2p1

that can be transformed to (p1y1)
2n−2p1 ∈ h

∗. Hence, h∗hh∗ = h∗ and thus, h∗ is an inverse of h.

For the induction step, suppose that k > 1 and let f and g be the α-classes containing the
words y1p1y1 and y2p2y2 · . . . · ykpkyk respectively. Then h = fg, h∗ = g∗f∗ and, by the induction
assumption, f∗ and g∗ are inverses of f and g, respectively. The equalities ff∗f = f and gg∗g = g
imply that the α-classes f∗f and gg∗ are idempotents. Taking into account that the idempotents
of F/α commute due to the identity (1.6), we obtain

hh∗h = fg · g∗f∗ · fg

= f(gg∗)(f∗f)g

= f(f∗f)(gg∗)

= ff∗f · gg∗g

= fg = h,

h∗hh∗ = g∗f∗ · fg · g∗f∗

= g∗(f∗f)(gg∗)f∗

= g∗(gg∗)(f∗f)f∗

= g∗gg∗ · f∗ff∗

= g∗f∗ = h∗.

We see that h∗ is an inverse of h, and the lemma is proved. �

Now we are in a position to discuss a gap in the original proof of Theorem 1 in [30] and to
explain how the gap can be filled.

The proof of Theorem 1 in [30] develops as follows. As above, it works with F , the free
semigroup of countable rank, and α, the fully invariant congruence on F that corresponds to the
variety A defined by the identities (1.3)–(1.6). In the quotient semigroup F/α, one considers the
set H of all α-classes containing a repeated word. Obviously, the product of two repeated words is
a repeated word whence H is a subsemigroup of F/α. The idempotents of H commute because H,
being a subsemigroup of F/α, satisfies the identity(1.6). By Lemma 7 (which appears in [30] as a
part of the proof of Theorem 1), H is regular. Now one can apply the textbook fact that a regular
semigroup with commuting idempotents is inverse, see [5, Theorem 1.17] or [8, Theorem 5.1.1].
Thus, H is an inverse subsemigroup of F/α. At this point, the proof under discussion invokes the
main result from Kleiman’s paper [13], which implies that the identities (1.3)–(1.6) form a basis
for the inverse identities of the Brandt semigroup B(G, I). In particular, these identities hold in
B(G, I) whence A ⊇ B, where as above, B stands for the variety generated by B(G, I). In the
language of fully invariant congruences this means that α ⊆ β, where β denotes the fully invariant
congruence on F that corresponds to the variety B. Let β/α be the induced congruence on F/α so
that (F/α) / (β/α) ∼= F/β. The rest of the proof relies on the following claim: the congruence β/α
separates the elements of the subsemigroup H, that is, β/α restricted to H is the equality relation.
In [30] this claim is justified by observing that H lies in the variety B—this follows from the
fact that H is inverse and satisfies the identities (1.3)–(1.6) which, according to the quoted result
from [13], define the variety of inverse semigroups generated by B(G, I). However, the justification
is not sufficient. The membership H ∈ B only guarantees that the least element in the set Γ
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of all congruences γ on H with H/γ ∈ B is the equality relation; while β/α restricted to H is a
congruence in Γ, it is not immediately clear that the restriction is indeed the least element in Γ.

Let us show that the italicized claim does hold. Arguing by contradiction, assume that some
distinct elements a, b ∈ H satisfy (a, b) ∈ β/α. Since a and b are distinct regular elements of the
semigroup F/α, which satisfies the identities (1.5) and (1.6), Lemma 5 applies. Thus, a and b are
separated by an onto homomorphism χ : F/α → T , where T is an inverse completely [0]-simple
semigroup. Arguing as in the last paragraph of the above proof of Theorem 1 modulo Lemma 7,
one can show that T lies in the variety B. Then the homomorphism χ must factor through the
natural homomorphism η : F/α → F/β because F/β is the B-free semigroup of countable rank.
However, aη = bη since (a, b) ∈ β/α while aχ 6= bχ, a contradiction.

4. Corollaries and discussions

For the reader’s convenience, we reproduce the main corollaries of Theorem 1, following [30].
The first of them specializes Theorem 1, providing an explicit identity basis for Brandt semigroups
over abelian groups of finite exponent.

Corollary 1 [30, Corollary 1]. Let G be an abelian group of exponent n > 1 and I a set with
at least 2 elements. The identities (1.4), (1.5), and

x2y2 = y2x2, (4.1)

xyxzx = xzxyx (4.2)

constitute a basis for plain identities of the Brandt semigroup B(G, I).

This is in fact a consequence of the proof of Theorem 1 rather than the theorem itself. The
corresponding arguments were omitted in [30]; therefore, we provide a proof outline here.

P r o o f (outline). First, we show that the identities (1.4), (1.5), (4.1), (4.2) hold in B(G, I).
By the “if” part of Lemma 1, it suffices to verify that they hold in both G and the 5-element
Brandt semigroup B2. Obviously, the identities (1.4) and (1.5) hold in every group of exponent n
while the identities (4.1) and (4.2) hold in every abelian group. Thus, (1.4), (1.5), (4.1), (4.2) hold
in G. Inspecting the identity basis (1.2), one readily sees that (1.4), (1.5), (4.1) hold in B2. The
identity (4.2) also holds in B2 as the following calculation shows:

xyxzx = (xy)2(xz)2x in view of xyx = xyxyx

= (xz)2(xy)2x in view of x2y2 = y2x2

= xzxyx in view of xyx = xyxyx.

Now we proceed exactly as in the proof of Theorem 1. Denote by A the semigroup variety
defined by the identities (1.4), (1.5), (4.1), (4.2) and let B be the variety generated by the semigroup
B(G, I). The fact that B(G, I) satisfies (1.4), (1.5), (4.1), (4.2) implies that B ⊆ A. Assuming
that the inclusion is strict, choose an identity u = v with the least value of | alph(u)| such that
u = v holds in B(G, I) but fails in A. Then the words u and v are repeated due to the argument
in the 4th paragraph of Section 3.

Let F be the free semigroup of countable rank and α its fully invariant congruence correspond-
ing to the variety A. The α-classes uα and vα are distinct elements of F/α and, by Lemma 7, they
are regular. Then Lemmas 5 and 6 imply that uα and vα are separated by an onto homomorphism
χ : F/α→ T , where T is either a group, or a group with zero, or a Brandt semigroup. Let Q stand
for the structure group of T in the latter case and for T or T \ {0} in the two former cases. Then
Q is a subgroup of a homomorphic image of F/α, whence the identities (1.4) and (4.2) hold in Q.
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Clearly, the exponent of every group satisfying (1.4) divides n and every group satisfying (4.2) is
abelian. Thus, Q is an abelian group of exponent dividing n. A well known classification of abelian
group varieties (cf. [20, Theorem 19.5] or [21, Item 13.51]) ensures that the variety of all abelian
groups of exponent dividing n is generated by any abelian group of exponent n, in particular, by
the structure group G of B(G, I). Thus, Q belongs to the variety generated by G, and hence, to
the variety B. As the 5-element Brandt semigroup B2 also belongs to B, the “if” part of Lemma 1
implies that every Brandt semigroup over Q lies in B. From this, we have T ∈ B whence T must
satisfy u = v. On the other hand, the composition of the natural homomorphism F → F/α with
the homomorphism χ : F/α→ T separates u and v in T , a contradiction. �

Remark 3. We do not know any basis for plain identities of the Brandt semigroup over the
infinite cyclic group Z (or any other abelian group of infinite exponent); moreover, it is not known
whether or not the plain identities of this semigroup admit a finite basis. A finite basis for in-
verse identities of the Brandt semigroup over Z can be found in [13, Corollary 6] or [23, Theo-
rem XII.5.4(iii)].

In connection with Remark 3, it appears appropriate to discuss in more detail how the finite
basis property, i.e., the property of a Brandt semigroup B(G, I) to have a finite identity basis,
may depend on the type of identities—inverse or plain—under consideration. It turns out that
the picture is rather non-trivial here. On the one hand, the additional operation increases the
expressivity of the equational language so that the inverse identities of B(G, I) are “richer” than
the plain ones. This indicates that B(G, I) may have more chances to possess no finite basis for
its inverse identities. On the other hand, the inference power of the language increases too. Hence
one can encounter the situation when some identity of B(G, I) does not follow from an identity
system Σ as a “plain” identity but follows from Σ as an “inverse” identity. This indicates that
the inverse identities of B(G, I) may admit a finite basis even if its plain identities do not. The
cumulative effect of the trade-off between increased expressivity and increased inference power is
hard to predict in general, as the following examples demonstrate3.

Example 1. Let G be the wreath product of the countably generated free group of exponent 4
with the countably generated free abelian group and I a set with at least 2 elements. The Brandt
semigroup B(G, I) satisfies only trivial plain identities but its inverse identities have no finite basis.

P r o o f. The fact that B(G, I) satisfies only trivial plain identities follows from the observa-
tion that G contains the countably generated free semigroup as a subsemigroup, see, e.g., [1]. If
we assume that the inverse identities of B(G, I) admit a finite basis, then appending the identity
xx−1 = yy−1 to the basis would yield a finite basis of group identities of the group G. However,
by [20, Corollary 22.22] G generates the varietal product of the variety of all groups of exponent
dividing 4 with the variety of all abelian groups, and by [14, Remark 2] this product possesses no
finite identity basis, a contradiction. �

In Example 1, an increase in the expressivity of the equational language dominates; now we
exhibit an “opposite” example in which one sees the effect of an increase in the inference power.

Example 2. Let G be the direct product of the infinite cyclic group Z with the group S3 of
all permutations of a 3-element set and I a set with at least 2 elements. The Brandt semigroup
B(G, I) admits a finite basis of inverse identities but its plain identities have no finite basis.

3Our examples are adaptations of known ones (see, e.g., [31, Section 2]) to the case of Brandt semigroups.
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P r o o f. Since the group S3 is metabelian, so is G = Z × S3. It is known [6] that the group
identities of any metabelian group possess a finite basis. By [13, Corollary 2], the inverse identities
of a Brandt semigroup admit a finite basis whenever so do the group identities of its structure
group. Thus, we may conclude that B(G, I) has a finite basis of inverse identities.

Now consider the following series of identities:

Ln : x2y1 · · · ynyn · · · y1 = y1 · · · ynyn · · · y1x
2, n = 1, 2, . . . .

We aim to show that all identities Ln hold in B(G, I). Due to the “if” part of Lemma 1, it amounts
to verifying that they hold in both G and the 5-element Brandt semigroup B2. Since the group S3

satisfies the identity (4.1), this identity, which is equivalent to L1, holds in G = Z × S3. Now it
easy to verify that G satisfies the identity Ln by induction on n. Indeed, for n > 1 we have

x2y1y2 · · · ynyn · · · y2y1 = y1(y
−1
1 xy1)

2y2 · · · ynyn · · · y2y1

= y1y2 · · · ynyn · · · y2(y
−1
1 xy1)

2y1 by the inductive assumption

= y1y2 · · · ynyn · · · y2y
−1
1 x2y21

= y1y2 · · · ynyn · · · y2y
−1
1 y21x

2 by using (4.1)

= y1y2 · · · ynyn · · · y2y1x
2.

In order to show that each of the identities Ln holds in B2 = B(E, {1, 2}), it suffices to ob-
serve that the values of the words x2y1 · · · ynyn · · · y1 and y1 · · · ynyn · · · y1x

2 under every evaluation
ϕ : {x, y1, . . . , yn} → B2 are equal to 0 unless xϕ = ykϕ = (1, 1, 1) or xϕ = ykϕ = (2, 1, 2) for all
k = 1, . . . , n, in which case the values of these words are equal to (1, 1, 1) or (2, 1, 2) respectively.

Isbell [9] proved that no finite set of plain semigroup identities true in the groups Z and S3

implies all identities Ln. Hence, the plain identities of B(G, I) admit no finite basis. �

Our next result also deals with the finite basis property. It immediately follows from Theorem 1.

Corollary 2 [30, Corollary 2]. If a group G of finite exponent admits a finite identity basis,
then so does every Brandt semigroup over G.

In particular, since every finite group possesses a finite identity basis ([22], see also [21, Sec-
tion 5.2]), we conclude that the plain identities of each finite Brandt semigroup have a finite basis.

Two algebraic structures of the same type are said to be equationally equivalent if they satisfy
the same identities. Results in [13], see also [23, Proposition XII.4.13], imply that the following
dichotomy holds for an arbitrary inverse semigroup S: either

(1) S is equationally equivalent to an inverse semigroup that is either a group, or a group with
zero, or a Brandt semigroup and that can be chosen to be finite whenever S is finite, or

(2) the inverse semigroup variety generated by S contains the 6-element Brandt monoid B1
2

obtained by adjoining a “fresh” symbol 1 to the 5-element Brandt semigroup B2 and extending the
multiplication of B2 so that 1 becomes the identity element.

If S and T are inverse semigroups and S satisfies all inverse identities of T , then the same holds
for the plain identities of T since the latter are special instances of the former. (In the language of
varieties, this means that S lies in the semigroup variety generated by T whenever it belongs to the
inverse semigroup variety generated by T .) In particular, if S and T are equationally equivalent as
inverse semigroups, they are equationally equivalent as plain semigroups as well. In view of these
observations, we see that the above dichotomy persists if one considers plain semigroup identities
and varieties. Thus, if S is an arbitrary inverse semigroup, then either
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(1’) S is equationally equivalent as a plain semigroup to either a group, or a group with zero,
or a Brandt semigroup, each of which can be chosen to be finite whenever S is finite, or

(2’) the plain semigroup variety generated by S contains the 6-element Brandt monoid B1
2 .

This dichotomy, combined with a powerful result by Sapir [25], allows us to give the following
classification of finite inverse semigroups with respect to the finite basis property.

Corollary 3 [30, Corollary 3]. A finite inverse semigroup S admits a finite basis of plain iden-
tities if and only if the plain semigroup variety generated by S excludes the monoid B1

2 .

P r o o f. The “only if” part follows from [25, Corollary 6.1], according to which every (not
necessarily inverse) finite semigroup that generates a variety containing B1

2 has no finite identity
basis. For the proof of the “if” part, we invoke the above dichotomy that allows us to assume that
S is either a finite group, or a finite group with zero, or a finite Brandt semigroup. We have already
mentioned that every finite group possesses a finite identity basis, and so does every finite Brandt
semigroup by Corollary 2. The remaining case of finite groups with zero easily follows from a gen-
eral result by Melnik [18, Theorem 4] ensuring that if a (not necessarily finite) semigroup T has a
finite identity basis, then so does the semigroup T 0. (See [31, Section 3] for a detailed explanation
of how [18, Theorem 4] implies this claim.) �

Remark 4. As it has been observed by Kalicki [12], there exists an algorithm to decide, given two
finite algebraic structures of the same type, whether one of them belongs to the variety generated
by the other. Hence, Corollary 3 provides an algorithm to decide whether or not a given finite
inverse semigroup admits a finite basis of plain identities. Recall that the existence of such an
algorithm remains open for each of the following two situations: when one wants to decide whether
or not a given finite plain semigroup admits a finite basis of plain identities (see [31, Section 2] for
a discussion) and when one wants to decide whether or not a given finite inverse semigroup admits
a finite basis of inverse identities. In particular, it is not known if for a finite inverse semigroup
S, the plain and the inverse versions of the finite basis property are equivalent. Kad’ourek [10] has
proved that they are equivalent provided that all subgroups of S are solvable.
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