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Abstract: The paper deals with some aspects of general local fields and tries to elucidate some obscure
facts. Indeed, several questions remain open, in this domain of research, and literature is getting scarce. Broadly
speaking, we present a full description of the absolute Galois group in all cases with answers on the solvability,
prosolvability and procyclicity. Furthermore, we give a result that makes “some” generalization to Abhyankar’s
Lemma in local case. Half-way a short section, containing a view of some future research loosely discussed,
presents an attempt in the development of the theory. An Annexe elucidate several important points, concerning
Hilbert’s theory.
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Introduction

Local fields with perfect residue field (or more generally when the residue extension is assumed
to be separable) were deeply studied. The general case, when dropping off the separability of the
residue extension, considered for the first time in [25] still needs more work.

This condition of separability implies that the extension of the valuation rings is monogenic
and plays an imminent role in the proofs of some standard results for example Hilbert formula,
Herbrand property and Hasse-Arf Theorem which remain true under the less strong condition of
monogeneity. Meanwhile the property of the congruence of the ramification breaks modulo the
residual characteristic, (necessarily p > 0) does not hold if the residue extension is not separable,
even by assuming the monogeneity of the respective valuation rings extension.

The residue field is only a “fair” field, and does not have to be CDV. When assuming it as local,
we can characterize a large “family” of general local fields, more precisely “the higher dimensional
local fields” (such fields need not be necessarily monogenic). Pars̆in introduced the “2-dimensional”
local fields and constructed a class field theory of them, then Hyodo defined “upper” ramification
breaks, as m-tuples, for a Galois extension of “m-dimensional” local fields (with finite last residue
field).

The perfectness of the residue field (char (K) = p > 0), implies necessarily the separability of
the residue extension. So, by assuming the less strong condition [K : K

p
] = pc < ∞, we make

a step ahead to the generalization (“c” is called the degree of imperfectness). By taking c = 1,
I. Zhukov in [26, §1] defines a good ramification theory under the hypothesis [K : K

p
] = p (i.e. K

has a p basis of length 1). Especially for such fields, he proved that all weakly unramified extensions
are well ramified and then monogenic. Zhukov’s theory was for “2-dimensional” local fields only,
then later it was generalized to “n-dimensional” local fields by V.A. Abrashkin [2].

It depends on the choice of a subfield of “1-dimensional constants” K in K (a field is “1-
dimensional” if it is complete with respect to its discrete valuation and has a finite residue field, it
is said to be “2-dimensional” if it is complete with respect to its discrete valuation and has a residue
field which is itself “1-dimensional”, and so on and so forth, we can define an “n-dimensional” local
field).
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The theory is presented by a ramification filtration on gal (Ksep/K), the absolute Galois group
of K, by steps beginning with gal (Ksep/K), the absolute Galois group of K .

In fact, in characteristic zero he defined K as the set of all x ∈ K which are algebraic over the

fraction field K0 of W (F ) where F = ∩Kpi
andW (F ) is the Witt ring of F . Such K is the maximal

for this property and is complete with a perfect residue field. Meanwhile, in characteristic p > 0 it
is possible to fix a “base” subfield B in K, complete with respect to the valuation of K and having
Fp as a residue field. That are the Fp((τ)) with vK(τ) > 0, if K is the algebraic closure in K of the
completion of B(RK). Here RK consists of Teichmüller representatives of elements of the maximal
perfect subfield in K.

Defining first a ramification filtration in classical way on gal (Ksep/K) he introduces then a new
lower filtration on gal (L/K) indexed by a special linear ordered set I ⊂ Q2 (lexicographic order).
Then a new Hasse-Herbrand function Φ : I 7→ I is defined with all the usual properties. Therefore,
a theory of upper ramification groups, in this case, is stated. He uses the method of “eliminating
wild ramification” due to Epp [6] to reduce, in a canonical way, the study of completely ramified
extensions to the last one of ferociously ramified extensions. For such extension the hypothesis on
[K : K

p
] implies that the extension to consider is in fact ferociously ramified with L/K generated

by only one element i.e. it is monogenenic (Section 5), for which L. Spriano defines a more general
ramification theory what he calls “case II”, see [20, §5], [21]. Particularly in this case, the question
of the “passage of the ramification to the quotient” is affirmatively solved.

Lastly, Abbes and Saito, using techniques of rigid geometry, define an upper ramification fil-
tration in the general case successfully. Till now they cannot make the two filtrations (namely the
lower of Hilbert–Zariski–Samuel and their upper) corresponding in a satisfactory way.

To sum up, the assumption of the monogeneity remains the first important step to generalization
without losing the trueness of large number of important results.

Section Progression:

Here are three main sections, then a section of limelight questions and a last as annexe.

In Section 1 we prove the solvability of the inertia group of any finite extension regardless of
the residual extension, then we give a discussion on the solvability of the Galois group.

In Section 2 we give a full description of the absolute Galois group in all cases.

In Section 3 Theorem 9 makes some generalization of Abhyankar’s Lemma in local case.

Section 4 contains a view of some future research, an attempt to develop of the theory.

Section 5 is an Annexe section destined to briefly elucidate several important points, necessary
for the study, concerning Hilbert’s theory.

The main results are Theorems 1, 2, 3, 4, 5 and 9, Propositions 1 and 4, Lemma 1.

Nowhere else in the realm of abstract algebra does one see such an elegant interaction of topics
as in the subject of General Theory of Local Fields.

By local field we mean a complete discrete-valued field (CDVF), the residue field being not
necessarily perfect. We say classical case when the residue field is perfect or at least when the
residue extension is separable, otherwise we name it as general case.

1. On the solvability in finite local extensions

Here, we study the solvability of the Galois group of some local extensions with possibly imperfect
residue field. Theorem 1 is a direct proof of the solvability of the inertia group in general case, then
results on solvability of n-dimensional local fields are given.
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1.1. On the solvability of the inertia group

Let L/K be a finite Galois extension of local fields. The residue extension L/K is normal, see
[18, Proposition I.7.20], but need not be separable. Consider D the set of all automorphisms of L
unvarying all elements of K, there is a natural surjective homomorphism ϕ : G → D. Indeed, let
g ∈ G, g preserves OL as well asML, therefore g induces an automorphism of L = OL/ML. Since
g fixes each element of K it fixes each element of K as well, for the surjectivity of ϕ see the same
reference. So, the inertia group of L/K is G0 = ker(ϕ), also G is solvable if and only if D and G0

are too.

Theorem 1. Let L/K be a finite Galois extension of any local fields without any assumption
on the residual extension. Then the inertia group G0 of L/K is solvable, furthermore it is cyclic
when the residual characteristic is zero.

It is a generalization of Serre’s results in [18, Proposition IV.2.7] and its corollaries. Published
in [11], the proof needs some necessary retouches that can be found here.

P r o o f. An uniformizer π of L being fixed, let us fix a set of generators of the residue field
extension and their lifts u1, ..., un to OL. Put it in another way, OL is generated by π, u1, ..., un as
an OK -algebra, with v(π) = 1, ui being units. Consider the map:

ϕ1 : G0 → K
⋆
,

g → g(π)/π.

It is clear that this is a homomorphism, write J1 = ker(ϕ1) for the kernel of this map, so J1 = H1;
we use Zariski–Samuel notation [25, ch. V, § 10]. Then again consider the homomorphism:

ϕ2 : J1 → K ⊕ ...⊕K; (n+1) of them,

g → ((g(π) − π)/π2, (g(u1)− u1)/π, ..., (g(un)− un)/π)),

where (g(α) − α)/πi is the class of (g(α) − α)/πi mod π. Set J2 = ker(ϕ2). Again by considering,

ϕ3 : J2 → K ⊕ ...⊕K; (n+1) of them,

g → ((g(π) − π)/π3, (g(u1)− u1)/π2, ..., (g(un)− un)/π2))

and so on and so forth, until the filtration stabilizes (of course, since OL ≃ lim←−OL/M
i
L) and we

get a trivial Jr. From this, we conclude

1. If the residual characteristic is p > 0: it is clear that J1 has a filtration by normal
subgroups Ji, where the subquotients Ji/Ji+1 are p-elementary abelian groups as Ji/Ji+1

injectively maps to (1+Mi
L)/(1+Mi+1

L ) which is canonically isomorphic to (L,+) for i ≥ 1.

Furthermore, G0/J1 is cyclic as it injectively maps to R⋆L/(1 +ML) ≃ (L
⋆
,×), and to

AutL(ML/M2
L) ≃ (L

⋆
,×) as well, and the field L is of characteristic p. (Remark the order

of G0/J1 is prime to p if p ≥ 3). Furthermore, worthy to note that the maximal tamely
ramified subfield T of L corresponds to the subgroup J1. Finally, J1 is a p-group (the unique
Sylow p-subgroup of G0) it is of order ewildfinsep, which then implies the solvability of G0.

2. When the residual characteristic is zero: for i ≥ 1 the subquotients Ji/Ji+1 being
isomorphic to a subgroup of (L,+) (additive), which has no finite subgroup except {0}, Ji
are trivial for all i ≥ 1 and G0 is cyclic. �
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Remark 1. J.P. Serre in [18, Corollary IV.2.5 of Proposition 7], inspired by Zariski–Samuel
in [25], gives a proof of this theorem in the classical case. Unhappily his proof breaks down in
the general case because he uses the (Gn)n (lower ramification subgroups Hilbert–Zariski–Samuel’s
filtration of G0). Of course, in general G0/G1 need not be abelian, see [25, page 297, last line],
the purely inseparable part of the residue extension playing main role. Indeed, Theorem 1 in the
same reference claims that the group G0/G1 contains a normal subgroup G′

1 which is reduced to
the identity in separable case (see § 5.1).

1.2. Consequences

From Theorem 1 we straightforwardly deduce the corollaries:

Corollary 1. Let K be a local field, and let L/K be a finite Galois extension. Then L/K is
solvable if and only if the maximal separable subextension of L/K is solvable.

Corollary 2. Consequently, in the classical case the Galois group of L/K is solvable if and
only if the Galois group of L/K is solvable.

1.3. On n-dimensional local fields

A complete discrete-valued field K is said to have the structure of an n-dimensional local field
if there is a chain of fields K = Kn,Kn−1, ...,K1,K0 where Ki+1 is a complete discrete valuation
field with residue field Ki and K0 is a finite field. The field K = Kn = Kn−1 is said to be the first
residue field of K, respectively K0 is the last.
Recall some facts about n-dimensional local fields:

• When assuming the last residue K0 is perfect rather than finite, we preserve most of the
properties of n-dimensional local fields.

• Some authors referred to as an n-dimensional local field over a perfect field, rather than a
finite field. But we consider an n-dimensional local field over an arbitrary field K0 as well.

• Let L/K be a finite extension. If K is an n-dimensional local field, then so is L.

Since finite extensions of a finite field are cyclic, by induction (use Corollary 1) we get:

Corollary 3. Every finite Galois extension of a “n-dimensional” local field with the residue
field of the corresponding “1-dimensional” field is finite, has a solvable Galois group.

In “Serre’s sense” a field is said to be quasi-finite if it is perfect and gal (Ksep/K) ≃ Ẑ (Ksep

being a separable closure of K and Ẑ the profinite completion of Z). Every finite quotient of Ẑ is
cyclic (Ẑ is a profinite group as the projective limit of the finite cyclic groups Z/nZ) and thus is
abelian and procyclic). Some authors allow themselves to say Ẑ is cyclic as a topological group,
even if it is not countable since the natural homomorphism Z→ Ẑ has a dense image.

So, Corollary 3 can be immediately generalized (in some sense) to the case when the residue field
of the “1-dimensional” field is assumed to be quasi-finite only, if we allow ourselves to generalize
the notion of “high-dimensional” local fields such way (replacing the finiteness of the residue field
of the “1-dimensional” field by its perfectness). Even the perfectness of the residue field is not
necessary. We can only assume that gal (K

sep
/K) ≃ Ẑ, or more generally prosolvable (K being the

residue field of the “1-dimensional” field K).
But we cannot say that the result remains true when gal (K

sep
/K) is any profinite group.

Indeed, a finite quotient of a profinite group need not be solvable. For this it is easy to construct
a counter-example of course, PSL(2,Fq) is very often simple.
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Corollary 4. Every finite Galois extension of a “n-dimensional” local field, has necessarily a
solvable Galois group if the residue field K of the corresponding “1-dimensional” form K = k((T ))
with k being an algebraically closed field of characteristic zero.

P r o o f. It suffices to use the Corollary of the Proposition IV.2.8 in [18]. Indeed, we have the
Galois group of the algebraic closure of K which is isomorphic to Ẑ. �

Notice that if gal (Ksep/K) ≃ Ẑ (e.g. if K is quasi-finite) then for every supernatural number n,
K has only one Galois extension of degree n. Since Ẑ has a unique closed subgroup of a given index
n, see Theorem 2.7.2 in [14].

2. Absolute groups

Here, we give a whole description of the absolute groups and their classification by residual
characteristic in the general case. More precise facts are found in § 2.4. Then we answer questions
concerning: the nature of these groups.

By absolute groups of K a CDVF, we mean the Galois group G, the inertia group G0 and GW
the wild ramification subgroup of a separable closure Ksep/K.

2.1. Hilbert decomposition of the separable closure

2.1.1. Presentation

For K being any field, consider Ksep/K a separable closure (that is the union of all finite Galois
extensions of K), it is necessarily normal and then Galois. In general Ksep ⊆ Kalg, nevertheless
Ksep = Kalg if and only if K is perfect. Now, if K is a complete discrete-valued field then its
valuation extends uniquely to Ksep but it is no more discrete on it, actually v((Ksep)⋆) = Q;
furthermore, Ksep is not complete for the discussed valuation.

The Galois group gal (Ksep/K) = AutK(Ksep/K), called absolute Galois group of K, is a
compact topological group with respect to the profinite topology. Indeed, going over all finite
extensions L/K, denote by L the set of all finite Galois extensions L of K contained in Ksep/K,
then we can write,

Ksep =
⋃
L∈L L; and gal (Ksep/K) = lim←−L∈L gal (L/K).

Now, the maximal unramified extension Kunr of K in Ksep is the union of all fields L0 (L0 being
the maximal unramified extension of K in L and is Galois over K), we too find that KW , the union
of all fields Lw (where Lw is a tamely ramified Galois extension in L that contains every tamely
ramified extension of K in L), is a tamely ramified extension of K in Ksep. That is we have the
tower:

K ——– Kunr ——– KW ——– Ksep .

Kunr/K and KW /K both are Galois and GW = gal (Ksep/KW ) os the absolute wild ramification
group (maybe trivial), which can be considered as the projective limit of a sequence of corresponding
finite wild ramification p-subgroups (in all cases the ramification filtration always exists). So, GW
is prosolvable even more pronilpotent, but in general not solvable. That is the p-Sylow subgroup
of G0 = gal (Ksep/Kunr) (the absolute inertia group), and a closed normal pro-p-subgroup of
G = gal (Ksep/K). Furthermore, write K

sep
as a separable closure of K, K

sep
= OKunr/MKunr =



36 Akram Lbekkouri

Kunr. Indeed, the residue field of the maximal unramified extension of K is a separable closure of
K. Furthermore, gal (Kunr/K) = gal (K

sep
/K), see [13, ch. II, Proposition 7.5].

Remark 2. It is well known that G0/GW is a torsion free abelian group, the q-Sylow subgroups
of which are free Zq-modules of rank dimFqΓ/qΓ where Γ is the additive value group. The prime
numbers q are necessarily different from the residue characteristic.

2.2. General description

First, let us notice some relatiohship between the unit group and the Galois group. Recall
that the unit group is abelian and the absolute Galois group is not. However we know that there
is some correspondence between the unit group and the Galois group of certain subextension of
Ksep. Indeed, when K is a local field with finite residue field its unit group is isomorphic to the
Galois group of a certain totally ramified abelian extension of K. For example, the extension of Qp
obtained by adjoining all p-power roots of unity has Galois group Z⋆p over Qp. This generalizes to
other base fields using Lubin–Tate formal groups.

If K is any complete discrete-valued field then the unit group O⋆K (as well as OK) is compact if
and only if the residue field of K is finite, so in the case of an infinite residue field the topological
group O⋆K could not be a Galois group since profinite groups are compact.

2.2.1. Classification by residual characteristic

Let us proceed by cases:

1. If char (K) = 0, all Galois extensions are tamely ramified, the inertia group of every finite
extension is cyclic and its wild ramification subgroup is trivial, see the proof of Theorem 1,
hence the absolute inertia group G0 of the absolute Galois group is the profinite completion
of Z i.e. is isomorphic to Ẑ so it is procyclic (by the way abelian), meanwhile GW is trivial.
In consequence the absolute Galois group is a semi-direct product of the absolute inertia
group by the absolute Galois group of the residue field i.e. G ≃ Ẑ ⋊ gal (Ksep/K).
Now, when the residue field K is algebraically closed K

sep
= K, the maximal unramified

extension is trivial, in consequence the absolute inertia group equals the absolute Galois
group G0 = G. So, we find the main result of Theorem 4 that comes.

2. If char (K) = p > 0, the absolute inertia subgroup G0 of G is isomorphic to the extension
of GW by

∏
q¬p Zq, where Zq is the ring of q-adic integers with q 6= p. With Kunr being

the field fixed by G0 in Ksep, Kunr/K is a Galois extension such that gal (Kunr/K) is
isomorphic to GK where GK is the absolute Galois group of the residue field K. That is
G0 = G/GW ≃

∏
q 6=p Zq⋊GK with its Galois action. Indeed, for each integer q prime to p, the

group of q-th roots of unity µq(K
sep

) is cyclic of order q. Consider Q the set of all integers q
prime to p ordered by divisibility, if q′ = q.m by means of the transition map (rising to power
m) µq′(K

sep
)→ µq(K

sep
) we have a canonical isomorphism G0/GW ≃ lim←−q∈Q µq(K

sep
).

The Tate twist of Zq being defined by Zq(1) = µq∞(K
sep

), write, Ẑ′ =
∏
r 6=p Zr, and Ẑ

′(1) =
∏
r 6=p Zr(1), we have that Ẑ′(1) ≃ Ẑ′ the isomorphism being not canonic. Then we get G0/GW ≃∏
r 6=p Zr(1). Since, G/G0 ≃ GK the action by conjugation of GK on G/G0 gives the natural action

on Ẑ′(1).

Furthermore, G/G0 ≃ GK and T the absolute “tame-inertia” subgroup T ≃
∏
r 6=p Zr is a

normal subgroup of G/GW . In other words, we have: (G/GW )/T ≃ GK .
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Remark 3. For q prime, q 6= p and n ∈ N⋆, any cyclic finite extension of K of degree qn, if
it exists, corresponds to a quotient of gal (Ksep/K)/GW that looks like Z/qnZ. Indeed, if L/K is
cyclic of degree qn, then [KWL : KW ] has degree qm with m 6= n. GW being pro-p-group, m = 0,
so L ⊂ KW hence gal (L/K) is a quotient of gal (Ksep/K)/GW .

2.3. Pro-solvability, pro-cyclicity and solvability

2.3.1. When is the absolute Galois group prosolvable?

Remark 4. The absolute Galois group of any Henselian discrete-valued field need not be
prosolvable in general. Indeed, it admits a canonical surjection onto the absolute Galois group of
the residue field given by the action on the maximal unramified extension, so if the latter is not
prosolvable, the former cannot be either. See the following example.

Example 1. The absolute Galois group of Q is a quotient of the absolute Galois group of Q((X)).
The first is not prosolvable so, neither is the last. More generally, if K is any Henselian discrete-
valued field, then the maximal unramified extensionKunr ofK has a Galois group gal (Kunr/K) iso-
morphic to the absolute Galois group of K (i.e. gal (Kunr/K) ≃ gal (K

sep
/K)), since gal (Kunr/K)

is a quotient of gal (Ksep/K) then so is gal (K
sep
/K).

More precisely, we have the following result.

Theorem 2. For any Henselian discrete-valued field,

• the absolute wild ramification group and all wild ramification subgroups are always pronilpo-
tent. Meanwhile,

• its absolute Galois group is prosolvable if and only if this is true for the absolute Galois group
of the residue field.

P r o o f. Indeed, in all cases GW (maybe trivial) is a closed normal pro-p-subgroup of the
absolute Galois group G = gal (Ksep/K) and is then pronilpotent. See § 2.1.1.

Consider first the case of a positive residual characteristic p > 0.
Denote by (v((Ksep)⋆)p/v((K)⋆)) the p-free part of the abelian torsion group

(v((Ksep)⋆)/v((K)⋆)) (a quotient group of Q), then we have the exact sequence see [18]:

1→ (v((Ksep)⋆)p/v((K)⋆))∨ → gal (KW /K)→ gal (K
sep
/K)→ 1,

where, (v((Ksep)⋆)p/v((K)⋆))∨ is the dual of (v((Ksep)⋆)p/v((K)⋆)) in the sense that is the full
character group of

(v((Ksep)⋆)p/v((K)⋆)) i.e.
(v((Ksep)⋆)p/v((K)⋆))∨ = Hom((v((Ksep)⋆)p/v((K)⋆)),K

sep
).

In consequence we have that,

gal (KW /K) is an extension of gal (K
sep
/K) by

(v((Ksep)⋆)p/v((K)⋆))∨ ≃ gal (KW /K
unr) = G0/GW ≃

∏
r 6=p Zr(1).

It follows that all its Sylow subgroups are normal. Then the results follow.
Furthermore, G/G0 ≃ GK and (G/GW )/T ≃ GK ; T the absolute “tame-inertia” subgroup.

See § 2.2.1. Finally, we get that gal (Ksep/K) is prosolvable if and only if this is true for GK the
absolute Galois group of the residue field.

Consider now the case when the characteristic is zero. It still holds, indeed, GW is trivial, so
G0 ≃

∏
r 6=p Zr(1). �
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Remark 5. It is worthy to notice that

• G0 need not be pronilpotent. Indeed, the tame quotient can act by a non trivial outer
automorphisms on the wild subgroup.

• The equivalence in Theorem 2 concerns the prosolvability only but not the solvability. Of
course take for example p-adic field Qp its absolute Galois group is prosolvable (but not
solvable) since every finite Galois extension of it is solvable see Proposition 1, meanwhile the
absolute Galois group of its residue field, Fp, is procyclic.

• Since, any finite quotient of a pronilpotent profinite group is nilpotent. In general, the
absolute Galois group of any Henselian discrete-valued field need not be pronilpotent. See
Theorem 3.

Theorem 3. Every finite normal totally ramified extension of Qp for p being an odd prime
number is either cyclic or nonnilpotent. Moreover if the extension is wildly ramified, then it is
cyclic.

P r o o f. Consider such extension K/Qp with the Galois group G. Suppose first that G is a
p-group and let Φ(G) be its Frattini subgroup. Since G/Φ(G) is an elementary abelian p-group thus
the group G/Φ(G) is cyclic and therefore from a property of Frattini subgroups G is itself cyclic.
Now let the group G be nilpotent, then it is the direct sum of its Sylow subgroups. Consequently
G = G1 × R where G1 is a p-group and the order of R is prime to p. Remark that G1 is the
ramification group of K/Qp. Since KR/Qp is a normal totally ramified extension (KR the fixed
field by the elements of R) and its Galois group GKR/Qp

= GK/Qp
/GK/KR = G/R = G1 is a

p-group it follows from above that G1 is cyclic. Since for p 6= 2 every normal totally and tamely
ramified extension K/Qp is cyclic of degree dividing p− 1, furthermore with M = KG1 we get that
the group GM/Qp

= GKG1/Qp
= G/G1 = R is cyclic of order prime to p. Consequently the group

G = G1 ×R is cyclic. �

2.3.2. When is the absolute Galois group procyclic?

Here we prove the converse of Proposition IV.2.8 in [18].

Theorem 4. For a complete discrete-valued field K, the absolute Galois group is isomorphic
to Ẑ if and only if the residue field K of K is algebraically closed and is of characteristic 0.

P r o o f. If char (K) = p > 0 then the structure of the inertia group is not commutative since
it has non-Galois separable finite extensions (discreteness of the valuation bounds the amount of
p-power roots of unity in the maximal unramified extension when char (K) = 0, so pn-th root
extractions of a uniformizer will be non-Galois for large n; in characteristic p one can use Artin-
Schreier extensions of some tamely ramified extensions to make non-Galois extensions). So if the
Galois group is commutative then char , (K) = 0, so by completeness the field must be K = K((T ))
for a field K of characteristic 0, and then the Galois group is an extension of gal (K

sep
/K) by Ẑ,

but this Ẑ being a closed subgroup of Ẑ can only happen in case of equality, so can only happen
when K

sep
= K, which is to say K is algebraically closed. Nothe that the necessary condition is

proved in Proposition IV.2.8 in [18]. In such case the absolute inertia subgroup equals the absolute
Galois group, G0 = G. �
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2.3.3. When is the absolute Galois group solvable?

If a profinite group G is solvable then it is prosolvable, the converse is not true. Of course prosolvable
does not mean that G(n) = {1} for some finite n (i.e. the derived length of G is finite, G(n) being
the n-th commutator subgroup of G), but it only means that the series G(n) of higher commutator
groups converges to {1}, i.e. every neighbourhood of {1} contains almost all higher commutator
subgroups.

For K being any CDVF, with the current notations, GW = gal (Ksep/KW ) is the absolute wild
ramification group, maybe trivial, otherwise, it is a free pro-p-group of infinite rank, where p is the
residual characteristic. It, is prosolvable, pronilpotent, but in general not solvable. By Corollary 5,
we have G/GW is metabelian if and only if the absolute Galois group of the residue field of K,
G = gal (Ksep/K) is too.

We have also the following properties.

1. If char (K) = p and char (K) = p > 0.

Since a free pro-p-group is either isomorphic to Ẑ when it is of rank 1 otherwise it is non-
solvable, G(p) being the biggest quotient of G which is a pro-p-group. For more details see
§ 2.5 is then non-solvable, neither is G; (indeed, G(p) is a factor group of it). So, we get the
following result.

Let K be any CDVF of characteristic p > 0 the residue field being not algebraically closed
i.e. G is not trivial, (with no further assumption on the residue field). Then the absolute
Galois group of K is not solvable.

2. If char (K) = p and char (K) = 0.
Then GW the absolute wild ramification group is not trivial and a free pro-p-group of infinite
rank. Therefore, GW is not solvable. And consequently G is too.

So, we have the recapitulative result:

Proposition 1. With the current notations, for K any CDVF regardless of its characteristic,
if char (K) = p, then if the absolute Galois group is not trivial it is then not solvable as an abstract
group.

Now, let us prove a nice and necessary result on profinite groups.

Proposition 2. Let N be an abelian profinite group whose automorphisms group Aut(N) being
abelian profinite too. Consider the profinite group (semi-direct product) G = N⋊H. Then we have:
1. If H is metabelian then G′ (derived group) is abelian (i.e. G is metabelian too). Consequently:
2. G is metabelian if and only if H is too.

P r o o f. 1. Let K = CH(N), the centralizer of N within H (the set of elements in H that
commute with every element of N , in the semi-direct product). As the action of H on N by
automorphisms is given by a homomorphism H → Aut(N) the kernel of which is K so H/K
embeds in Aut(N), and as Aut(N) is abelian, H/K is abelian as well. In other words, K contains
H ′ the group generated by the commutators of H, so H ′ centralizes N . Furthermore, since H is
metabelian then H ′ is commutative, knowing that, G′ = N ⋊ H ′, we get N ⋊ H ′ = N × H ′ is
commutative. Hence, G′ is abelian.
2. Consequently G/G′ is commutative. Conversely, if G is metabelian then H is too. �
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Remark 6. Two important remarks are worthy to be noticed:

1. For N a profinite group Aut(N) need not be profinite, see Example 4.4.6 in [14].

2. If Aut(N) is abelian, N need not be abelian too, even when N is a finite group. (There are
nonabelian finite p-groups for each prime p such that the automorphism groups are abelian
see [8].)

Now, from Proposition 2, and since Aut(∏q 6=p Zq) is abelian, we get the following result.

Corollary 5. Let K be any CDVF of characteristic p > 0 with no assumption on K, G being
the absolute Galois group and GW the absolute (wild) ramification subgroup of G. Then, G/GW is
metabelian if and only if the absolute Galois group of K, G is too.

2.4. Recapitulation

Let K being any CDVF with no special assumption on K.

1. Let char (K) = p > 0. The absolute Galois group of K is not solvable, see Remark 7.

2. Let char (K) = 0 and char (K) = p. We have wild ramification, so a non trivial GW which
is not solvable, neither is the absolute Galois group is not solvable as an abstract group, see
Proposition 1.

3. Let char (K) = 0 and char (K) = 0. There is no wild ramification, so the subgroup GW
is trivial, and the absolute inertia group G0 ≃ Ẑ. Now since the absolute Galois group
is isomorphic to a semi-direct product of G0 by gal (K

sep
/K) i.e. gal (Ksep/K) ≃ Ẑ ⋊

gal (K
sep
/K). We may have the three following cases:

(a) If K is algebraically closed then, gal (K
sep
/K) is trivial. So, gal ((K)sep/K) ≃ Ẑ it

procyclic hence abelian, see Theorem 4.

(b) If K is not algebraically closed but can be endowed with a structure of C.D.V.F with
residual characteristic p > 0. we still have the non solvability straightforwardly with
respect to Proposition 1. (Particularly if the field K is a High dimensional local field).

(c) The only case that remains to study, is that when K is not algebraically closed and
cannot be endowed with a structure of C.D.V.F with residual characteristic p > 0. Note
that, for example, if the residue field is Q it is clearly not solvable, whereas if the residue
field is the fixed field of a single element from the absolute Galois group of Q then it is
solvable. (For more details on the solvable profinite groups occurring as absolute Galois
groups see [9].)

Question 1. A question that is staring immediately in the face is: “Is an absolute Galois group
either procyclic or else nonabelian?”

But the answer is surprisingly simple, it is negative! See the following Example 2:

Example 2. Take the field K = C((X))((Y )) with C the field of complex numbers. It is
Henselian according to the discrete Y -adic valuation, (the residue field being C((X))).But the
absolute Galois group G of K is the direct product of two copies of Ẑ, G ≃ Ẑ × Ẑ, hence abelian
but non procyclic.

Note 1. With respect to our study, the result in [9]: “For any commutative field, if the absolute
Galois group is solvable then it is metabelian,” turns out to be more relevant in global case then for
CDVF, except in the single case when char (K) = 0 and char (K) = 0 and no structure of CDVF
with residual characteristic p > 0, can be defined on K.
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2.5. On the p-maximal extension

For details see § 2.2.1.
First case same characteristic. Here let us assume that charK = p > 0.
Let K be any CDVF of characteristic p > 0 with no special assumption on K, the residue

field of K. Write G(p) for the biggest quotient of G which is a pro-p-group. G(p) is the Galois
group of the maximal p-extension K(p)/K i.e. the compositum of all Galois extensions of p-power
order. It is a free pro-p-group of rank > 1, see [19, Chap. II., § 2.2, Corollary 1, p. 75], (i.e.
G(p) is the profinite completion of a free group with respect to a system of normal subgroups the
quotients of which are finite p-groups) such that H1(G(p)) can be identified with K/℘ (K) (where
℘ : x 7→ xp−x) which is a vector space of infinite dimension over Fp (the field of p elements), since
the powers T n (with n ranging over N and prime to p, T being a prime element in the DVF) are
linearly independent over Fp.
First let us recall the following well known results:

Proposition 3. Let L = K((t)) (Laurent Series field) with char (K) = p > 0, K(p)/K being
the maximal p-extension (compositum of all Galois extensions of p-power order), then:

• If K is finite or countable then G(p) = gal (K(p)/K) is a free pro-p-group of countably infinite
rank,

• If K is uncountable then G(p) = gal (K(p)/K) is a free pro-p-groups of uncountable rank
(see [12, Proposition 6.1.7]).

In other words and in classical case more precisely for any local field K with finite residue field we
have:

Theorem 5. Let K be any local field with finite residue field K, let char (K) = p, then G(p)
as well as GW (the wild ramification group) are free pro-p-groups of countably infinite rank.

P r o o f. See Proposition 7.5.1 and [12, Theorem 7.5.10]. �

Remark 7. Since a free pro-p-group is either isomorphic to Ẑ when it is of rank 1 otherwise it
is non-solvable. Then G(p), being a free pro-p-group of rank > 1, is non-solvable, neither is G as
G(p) is a factor group of it.

So, we get the following result:

Theorem 6. Let K be any complete discrete-valued field of characteristic p > 0 with no as-
sumption on the residue field. Then the absolute Galois group of K is not solvable.

Remarks on the q-maximal extension with q 6= char (K): K being some field containing a q-th
root of unity, q being an odd prime number and different from the characteristic of K. Write G(q)
for the Galois group of the q-maximal extension of K, and assume that G(q) has a finite normal
series with abelian factor groups (i.e. solvable). Then the derived subgroup G(q)′ of G(q) is abelian,
moreover, G(q) has a normal abelian subgroup with a pro-cyclic factor group. Furthermore, we
have the following result:

Theorem 7 [22]. Under the current hypotheses and notations the following statements are
equivalent:

• G(q) is solvable.
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• G(q) is metabelian.

• G(q) does not contain a free non-abelian subgroup.

Now, GW is a pro-p-group therefore, the absolute Galois group of K is prosolvabe if and only
if gal (KW /K) is too (a pro-p-group is pro-nilpotent but need not be solvable). See [5].

Second case: mixed characteristic. In this case, Safarevic̆ in [15] showed that for K/Qp an
extension of degree n not containing the p-th roots of unity and if K/Qp is finite of degree n < +∞
then G(p) is a free pro-p-group of rank n + 1. Now if K contains µp (the group of the p-th roots
of unity) then G(p) is a Poincare group of dimension 2 that is a Demuskin group of rank n + 2.
See Theorem 7.5.11 in [12]. So, in both cases if K/Qp is finite of degree n < +∞ then the absolute
Galois group G of K can be generated by n+ 2 elements. See Theorem 7.4.1 in [12].

Furthermore, we have the following:

• By local class field theory, the abelianized group G(p)/G(p)′ is isomorphic to the pro-p-
completion of K⋆ hence it is isomorphic to U1

K × Zp which is not procyclic, of course U1
K ,

the subgroup of 1-units in K⋆ is not procyclic, but it is free abelian for p > 2 and K not
containing the p-th roots of unity.

• Any complete discrete-valued field of residue characteristic p > 0 has an (unramified) pro-
cyclic extension K(p′) generated over K by all the ℓ-th roots of unity for ℓ describing all
natural integers not divisible by p, thanks to Hensel’s Lemma. Of course, from Galois theory
of finite fields, by adjoining such roots of unity at residual level is obtained from doing so
over the prime subfield Fp of the residue field K. For more details see § 3.4.

Note that the unramified extension K(p′)/K maybe trivial. For example if k is algebraically
closed of characteristic p, then k((t)) has no unramified extension.

It is worthy to notice the following result:

Lemma 1. In case if G has G(p) as free pro-p-group of “1 < rank ≤ +∞′′ with (char (K) = p),
we can add that G is a semi-direct product of gal (Ksep/K(p)) by a subgroup isomorphic to G(p).

P r o o f. Indeed, according to Theorem 7.7.4 in [14] “G(p) is a free pro-p-group if and
only if G(p) is projective group (in the category of profinite groups)”, that is it has the lifting
property for every extension, which is equivalent to say that for every surjective morphism from
any profinite group H → G(p) there is a section (a right inverse of the morphism in question)
G(p) → H. So, if f is an epimorphism from G onto G(p) by the projectivity of G(p) there exists
a homomorphism h from G(p) to G such that fh is the identity map on G(p). Hence, G is a
semi-direct product ker(f) and h(G(p)) (which is isomorphic to G(p)). �

2.6. On the maximal unramified extension

Let K be any complete discrete-valued field of residue characteristic p > 0 with K being the
residue field of K, write K

sep
= OKunr/MKunr , it is a separable closure of K; (Kunr being the

maximal unramified extension of K that is the composite of all unramified extensions inside an
algebraic closure of K ).

From [13, ch. II, § 7] in the general case that is when K is assumed to be Henselian only
Kunr contains all roots of unity of order m not divisible by the residue characteristic, because the
separable polynomial Xm − 1 splits over the separable closure of the residue field of K, and hence
also over the maximal unramified extension Kunr of K, by Hensel’s Lemma. Now write K(p′) for
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the (unramified) pro-cyclic extension of K generated by all the ℓ-th roots of unity for ℓ describing
all natural integers not divisible by p, it contains a subextension K(p′′) that is generated over K
by all the q-th roots of unity for q describing all the primes different from p.

The question remains to prove that K(p′) = K(p′′).

First, notice that the question is certainly a question of residue fields, par excellence.

Consider, the largest finite field contained in K, Fℓ (the finite field of ℓ elements) where ℓ is
power of p. Since the finite field Fℓ consists of the (ℓ− 1)-th roots of unity and 0, the said roots of
unity are contained in K. Now, if a complete discrete valuation field has residue field containing Fℓ,
then K contains the (ℓ−1)–th roots of unity (Hensel’s Lemma). This is an if and only if statement.

Now, we can say that K(p′) (defined as above) is included in the residue field of K(p′)/K and
then Fℓ(p

′) is included in the residue field of K(p′)/K too, as well as K(p′′).

(Note that Fℓ(p
′) and Fℓ(p

′′) are no more finite, but infinite fields of characteristic p > 0.)

In other words, we can replace K by Fℓ.

Hence, if we prove that: Fℓ(p
′′) is an algebraic closure of Fℓ. Then we get that Fℓ(p

′) = Fℓ(p
′′)

and consequently that K(p′) = K(p′′).

Since to get a primitive f -th root of unity in a field is equivalent to getting primitive roots of
unity of order equal to each prime-power factor of f , our question amounts to asking if for a given
prime p and prime power ℓr (allowing ℓ = p), does there exist a square-free n not divisible by p
such that p mod n has order divisible by ℓr (so then adjoining a primitive n-th root of unity to Fp
would give an extension of degree divisible by ℓr, and then do this for several such prime powers
to get an extension of Fp generated by prime-order roots of unity such that its degree is divisible
by whatever we want).

But if (Z/nZ)⋆ is going to contain a cyclic subgroup of order ℓr then under the decomposition
(Z/nZ)⋆ =

∏
(Z/qiZ)

⋆ for the prime factors qi of the square-free n we see that one of the projections
(Z/nZ)⋆ → (Z/qiZ)

⋆ is injective on that cyclic subgroup of order ℓr. Hence, if some such n is going
to exist then even a prime n will have to exist which does the job. In other words, the question is
exactly asking this:

Given a prime p and a prime power ℓr (allowing ℓ = p), does there exist a prime q distinct from
p such that p mod q has order divisible by ℓr?

Since (Z/qZ)⋆ is cyclic, the only way it contains an element with order divisible by ℓr is if the
size of this cyclic group is divisible by ℓr, which is to say q = 1 mod ℓr.

Lemma 2. Let p be prime. To generate an algebraic closure of Fp it is enough to adjoin the
q-th roots of unity for all prime q different from p.

Here we must use C̆ebotarev’s Theorem (see, [13, ch. VII, § 13, Theorem 13.4]). Indeed,
C̆ebotarev density Theorem reduces the problem of classifying Galois extensions to that of describ-
ing the splitting of primes in extensions. Specifically, it implies that as a Galois extension of K, L
is uniquely determined by the set of primes of K that split completely in it. A related corollary is
that if almost all prime ideals of K split completely in L, then in fact L = K.

P r o o f of Lemma 2. By a simple application of non-abelian C̆ebotarev result, it is enough
to settle that “For (possibly equal) primes p and ℓ and any integer r > 0 that there are lots of
primes q = 1 mod ℓr such that p mod q has order divisible by ℓr”, (e.g., lots of q = 1 mod 9 such
that 5 mod q has order divisible by 9). Since (Z/qZ)⋆ is cyclic with size divisible by ℓr, a sufficient
condition for an element to have order divisible by ℓr is that it “not” be an ℓ-th power. So one way
to ensure that p mod q has order divisible by ℓr is to make sure that p mod q is not an ℓ-th power.

So consider the non-abelian Galois extension K = Q(ζrℓ , p
1/ℓ) of Q. We have gal (K/Q) →

gal (Q(ζℓr)/Q) = (Z/ℓrZ)⋆ carrying a Frobenius element Frobq onto q mod ℓr, hence C̆hebotarev
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provides many q such that Frobq is nontrivial but q = 1 mod ℓr. For any such q, not only is q
totally split in Q(ζℓr ) but the extension give by adjoining an ℓ-th root of p is “non-trivial ” over
Fq = (Z/qZ)⋆. Hence, Xℓ − p has no root in Fq (since if it has one root then it completely splits,
as Fq contains a primitive ℓ -th root of 1 by design).

Applying this with a fixed p but several ℓrs (for different ℓs) and considering pairwise distinct q s
thereby obtained, it follows that every finite extension of Fp is contained in an extension generated
by prime-order roots of unity, that is exactly what we wish. �

Also, we have the following result:

Proposition 4. Let K be any complete discrete-valued field of residue characteristic p > 0
with no more assumption on the residue field, then K(p′) = K(p′′), namely the (unramified) pro-
cyclic extension of K generated by all the ℓ-th roots of unity for ℓ describing all natural integers
not divisible by p equals the last one generated by all the q-th roots of unity for q describing all the
primes different from p .

P r o o f. The proposition follows from Lemma 2 immediately. �

Remark that if K is finite then Kunr = K(p′) (see [13, ch. II, § 7]). So, we have:

Corollary 6. Let K be any complete discrete-valued field with a finite residue field of charac-
teristic p > 0, then the maximal unramified extension of K is the extension generated over K by
all the q-th roots of unity for all prime q different from p.

Notice that Corollary 6 above is no more true if K is not finite, indeed:
Example 3. If k = Fp(u) with u transcendent on Fp (the field of p elements) and K = k((x)),

then K(v) with vn = u is an unramified extension of K (in the sense that e = 1 , and in the strict
sense if p does not divide n). Obviously, K(v) cannot be generated by a root of unity.

3. On Abhyankar’s Lemma

The aim of this section, is the proof of Theorem 9 that is “some” generalization of Abhyankar’s
Lemma in local case, by use of the following EPP’s Theorem 8 (see [6]).

First, let us recall both the Abhyankar Lemma [7] and EPP Theorem1.

Lemma 3 (Abhyankar, [7]). Let L = L1L2 be the compositum of two finite algebraic extension
fields of K, let P be prime divisor of L, which is ramified in Li/K of order ei (i = 1, 2); then if
e2|e1 and P is tame in L2/K, then P is unramified in L/L1.

Theorem 8. (EPP2) Let L/K be any non-trivial finite extension of discretely valued fields,
it is possible to eliminate wild ramification, that is to ensure that ek′L/k′K = 1 for some finite
extension k′/k, where k is a “constant3 subfield”.

Now, our generalization of Abhyankar’s Lemma in local case can be announced as follows.

Theorem 9. Given any finite Galois extension L/K of complete discrete-valued fields with
a non necessarily perfect residue field of characteristic p > 0. Then there exist two separable
overextensions K ′ and M of K such that:

1EPP Theorem is an existence theorem of a reduced extension but non-constructive.
2Worthy to note that in [10] F.V. Kuhlmann has corrected an error in the proof of Theorem 8 of EPP’s

article [6]. Happily the error does not hurt any of the wording of all results in the said article.
3A subfield k of K is said to be constant, if it is a maximal subfield of K having a perfect residue field.

Note that, such k is canonical in the mixed characteristic case).
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• K ⊂ K ′  M ⊆ LK ′,

• LK ′/K ′ is weakly unramified, so a uniformizer in K ′ remains uniformizer in LK ′.

• M/K ′ is unramified.

• LK ′/M is ferociously ramified, then the Galois group gal (LK ′/M) is a p-group.

P r o o f. First, according to Theorem 8, there exists a finite extension K ′/K such that LK ′/K ′

is weakly unramified, therefore [LK ′ : K ′] = [LK ′ : K ′], i.e. e = 1 and f = [LK ′ : K ′] (where
K ′ is the residue field of K ′). This condition implies that a uniformizer of K ′ remains uniformizer
in LK ′, but the residue extension can be inseparable, furthermore it is not evident that Epp’s
extension K ′/K is separable.

Let M be the maximal unramified (i.e. etale) extension of K ′ that is contained in LK ′.
Characterization of M : The ramification index e(M/K ′) = 1, the residue extension of M/K ′ is
separable so that M/K ′ is unramified, but the residue extension of LK ′/M is purely inseparable
(if LK ′/K ′ is not unramified, see Remark 8).

Note that, if K has characteristic zero, then we can certainly take K ′/K Galois, because if
K ′/K is not Galois, then we can always use its Galois closure instead.

Let T be the maximal tamely ramified subextension of LK ′/K ′. Characterization of T
(see § 5.3): e(T/K ′) is prime to p, e(LK ′/T ) is a power of p, the residue extension of T/K ′ is
separable, and the residue extension of LK ′/T is purely inseparable. Hence if e(LK ′/K ′) = 1, we
have T =M and [LK ′ :M ] is a power of p.

Indeed, more precisely, in case of K ′/K is separable LK ′/M is then weakly unramified and the
residue field extension is purely inseparable i.e. LK ′/M is ferociously ramified (if it is not trivial).
[LK ′ : M ] = [LK ′ : M ]insep. In such case the inertia group of LK ′/M is the full Galois group of
LK ′/M , and this group is a p-group.
In case of K ′/K is purely inseparable, LK ′/K ′ being weakly unramified, then it cannot be the case
that the inertia group of L/K has a prime-to-p part, as tame ramification cannot be eliminated
by an inseparable extension, in other words if the tame ramification index etame > 1, and if K ′/K
is a purely inseparable extension, then LK ′/K has the same tame ramification index, so it cannot
be weakly unramified, this follows from the multiplicativity of the tame ramification index. So,
assuming LK ′/K ′ is weakly unramified, then it is true that LK ′/M is ferociously ramified. The
proposition follows. �

Remark 8. When considering the particular case of perfect residue fields with L/K tamely
ramified we get M = LK ′, that is the Abhyankar’s Lemma.

Remark 9. [26, § 1] If furthermore, we assume the hypothesis [K : K
p
] = p (i.e. K has a p basis

of length 1), we get that LK ′/K ′ is well ramified and then monogenic.

Remark 10. The usefulness of Theorem 9 is alluded to in the construction of a translated weakly
unramified extension that is decomposable in an unramified and a ferociously ramified extensions.
Worthy to note that such extensions arise in some situations in algebraic geometry. They are
almost as important as selected in algebraic setting. For example, the book [4] which considers
local extensions of discrete-valued rings having e = 1 in the more general case, such situations are
called there as with “ramification index 1”.

In a similar question of ours, Abbes and Saito proved the following different Corollary, see
[1, Corollary A.2, p. 31]. However, in their result they eliminate the fierce extension and allow to
get an unfiercely ramified extension. They use the term unfiercely ramified for the case of finite
separable extensions with separable residue extensions.
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Corollary 7 (A.2)(Abbes–Saito). Given any finite separable extension of complete discrete-
valued fields L/K, there exists a tower K ⊆ K ′ ⊆ LK ′, K ′/K finite separable such that
• a uniformizing element of K remains uniformizing element in K ′;
• LK ′/K ′ is unfiercely ramified.

4. Questions in the limelight in the general case

In this section some important and still open questions, that can make a fruitful subject of
research, are given:

• How to completely specify the extensions having ewild > 1 and finsep > 1 for which there
exists a normal subgroup that can ”separate” ferocious from wild ramification? Note that
some steps have been already done by L. Spriano, but the question is still very far from being
entirely solved.

• In his paper [17, Corollary 1.3.4, p. 790] (in the equal characteristic case) and also in [16,
Theorem 2, p. 568] (in the mixed characteristic case), Saito considered the following natural
injective map the refined Swan conductor homomorphism (”rsw” initially defined by Kato)
from the graded quotients piece of the Abbes–Saito filtration into the differentials. To be
more precise, in the general case we have

rsw : Hom(GrK,log/G
r+
K,log,Fp)→ Ω1

OK
(log) ⊗OK

π−rK K
sep
, (4.1)

where K is a complete field with respect to a discrete-valuation, the residue field K being not
necessarily perfect, K

sep
a separable closure of it, GK is the absolute Galois group, r ∈ Q>0,

OK is the ring of integers of K, πK is uniformizer and Ω1
K(log) is the logarithmic differential.

It is likely that the said map is also surjective, if the residue field is perfect. Of course, when
the residue field K is perfect, the right hand side (target) is just a one-dimensional vector
space over the separable closure K

sep
. But there is no canonical basis. So, (4.1) reduces to

rsw : Hom(GrK,log/G
r+
K,log,Fp)→ π−rK ⊗K

sep
.

We cannot say that, the right hand side π−rK ⊗K
sep

is exactly the residual ringMr
Ksep/Mr+1

Ksep

whereMr
Ksep = {x ∈ Ksep, vKsep(x) ≥ r}, andM(r+1)

Ksep = {x ∈ Ksep, vKsep(x) ≥ r + 1} with
vKsep the extension of the normalized valuation vK to Ksep) since Ksep is not discretely
valued. It is more correct to write π−rK ⊗ K

sep
differently as Mr

Ksep/
⋃
ǫ>0Mr+ǫ

Ksep . For a
proof of this result in perfect residue field case and for r ∈ Z>0, it is used to make working
some means of local class field theory, then the case r ∈ Q>0 follows from certain base change
result. The p-adic differential modules being out of the frame of this study, this question will
appear in a next work.

I think we can conjecture that this map remains surjective, even when dropping the hypothesis
of the perfectness of the residue field. I have been told that some experts have pinned down
the exact image of the abelian part. I think if we can run a base change argument to reach
the rest of differential forms on the target, as in the case of perfect residue field, the problem
will be solved. Probably, one needs to avoid the case when p is absolutely unramified in a
mixed characteristic field.
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5. Annexe on Hilbert’s theory in the general case

The transition from the classical to the general case, requires a recall of special notions. So, let
us consult our notes on Zariski–Samuel filtration as well as on Abbes–Saito ramification filtration,
where some subtle and essential differences between the general and the classical cases appear.
Furthermore, some important remarks and some original examples and counterexamples are given.

5.1. Hilbert–Zariski–Samuel filtration

Let L/K be any finite Galois extension of local fields with no special assumption on the residual
extension and G is its Galois group.

Indeed, following Hilbert’s way, in [25, ch. V] Zariski and Samuel define their lower ramification
subgroups filtration as follows.

Then for any positive integer n ≥ 1, they define the n-th ramification group Gn as the subset of
G consisting of all automorphisms σ ∈ G such that σ(x) ≡ x modulo Mn+1

L for every x ∈ OL. Gn
is the kernel of the action on OL/Mn

L. They establish that Gn are invariant subgroups of G, and the
quotients Gn/Gn+1 are abelian for n ≥ 1 [25, Lemma 1, p. 295]. Meanwhile, G0/G1(= GT /GV2 in
Zariski–Samuel notation) need not be abelian in general case [25, ch. V, § 10, p. 297]. Indeed, there
are extensions where finsep > 1 and ewild > 1, for which there does not exist a normal subgroup
which can “separate” ferocious from wild ramification [20, § 1,page 1273]. So a second filtration
Hn was necessary. By use of the homomorphism, we have

λ : G0 → L
⋆
,

σ 7→ λ(σ) = (σ(π)/π) = uσ,

H1 is defined as the kernel of λ, that is the subgroup of all automorphisms σ in G0 such that
uσ ≡ 1 modulo ML; that is such that σ(π) − π ∈ M2

L.
Likewise, Hi (for i > 1) is defined to be the kernel of the homomorphism

λi : Gi → (L,+),

σ 7→ λi(σ) = yσ,

that is the subgroup of all automorphisms σ in Gi such that yσ ≡ 0 modulo ML, where yσ is the
integer yσ ∈ OL satisfying σ(π)− π = yσπ

i (i.e. σ(π) − π ∈ Mi
L).

We have Gi ⊇ Hi for every i ≥ 1 (the equality occurs when the residue fields extension is
separable, see [25, ch. V, § 10, p. 296]). So, σ ∈ Hi implies that σ(x) ≡ x mod Mi+1

L for every
x ∈ OL. Hi is then the kernel of the action onML/Mi

L for i ≥ 1.
Intertwining both two filtrations of the Galois group with ramification groups, they used to

define a unique filtration G(n,i) such that Gn = G(n+1,0) and Hn = G(n,1), as follows: for n, i ∈ N
the (n, i)-ramification group G(n,i) of G = gal (L/K) is the subgroup of those K-automorphisms of

L that induce the identity onMi
L/Mn+i

L , i.e.

G(n,i) = {σ ∈ G; vL(σ(x)− x) ≥ i+ n∀x ∈ Mi
L} = {σ ∈ G;∀x ∈Mi

L;x− σ(x) ∈ Mn+i
L }.

Since G(n,i) is the kernel of the homomorphismG −→ Aut(Mi
L/Mn+i

L ) it is then a normal subgroup
of G. Then we get, in the Zariski-Samuel filtration,

Gn = G(n+1,0) and Hn = G(n,1).

The G(n,i) with i > 0 makes sense, in the non-classical case only. Now, in the classical sense, the Gn
meet the usual ramification groups, see [18]. Explicitly, for n ≥ −1 the n-th (“lower”) ramification
subgroup is defined as Gn = {σ ∈ G; iG(σ) ≥ n+ 1}.
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Consequences for the classical case:

The usual ramification subgroups in the classical case, are (Hn = Gn)n≥1, and G1 is called
ramification group. From this Serre in [18] obtained the upper filtration by use of the Hasse-
Herbrand functions φ defined by:

φL/K(x) =

∫ x

0

dt

|G0 : Gt|
,

and its inverse ψ (remember that ϕ and φ are only defined in case when the residue extension is
separable). The upper (Gn)n≥1 is related to the lower filtration by the formula (Gn = Gφ(n))n≥1

and (Gn = Gψ(n))n≥1. Note that the upper one behaves well under quotient subgroups; meanwhile,
the lower one behaves well when taking subgroups.

The i such that Gi 6= Gi+1 (resp. Gi 6= Gi+1) are called lower (resp. upper) breaks.

5.2. Outline of Abbes–Saito ramification filtration

Let L/K be a finite Galois extension of local fields, then respectively we will write GK and GL
for the absolute Galois groups of K and L. It is worthy to note that a separable closure is not
complete as valued field in general.Nevertheless, a filtration on the absolute Galois group can be
defined by taking inverse limit, as well as breaks.

Indeed, using techniques of rigid geometry, A. Abbes and T. Saito in [1] defined two decreasing
filtrations, the first (GaK)a∈Q≥0

and the second by logarithmic ramification groups (Galog,K)a∈Q>0

(closed normal subgroups of GK). The filtration coincides with the classical upper numbering ram-
ification filtration shifted by one, if the residue field of K is perfect in the sense that Ga−1

K = Galog,K
agrees with the upper numbered ramification filtration labeled by a. It is noteworthy that the
filtration is left continuous and their jumps are rational.

For a real number a > 0, they define Ga+ to be the topological closure of Ga+K = ∪b>aGbK and
Ga−K = ∩b<aGbK , where b denotes a rational number. Then the following holds,

• Ga−K = GaK if a ∈ Q , and Ga−K = Ga+K if a not in Q. It holds for the logarithmic too.

• The two filtrations by ramification groups are related as follows:

Let j > 0 be a rational number, then we have the following inclusions GjK ⊃ GjK,log ⊃ Gj+1
K ,

see [1, Proposition 3.15]

• G1
K is the absolute inertia subgroup of GK ; and G1+

K the absolute wild inertia group of GK .

• From the filtration above they define for any Galois extension L over K, the ramification
filtration of the Galois group gal (L/K) by GaK/(G

a
K ∩ GL). As a consequence, in the more

general case, we have:

• G1
K/(G

1
K ∩GL) is the inertia subgroup of gal (L/K).

• G1+
K /(G1+

K ∩GL) is the wild inertia subgroup of gal (L/K).

• #(G1+
K /(G1+

K ∩GL)) = ewildfinsep.

• If L/K finite unramified extension then GaK = GaL.

• If L/K finite tamely ramified extension with ramification index m then Gmalog,L = Galog,K .

Furthermore, the logarithmic ramification filtration groups satisfy the following theorem [24, The-
orem 3.7.3].
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Theorem 10 [24]. Assume that the residue field is of characteristic p > 0. Then the sub-
quotients groups of the logarithmic ramification filtration Galog,K/G

a+
log,K are abelian and annulated

by p if a ∈ Q>0 and are trivial if a is irrational.

Remark 11. It is worthy to note that we cannot make the filtration of Hilbert–Zariski–Samuel
type and the last one of Abbes–Saito corresponding to each other, in a satisfactory way for example
by use of some means like the well-known Hasse–Herbrand ϕ,ψ functions. Furthermore, the basic
ramification degrees do not seem to work well as when the residue field fails to be perfect. Of
course, the unramified part and the tame part are still okay, but it is not practical to separate the
wild part from the residually inseparable part. Some attempts have been done, trying to describe
ramification using more complex objects as ramification invariants. E.g. I.B. Zhukov used the
“cutting-by-curves” method by considering the Abbes–Saito Swan conductor which is defined by
looking at the generic points of the divisors. For details see [27] and [28], especially the results
Theorems 2.2 and Theorems 2.4 in [27], and Remark 2.5.3 in [28]. But these notions are very far
from our study.

5.3. Ramification cases

Consider a finite Galois extension L/K of local fields with Galois group G = gal (L/K), the
residue extension L/K being of characteristic p > 0 and not necessarily separable.

Write Kunr,L = L∩Kunr (for the maximal unramified extension of K in L i.e. the inertia field
of L/K), and G0 = gal (L/Kunr,L) for the inertia group of L/K; so

G/G0 = gal (L/K)/gal (L/Kunr,L) ≃ gal (Ksep,L/K),

where Ksep,L = L ∩Ksep
, K

sep
being a separable closure of the residue field K.

Consider the ramification index e of the extension L/K, and f as its residue degree. Then we
can write e = etame.ewild and f = fsep.finsep. So, we have

fsep = #(G/G0) = [Ksep,L : K] = [L : K]sep; finsep = [L : Ksep,L] = [L : K]insep.

L/K is unramified if fsep is arbitrary and finsep = e = 1.
L/K is tamely ramified if fsep is arbitrary, e prime to p and finsep = 1.
L/K is completely ramified if fsep = 1, finsep is arbitrary and e is a power of p.
L/K is totally ramified if fsep = finsep = 1 and e is arbitrary; in such case L = K.
L/K is totally and wildly ramified if fsep = finsep = 1 and e is a power of p.
L/K is weakly unramified if fsep, finsep are arbitrary and e = 1.
L/K is ferociously ramified or fierce extension if finsep > 1 is arbitrary and e = fsep = 1.

Note 2. “If L/K is fierce extension then it is weakly unramified, so that K contains a prime
element of L.”

5.4. Some well-known formulas and theorems (classical case)

L = K(α)/K being a finite Galois extension with Galois group G, the residue extension L/K
being separable of characteristic p > 0, we write f for the minimal polynomial of α.

Then we have the following useful summary of formulas and theorems, see for example [18,
Ch. IV]. Meanwhile, for the general case, in [20, Examples 3.3, 3.4 and 8.1] beautiful counterex-
amples are given.
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1. Hilbert’s formula

vL(DL/K) =
∑

σ 6=I iG(σ) =
∑

i≥0(|Gi| − 1) = vL(f
′(α)),

where DL/K is the different, |Gi| the order of the i-th lower ramification group, and iG the function:

iG : G→ Z ∪ {∞},
σ 7→ iG(σ) = inf

x∈O∗
L

vL(σ(x) − x) for σ 6= 1.

2. Herbrand’s theorem

Let L/K be a finite Galois extension and L′/K a Galois subextension. Write G = gal (L/K)
and H = gal (L′/K), H is then a normal subgroup of G naturally.

Theorem 11 (Herbrand). For any i ≥ −1 we have,

(G/H)i = GiH/H, i.e. (G/H)i = GψL/L′ (i)H/H,

see [18, Proposition IV.3.14 and Lemma IV.3.5]. Then we straightforwardly can deduce the follow-
ing result

Corollary 8. If H is itself a ramification subgroup of G, i.e. H = Gj for some j. Then

(G/H)i =

{
Gi/H, if i ≤ j,
{1}, if i ≥ j.

An important consequence of Herbrand’s Theorem is that we can define upper ramification filtration
{gal (L/K)i}i for an infinite Galois extension L/K as inverse limit as follows,

gal (L/K)i = lim←−L′/K finiteL′⊂Lgal (L
′/K)i.

In particular, we can define an upper ramification filtration on the whole absolute Galois group as
it is done in § 1.2.

3. Congruence formula The integers i such that

Gi 6= Gi+1, i.e. the breaks = lower ramification numbers, (5.1)

are congruent modulo p, see [18, Proposition IV.2.11]. This formula is no more true in every
well-ramified extension, see § 1.5 that comes.

4. Hasse–Arf theorem

Theorem 12 (Hasse–Arf). Let L/K be a finite abelian residually separable extension of any
local fields. If i is such that Gi 6= Gi+1 then φ(i) is an integer.

5.5. On the monogenic case (a step in the generalization)

L/K is said to be monogenic if OL is generated by only one element as OK -algebra, the
generator being not necessarily uniformizer, in general.

The Hasse–Arf theorem, Herbrand’s Theorem, more generally Sen’s theorem, and Hilbert’s
formula which are true under the strong hypothesis “L/K separable” (see for example [18]); however
remain true in the more general case when “L/K is assumed to be monogenic” see [3, 20, 23, 24]
for Hasse–Arf theorem.

Except the Congruence formula (5.1) that requires necessarily the separability of L/K see § 5
in [20].

Furthermore, from [20, Theorem 5.1] we have:
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Definition 1. A well-ramified extension L/K is defined as a finite Galois and completely ram-
ified extension satisfying one of the three equivalent conditions:

• L/K is monogenic,

• Hilbert’s formula holds,

• Herbrand’s theorem holds for any normal subgroup.

Remark 12. Note here the following important facts due to the monogenity.

• If L/K is monogenic then L/K is too, but the converse is not true, see Counter-example 1.

• If L/K is separable then L/K is monogenic, the converse is not true for a counter-example
take a Galois extension of degree p such that the residue fields extension is purely inseparable,
see Counter-example 1.

• In monogenic case, even by assuming that the residue extension is separable, the generator of
the respective DVR need not be a uniformizer unless we are the setting of a totally ramified
extension. If L/K is not totally ramified, it’s very easy to give counter-examples.

• If L is the compositum of two linearly disjoint extensions L1 and L2 such that the residue
extensions L1/K and L2/K are separable the compositum L/K need neither be separable
nor monogenic. A main example arises as follows, see Counterexample 1.

Counterexample 1. Let K be any complete discretely valued field of characteristic 0, containing a
primitive p-th root of unity with residue field K of characteristic p > 0. Write π for a uniformizer
of K and consider L1 = K( p

√
πu), where u has a valuation zero, u is not a p-th power in K

and does not reduce to a p-th power in K, and L2 = K( p
√
π). Then each is totally ramified of

degree p; L1/K and L2/K are both trivial (so separable). Also p
√
πu and p

√
π are both roots of

f (X) = X2p − π(1 + u)Xp + π2u which is irreducible over K according to Schönmann criterion,
so p
√
πu and p

√
π are linearly independent over OK . The compositum L = L1.L2, is an elementary

abelian extension of degree p2 since its ramification index is p and the residue field is L = K( p
√
u),

which is inseparable of degree p over K. Then we get L/K monogenic since it is of prime degree.
Prove that L/K is not monogenic.

We know that if Herbrand Theorem does not hold then the extension is not well ramified and
then it is not monogenic, see [20, Lemma 5.2]. That is if there exists a normal subgroup H of G,
such that iG/H(τ) 6= 1/e(L/LH )

∑
σ>τ iG(σ), where iG(.) is the Artin ramification number.

Let H =< σ > be the cyclic group of order p such that σ(u1/p) = ζ.u1/p, where ζ is a primitive
p-th root of unity. So LH = K(π1/p) with L/LH is ferociously ramified meanwhile LH/K is wildly
ramified both of prime degree and has each a single Artin ramification number. Also char (K) = 0,
L/LH is ferociously ramified and v(u) = 0 implies that iG(σ) = sG(σ) where sG(.) is the Swan
ramification number.

So iG(σ) = sG(σ) = vL(ζ − 1) = eL/(p − 1) for every σ. Since LH/K is wildly ramified and
v(a) = 1 hence iG(τ) = sG(τ) + 1; if τ is not the identity. That is

iG(τ) = eLH/(p − 1) + 1, eLH = pe, e = vK(p)

the absolute ramification index and eL/LH = 1. In this case we have

1/e(L/LH )

∑

σ>τ

iG(σ) = 1/e(L/LH )

∑

σ∈H

iG(σ),

so, Herbrand does not hold. Then OL is not monogenic over OK .
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• The separability of a finite extension does not imply the separability of the residue extension.
Indeed, it easy to construct a Counterexample 2.

Counterexample 2. Let K be CDVF with K imperfect. Regardless of the characteristic of K,
consider a ∈ K \Kp

, thus Xp − a is irreducible in K[X]. Take

f(X)=Xp−bX−a

with b ∈ MK (MK is the maximal ideal of OK) requiring that

b 6= pp(a/(1 − p))(p−1).

Here f is separable and has reduction Xp − a ∈ k[X]. Here L = K[X]/(f) is a degree p separable
extension of K and its subring O0 = OK [X]/(f) is a domain that is OK-finite and O0/πO0 =
k[X]/(Xp − a), is a field where an uniformiser π ∈ OK . To prove that O0 is a DVR see the proof
of Lemma 4. We get O0=OL and O0/M0=l, is the residue field of L and eL/K=1 because the
chosen uniformiser of OK is an uniformiser of OL too. L/K is a degree p separable extension with
ramification index eL/K=1 and the residual extension l/k is purely inseparable of degree p so L/K
is not unramified. �

Assume K being CDVF with imperfect residue field K. Regardless of the characteristic of K,
consider any irreducible and separable polynomial f of K[X] lying above Xp− a with a ∈ K \Kp

.
Then we have,

Lemma 4. For θ a root of f , L = K(θ)/K is separable extension, meanwhile, its residue
extension K( p

√
a)/K is inseparable.

P r o o f. Xp − a is separable, since it is irreducible, adjoining a root of f (which is separable
since irreducible) to get L = K(θ) = K[X]/(f) gives a degree p separable extension with K( p

√
a)/K

inside the residue field. Now, its subring O0 = OK [X]/(f), is a domain that is OK -finite and
O0/πO0 = K[X]/(Xp − a), is a field where π ∈ OK denotes an uniformiser. Now prove that O0

is a DVR or equivalently that O0 is the integral closure of OK in L. (That is true, indeed, if
O is a DVR and f in O[X] has an irreducible reduction, then O[X]/f is again a DVR). More
precisely, M0 = πO0, is a principal maximal ideal in O0. This is the only maximal ideal of O0

because any nonzero prime ideal of O0 intersects OK in its unique nonzero prime ideal πOK and
so contains πO0. It follows that O0 must be DVR. Then the fundamental inequality implies the
residue field is exactly K( p

√
a)/K and the ramification index is 1. So, you have a separable L/K

with purely inseparable residue extension. �

Note 3. The hypothesis “f irreducible and separable polynomial” is necessary if char (K) > p.
Of course in such case irreducible doesn’t mean separable.

Remark 13. Much more, the solvability of a finite extension does not imply the separability of
the residue extension. Indeed, see the following example.

Example 4. Consider k = Fp((T1)), and K = k((T2)), and α to be a root of the Artin–Schreier

equation f(X) = Xp−T p−1
2 X−T1 (f is obviously separable since f ′ 6= 0) and write L = K(α). The

roots of f are α + nT2, with 0 ≤ n ≤ p − 1, thus the Galois group of L/K is solvable. Therefore,
α ∈ OL (the ring of integers of L) hence is integer over k[[T2]] (the ring of integers of K), so
modulo the maximal ideal we have αp = T1, the residue extension is then k( p

√
T1)/k, which is

purely inseparable. �



Local extensions with imperfect residue field 53

REFERENCES

1. Abbes A., Saito T. Ramification of local fields with imperfect residue fields. Amer. J. Math., 2002.
Vol. 124, No. 5, P. 879–920.

2. Abrashkin V.A. Towards Explicit Description of Ramification Filtration in the 2-dimensional Case.
Prepint of Nottingham Univ., 2000. No. 00-01.

3. Borger J. A monogenic Hasse–Arf theorem. In: Proc. of the Conf. on Ramification Theory for Arithmetic
Schemes, Luminy, 1999.
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