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Abstract: The nonlinear dynamical control system with uncertainty in initial states and parameters is
studied. It is assumed that the dynamic system has a special structure in which the system nonlinearity is due
to the presence of quadratic forms in system velocities. The case of combined controls is studied here when both
classical measurable control functions and the controls generated by vector measures are allowed. We present
several theoretical schemes and the estimating algorithms allowing to find the upper bounds for reachable sets
of the studied control system. The research develops the techniques of the ellipsoidal calculus and of the theory
of evolution equations for set-valued states of dynamical systems having in their description the uncertainty of
set-membership kind. Numerical results of system modeling based on the proposed methods are included.

Keywords: Control systems, Nonlinearity of quadratic type, Uncertainty, Impulse control, Ellipsoidal cal-
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Introduction

The paper is devoted to the state estimation problems for nonlinear control systems with
uncertainty in description of their models. One of the central places in the theory of optimal control
of dynamical systems is occupied by questions of constructing the corresponding reachable sets of
the studied controlled systems, that is, the sets of all system positions obtained at a given time
from a fixed initial state (or a set of such states) when all admissible controls are applied. Analysis
of reachable sets and the construction of their different estimates may greatly facilitate the solution
of many theoretical and applied problems of mathematical control theory. For linear controlled
systems, the problem of describing and finding reachable sets has been considered in many papers
and numerous ideas were involved to obtain external and internal estimates of reachable sets, basing
on the corresponding versions of the ellipsoidal and polyhedral calculus [7, 8, 24, 26, 28, 35]. Note
that even for linear systems studied at that time, the assumption that there are different kinds
of uncertainties in describing the dynamics of systems significantly complicated the problem and
transferred it to the class of nonlinear optimization problems.

A new stage in the development of approaches to solving nonlinear problems of estimating the
states of control systems with uncertainty was carried out in connection with important researches
in the field of set-valued analysis and in the theory of differential inclusions, including studies of
sets of trajectories of control systems or differential inclusions with additional state constraints (the
viability theory) [2, 27, 29, 32, 36, 37].

In this paper we study the case of a set-membership uncertainty [26–29, 32, 35] when only
upper bounds on uncertain items are known and any additional probability characteristics for un-
certainties are not done. Under such informational assumptions it is not possible to construct
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precisely related reachable sets of the dynamical control system but instead we may find external
and (or) internal estimating sets for them using simple canonical structures (for example, ellipsoids
or polyhedra). The proposed approaches are motivated by the development of the theory of un-
certain control systems and can be used in further researches related to filtering, forecasting and
smoothing problems for mechanical systems described by stochastic differential equations, multi-
step equations and inclusions, these results may help in solving a range of optimization problems
for nonlinear controlled systems with impulse control, state constraints and uncertainty, they may
be used also in the study of irregular problems of optimal control and in studies of resistance
movements systems with generalized controls and with a delay uncertainty.

The approaches presented in this paper are based on main ideas of early research [2, 9, 27]
and are further developed for a different and more complicated classes of uncertain systems, the
research continues and develops the results of the most recent studies [8, 11, 13, 15–19] for a wider
class of control systems. Here we study the problems of constructing and estimating reachable sets
of dynamical systems with impulse control [10, 12] and with uncertainty in the parameters of the
systems dynamics and in the specification of its initial state. We further develop here the approaches
related to consideration of bilinear uncertainties using the Minkowski gauge functionals [20].

Here we consider a more complicated case of a dynamic system than in papers [10, 12, 21], and
we assume here that the impulse controls in the system are vectorial, which somewhat complicates
both the previous analysis of the system dynamics and the corresponding proposed constructions,
as well as the basic algorithm for constructing external estimates of reachable sets. Note that
the issues of constructing internal ellipsoidal estimates of reachable sets of control systems with
generalized (impulse) controls in both scalar and vector cases are much more complicated and are
under development.

The results given here may be used in model-based advanced control of complex systems, such
as adaptive control, robust control, sliding-mode control, H-infinite control, etc. [1, 3–6, 23, 25, 30].
Methods and schemes proposed in the paper possess such features as reliability, sufficient simplicity
of computational algorithms and relatively high speed of their processing, so these schemes allow
using them in real time e.g. in problems of robust control, stability, problems of control synthesis
for dynamic systems of various types including problems of forecasting financial results in economic
planning and other fields.

The paper is organized as follows. We introduce first some notations and definitions and
formulate the main problem in Section 2. The approach related to upper estimates of reachable
sets in nonlinear case under study is described in Section 3. Example illustrating the results is
given in Section 4. Finally, some concluding remarks are given.

1. Problem formulation

In this section we introduce some basic notations and constructions and formulate further the
main problem of state estimation for nonlinear control system with uncertainty and with impulsive
controls of vector type.

1.1. Main notations

Let Rn denote the n–dimensional Euclidean space and x′y is the usual inner product of vectors
x, y ∈ R

n (the prime corresponds to a transpose), ‖x‖ = (x′x)1/2. We will use also other norms of
x = (x1, . . . , xn) ∈ R

n, namely ‖x‖p = (
∑n

i=1 |xi|
p)1/p for 1 ≤ p <∞. The symbol comp R

n stands
for the variety of all compact subsets A ⊂ R

n and conv R
n corresponds to a variety of all compact

convex subsets A ⊂ R
n.
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Denote by clconv R
n the set of all closed convex subsets A ⊆ R

n. Let R
n×m be the set of all

n × m-matrices, diag {v} denotes a diagonal matrix with elements of a vector v standing at the
main diagonal (and with zeros at other places). Let I ∈ R

n×n be the identity matrix and Tr (A)
be the trace of n× n-matrix A = {aij} (the sum of its diagonal elements, Tr (A) =

∑n
i=1 aii).

We denote also as B(a, r) = {x ∈ R
n : ‖x− a‖ ≤ r} the ball in R

n with a center a ∈ R
n and a

radius r > 0 and denote as

E(a,Q) = {x ∈ R
n : (Q−1(x− a), (x− a)) ≤ 1}

the ellipsoid in R
n with a center a ∈ R

n and with a symmetric positive definite n× n-matrix Q.

1.2. Problem description

Consider the following impulsive control system (t0 ≤ t ≤ T , x ∈ R
n)

dx(t) =
(

A(t)x(t) + x′Bx · d+ u(t)
)

dt+ Cdv(t),

x(t0 − 0) = x0 ∈ X0 = E(a0, Q0).
(1.1)

Here a matrix A(t) is unknown but satisfies the constraint

A(t) ∈ A = A0 +A1, t0 ≤ t ≤ T,

where A0 is a given matrix and

A1 =
{

A={aij}∈R
n×n : aij = 0 for i 6= j, and

aii = ai, i = 1, . . . , n, a = (a1, . . . , an), a′Da ≤ 1
}

,
(1.2)

with D ∈ R
n×n being a given symmetric and positive definite matrix.

We assume that the impulsive part v : [t0, T ] → R
m of the control pair {u(·), v(·)} in (1.1) is of

bounded variation on [t0, T ], with

Var
t∈[t0,T ]

v(t) = sup
{ti}

{

k
∑

i=1

||v(ti)− v(ti−1)||1 : ∀ti : t0 ≤ t1 ≤ . . . ≤ tk = T
}

≤ µ, (1.3)

where µ > 0 is given. Denote the above class of functions v(·) as V.
We assume also that u(t) ∈ U = E(â, Q̂) where the center â and the matrix Q̂ of the ellipsoid U

are known.
The guaranteed estimation problem consists in describing the set

X (t) = X (t; t0,X0) =
{

x ∈ R
n : ∃ x0 ∈ X0, ∃ u(·) ∈ U , ∃ v(·) ∈ V, ∃ A(·) ∈ A1

such that x = x(t) = x(t; u(·), v(·), x0, A(·))
}

.

of solutions to the system (1.1)–(1.2).

The problem studied here is to construct external ellipsoidal estimates for reachable sets X (t)
(t0 < t ≤ T ) basing on recent results and on related techniques of the estimation theory for
control systems with uncertainty and nonlinearity. We investigate a more complicated case than
in [15, 17] and use here the technique recently developed in [19]. The main ideas used to solve
the estimation problem go back to the results and reparametrization procedure of the papers [10,
31], with corresponding changes and improvements caused by the presence of vector measures
(generalized controls).
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2. Problem solution

The main result of the paper is connected with a special scheme of transition from a system
of impulse type to a control system (or the corresponding differential inclusion) that does not
contain impulse control components. Note that the proposed construction differs from the schemes
of [10, 12, 21] where the case of scalar impulse components of control components was investigated.

2.1. Auxiliary constructions: impulsive differential inclusions

Consider a differential inclusion of the following type

dx(t) ∈ F (t, x(t))dt +C(t)dv(t), (2.1)

with the initial condition
x(t0 − 0) = x0, x0 ∈ X0.

Here we use the notation

F (t, x) = f(t, x, U) =
⋃

{f(t, x, u) : u ∈ U}.

Definition 1 [33]. A function x[t] = x(t, t0, x0) (x0 ∈ X0, t ∈ [t0, T ]) will be called a solution
(a trajectory) of the differential inclusion (2.1) if for all t ∈ [t0, T ] the following equality holds true

x[t] = x0 +

t
∫

t0

ψ(t)dt +

t
∫

t0

C(t)dv(t), (2.2)

where ψ(·) ∈ Ln
1 [t0, T ] is a selector of F , that is ψ(t) ∈ F (t, x[t]) a.e. (the last integral in (2.2) is

taken as the Riemann–Stieltjes integral).

Following the scheme of the proof of the well-known Caratheodory theorem we can prove the
existence of solutions x(·) = x(·, t0, x0) ∈ BV n[t0, T ] for all x0 ∈ X0 where BV n[t0, T ] is the space
of n-vector functions with bounded variation at [t0, T ].

2.2. Discontinuous time replacement

Let us introduce a new time variable [10, 31, 34],

η(t) = t+

t
∫

t0

||dv(t)||1,

and a new state coordinate τ(η) = inf {t : η(t) ≥ η}. Consider the following auxiliary differential
inclusion

d

dη

(

z
τ

)

∈ H(τ, z) (2.3)

with the initial condition

z(t0) = x0, τ(t0) = t0, t0 ≤ η ≤ T + µ.

Here we denote

H(τ, z) =
⋃

0≤ν≤1

{

ν

(

C∗

0

)

+ (1− ν)

(

Az + z′Bz · d+E(â, Q̂)
1

)}

, (2.4)
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where C∗ = co {c(1), . . . , c(m)} and c(i) ∈ R
n (i = 1, . . . ,m) are columns of the matrix C ∈ R

n×m.
Under the above assumptions on the impulsive system we have two lemmas which will be used

in further analysis.

Lemma 1. The map H(τ, z) is convex and compact valued

H : [t0, T + µ]× R
n → convRn+1

and H(τ, z) is Lipschitz continuous in both variables τ , z.

P r o o f. The required properties can be easily derived from the specific type of set-valued
map H(τ, z) defined above. �

Remark 1. Note that the design of the auxiliary differential inclusion (2.3) is different from
the scheme used in [14]. The reason is the assumption of a vector type for impulse controls
in (2.3)–(2.4). We also indicate that in the paper [14] a different type of constraints on undefined
elements of the matrix A1 (in (1.2)) was investigated.

Denote w = {z, τ} the extended state vector of the system (2.3) and consider trajectory tube
of this differential inclusion (which has no measure or impulse components):

W (η) =
⋃

w0∈X0×{t0}

w(η, t0, w
0), t0 ≤ η ≤ T + µ.

The next lemma explains the construction of the auxiliary differential inclusion (2.3)–(2.4).

Lemma 2. The set X (T ) is the projection of W (T + µ) at the subspace of state variables z:

X (T ) = πzW (T + µ).

P r o o f. The proof of this result can be carried out according to the scheme of the paper
[10], with a slight modification due to a more complicated case of the vector measure dv(t) in (1.1)
considered here. �

Denote as hM (z) the Minkowski (gauge) functional for a set M ⊂ R
n [9, 20],

hM (z) = inf{t > 0 : z ∈ tM, x ∈ R
n},

and let W (t; t0,X0 × {t0}) be a trajectory tube of the inclusion (2.3)–(2.4).
Denote as E(c̃, Q̃) the ellipsoid with minimal volume and such that

C∗ ⊆ E(c̃, Q̃). (2.5)

Theorem 1. For any σ > 0 the following inclusion is true

W (t0 + σ) ⊆ W(t0, σ, ν) + o(σ)B∗(0, 1), lim
σ→+0

σ−1o(σ) = 0,

where

W(t0, σ, ν) =





E
(

a∗(σ, ν), Q∗(σ, ν)
)

t0 + σ(1− ν)



 ,

a∗(σ, ν) = a0 + σ
(

(1− ν)(a0
′Ba0 · d+ k2d+ â) + νc̃

)

,

Q∗(σ, ν) = (p−1 + 1)Q̃(σ, ν) + (p + 1)σ2Q̂∗
ν ,

(2.6)
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with E(âν , Q̂
∗
ν) being the ellipsoid with minimal volume such that

νE(c̃, Q̃) + (1− ν)E(â, Q̂) + 2(1 − ν)d · a′0B · E(0, k2B−1) ⊆ E(âν , Q̂
∗
ν),

âν = νc̃+ (1− ν)â,

and where the function Q̃(σ, ν) in (2.6) is defined as follows,

Q̃(σ, ν) = diag {(p−1 + 1)σ2a20i + (p+ 1)r2(σ) : i = 1, . . . , n}, (2.7)

with
r(σ) = max

z
||z|| · (h(I+σA)∗X0

(z, σ))−1, (2.8)

and p = p(σ, ν) is the unique positive root of the equation

n
∑

i=1

1

p+ λi
=

n

p(p+ 1)
,

with numbers λi = λi(σ, ν) ≥ 0 (i = 1, . . . , n) satisfying the equation |Q̃(σ, ν)− λσ2Q̂∗
ν | = 0.

P r o o f. In order to calculate the upper estimate for W [t0+σ] we use first the inclusion (2.5)
and therefore we may weaken the estimate (2.3)–(2.4) in the following way, considering the modified
differential inclusion

d

dη

(

z
τ

)

∈ H∗(τ, z)

with the initial condition

z(t0) = x0, τ(t0) = t0, t0 ≤ η ≤ T + µ,

where the set-valued map H∗(τ, z) is defined as

H∗(τ, z) =
⋃

0≤ν≤1

{

ν

(

E(c̃, C̃)
0

)

+ (1− ν)

(

Az + z′Bz · d+E(â, Q̂)
1

)}

.

Estimating the sum of two ellipsoids νE(c̃, C̃) and (1 − ν)E(â, Q̂) in the above formula (see,
e.g., related procedures in [7, 28]) and using the results of Theorem 3 in [22] we come to the
relations (2.6)–(2.8). �

Remark 2. To determinate a better estimate of the reachable set W(t0 + σ) we may in-
troduce a small parameter ε > 0 and embed the set W(t0, σ, ν) into a nondegenerate ellipsoid
Eε

(

w(t0, σ, ν), Oε(t0, σ, ν)
)

:

W(t0, σ, ν) ⊆ Eε

(

w(t0, σ, ν), Oε(t0, σ, ν)
)

,

w(t0, σ, ν) =

(

a∗(σ, ν)
t0 + σ(1− ν)

)

, Oε(t0, σ, ν) =

(

Q∗(σ, ν) 0
0 ε2

)

.

For small ε > 0 we will have

W(t0, σ) ⊂ Wε(t0, σ) =
⋃

0≤ν≤1

Eε

(

w(t0, σ, ν), Oε(t0, σ, ν)
)

⊂ Eε(w
+(σ), O+(σ)),

lim
ε→+0

h(W(t0, σ),Wε(t0, σ)) = 0,
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here h(A,B) is the Hausdorff distance between compact sets A,B ⊂ R
n.

Further as the next step of the describing estimation procedure we may use the algorithms
developed in [21] and applying them we construct the upper estimate Eε(w

+(σ), O+(σ)) for the
union of ellipsoids Wε(t0, σ). Thus we get the ellipsoidal estimate of the reachable set W(t0 + σ)

W(t0 + σ) ⊂ Eε(w
+(σ), O+(σ)) + o(σ)B(0, 1).

Now we can formulate a new computational algorithm for the numerical construction of exter-
nal ellipsoidal estimates for reachable sets of the system (1.1), this algorithm essentially uses the
Theorem 1.

Algorithm (External Estimation of Reachable Sets).

Subdivide the time segment [t0, T + µ] into subsegments
{

[ti, ti+1]
}

, where ti = t0 + ih
(i = 1, . . . ,m), h = (T +µ− t0)/m, tm = T +µ. Subdivide also the segment [0, 1] into subsegments
[νj , νj+1], where νi = ih∗, h∗ = 1/m, ν0 = 0, νm = 1.

1. Repeated steps begin with Step 1:

• Take σ = h and for given X0 = E(a0, k
2B−1) define by Theorem 1 the sets W(t0, σ, νi)

(i = 0, . . . ,m).

• Find ellipsoid Eε(w1(σ), O1(σ)) in R
n+1 such that

W(t0, σ, νi) ⊆ Eε(w1(σ), O1(σ)) (i = 0, . . . ,m).

At this step we find the ellipsoidal estimate for the union of a finite family of ellip-
soids [21].

• Find the projection E(a1, Q1) = πzEε(w1(σ), O1(σ)) by Lemma 2.

• Find the smallest k1 > 0 such that E(a1, Q1) ⊆ E(a1, k
2
1B

−1) (k21 is the maximal eigen-
value of the matrix B1/2Q1B

1/2).

• Consider the system on the next subsegment [t1, t2] with E(a1, k
2
1B

−1) as the initial
ellipsoid at instant t1.

2. The next step repeats the previous iteration beginning with new initial data. At the end of
the process we will get the external estimate E(a+(T ), Q+(T )) of the reachable set of the
system (1.1)–(1.3).

Remark 3. One of the subsequent steps of the above algorithm contains the projection of an
ellipsoid on the subspace of the part of state variables, it complicates a bit the whole estimation
procedure. But it is not possible to avoid this difficult step of the whole estimation process because
of the presence of impulsive components in the control functions. One of the main goals of this
paper is to overcome this complication.

3. Example

In this section we illustrate the main ideas and results obtained above by an example of an
impulsive control system with uncertain initial set and with nonlinearity in dynamics.
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Example. Consider the following control system






dx1 = a1x1dt+ u1(t)dt+ dv1,

dx2 = a2x2dt+ x21dt+ x22dt+ u2(t)dt+ 0.01dv2,
0 ≤ t ≤ T,

with unknown initial state which belongs to a unit ball

x0 ∈ X0 = B(0, 1).

Here we take t0 = 0, T = 0.4, U = B(0, r), with r = 0.01. We have also A = 2I, B = I, d1 = 0,
d2 = 1.

External ellipsoidal tube E+(t) = E(a+(t), Q+(t)) is shown at Fig. 1, it is found using the main
result of Theorem 1 and is constructed according to the the main Algorithm. The first estimating
ellipsoid E(0, k20B

−1) is shown in red color and it contains X0 (it is shown in blue color). It is
worth recalling that the construction of the set E(0, k20B

−1) begins the whole iterative estimation
process described by the Algorithm.

0
4
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4

0.2

2

0.3

2

0.4

0
0

-2 -2
1x2x

t

E k B(0, )0
2 -1

X0

E a t Q t(    ( ( )), )+ +

Figure 1. External ellipsoidal tube E+(t) = E(a+(t), Q+(t)), t ∈ [0, 0.4].

Remark 4. The example shows that the estimation errors can increase with time (accumulation
effect). However, this is due to two factors of the model, the presence of nonlinear terms in the
equations of dynamics and the presence of impulse controls.

4. Conclusions

The problems of state estimation for nonlinear impulsive control systems with unknown but
bounded initial states were studied here. The solution was implemented based on the techniques
of trajectory tubes of differential inclusions theory and also based on results of ellipsoidal calculus
developed recently for these class of problems.

We study here the case when the system nonlinearity is generated by the combination of two
types of functions in related differential equations, one of which is bilinear and the other one is
quadratic. Additional difficulties in solving the considered problems were caused by the presence
in the dynamic system of impulsive actions of a vector type.
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The applications of the problems studied in this paper are in guaranteed state estimation for
nonlinear systems with unknown but bounded errors and in related applied fields (e.g., in robotics,
in problems of motor actuation, hydraulic actuation and others fields), the approaches developed
here may be used in the model-based advanced control of complex systems, such as adaptive control,
robust control, sliding-mode control, H-infinite control, etc.

Directions for further investigation continuing the paper research may be motivated by the
studies in the theory of dynamic systems with uncertainty and with vector impulse controls under
more complicated assumptions e.g. when the right hand sides of differential equations describing the
system dynamics contain the product of state coordinates and the generalized (impulse) controls.
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