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Abstract: The inverse problem of the calculus of variations (IPCV) is solved for a second-order ordinary
differential equation with the use of a local bilinear form. We apply methods of analytical dynamics, nonlinear
functional analysis, and modern methods for solving the IPCV. In the paper, we obtain necessary and sufficient
conditions for a given operator to be potential relative to a local bilinear form, construct the corresponding
functional, i.e., found a solution to the IPCV, and define the structure of the considered equation with the po-
tential operator. As a consequence, similar results are obtained when using a nonlocal bilinear form. Theoretical
results are illustrated with some examples.
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1. Introduction

In the modern calculus framework, the classical inverse problem of the calculus of variations
(IPCV) is a problem of constructing an integral functional such that its equations of extremals
coincide with given equations. The issues considered in the paper are closely related to the following
statement of the IPCV generalizing its classical statement. For a given equation, one needs to
construct a functional such that its set of stationary points coincides with the set of solutions to
this equation. These problems are also related to the mechanics of finite- and infinite-dimensional
systems [7, 8, 11–13]. There is a large number of works devoted to IPCVs for different types
of equations and their systems: in particular, for ordinary differential equations and differential
equations with partial derivatives [4, 6, 13, 18, 19, 21], operator equations [2, 3, 14, 15], differential-
difference equations [5, 9, 10], and stochastic differential equations [16, 17]. In these works, nonlocal
bilinear forms were mainly used to solve an IPCV. Methods of investigating operators for the
potentiality relative to local bilinear forms were developed in [6, 13, 20].

The main aim of the paper is to find a solution to an IPCV for a second-order ordinary differ-
ential equation. Local bilinear forms will play a significant role in the investigation.

Below, we use the notation and terminology of [2, 3, 13, 15].
Assume that U and V are linear normed spaces over R.
The following definition and theorem will be needed for the sequel.

Definition 1 [13]. An operator N : D(N) ⊂ U → V is called potential on the set D(N) relative
to a local bilinear form Φ(u; ·, ·) : V × V → R if there exists a Gâteaux differentiable functional
FN : D(FN ) = D(N) → R such that

δFN [u, h] = Φ(u;N(u), h) ∀u ∈ D(N), ∀h ∈ D(N ′
u). (1.1)
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Theorem 1 [13]. Consider a Gâteaux differentiable operator N : D(N) ⊂ U → V and a local
bilinear form Φ(u; ·, ·) : V × V → R such that, for any fixed elements u ∈ D(N) and g, h ∈ D(N ′

u),
the function ψ(ε) = Φ(u+ εh;N(u + εh), g) belongs to the class C1[0, 1]. For N to be potential on
the convex set D(N) relative to Φ, it is necessary and sufficient to have

Φ
(

u;N ′
uh, g

)

+Φ′
u (h;N(u), g) = Φ

(

u;N ′
ug, h

)

+Φ′
u (g;N(u), h)

∀u ∈ D (N) , ∀h, g ∈ D
(

N ′
u

)

.
(1.2)

Under this condition, the potential FN is given as

FN [u] =

1
∫

0

Φ(u0 + λ(u− u0);N(u0 + λ(u− u0)), u − u0) dλ+ FN [u0], (1.3)

where u0 is a fixed element of D(N).

Note that N ′
u and Φ′

u are the Gâteaux derivatives of N and Φ at the point u.

2. Conditions of potentiality

Consider an ordinary differential equation of the second order

N(u) ≡ a(t, u(t))u′′(t) + b(t, u(t))u′(t) + c(t, u(t))(u′(t))2 + d(t, u(t)) = 0, t ∈ [t0, t1]. (2.1)

Here, u = u(t) is an unknown function, a ∈ C2([t0, t1] × T ) and b, c, d ∈ C1([t0, t1] × T ) are given
functions, and T ⊆ R.

We define the domain of the operator N (2.1) as follows:

D(N) =
{

u ∈ C2[t0, t1] : u(t0) = u1, u(t1) = u2
}

. (2.2)

The domain D(N ′
u) consists of elements h ∈ C2[t0, t1] such that (u + εh) ∈ D(N) for all ε

sufficiently small, i.e.,

D(N ′
u) =

{

h ∈ C2[t0, t1] : h(t0) = 0, h(t1) = 0
}

.

Let us introduce a local bilinear form

Φ(u; v, g) =

t1
∫

t0

M(t, u(t))v(t)g(t) dt, (2.3)

where M ∈ C2([t0, t1]× T ), M(t, u(t)) 6= 0.

Theorem 2. For the operator N (2.1) to be potential on D(N) (2.2) relative to the local bilinear
form (2.3), it is necessary and sufficient that the following conditions hold for all u ∈ D(N) and
all t ∈ [t0, t1]:

a′u(t, u(t))M(t, u(t)) + a(t, u(t))M ′
u(t, u(t))− 2c(t, u(t))M(t, u(t)) = 0, (2.4)

a′t(t, u(t))M(t, u(t)) + a(t, u(t))M ′
t(t, u(t)) − b(t, u(t))M(t, u(t)) = 0. (2.5)
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P r o o f. We have

N ′
uh = a′u(t, u(t))u

′′(t)h(t) + a(t, u(t))h′′(t) + b′u(t, u(t))u
′(t)h(t) +

+ b(t, u(t))h′(t) + c′u(t, u(t))(u
′(t))2h(t) + 2c(t, u(t))u′(t)h′(t) + d′u(t, u(t))h(t).

In this case, criterion (1.2) becomes

t1
∫

t0

(

a′u(t, u(t))M(t, u(t))u′′(t)h(t)g(t) + a(t, u(t))M(t, u(t))h′′(t)g(t) +

+ b′u(t, u(t))M(t, u(t))u′(t)h(t)g(t) + b(t, u(t))M(t, u(t))h′(t)g(t) +

+ c′u(t, u(t))M(t, u(t))(u′(t))2h(t)g(t) + 2c(t, u(t))M(t, u(t))u′(t)h′(t)g(t) +

+M(t, u(t))d′u(t, u(t))h(t)g(t) + a(t, u(t))M ′
u(t, u(t))u

′′(t)h(t)g(t) +

+ b(t, u(t))M ′
u(t, u(t))u

′(t)h(t)g(t) + c(t, u(t))M ′
u(t, u(t))(u

′(t))2h(t)g(t) +

+M ′
u(t, u(t))d(t, u(t))h(t)g(t)

)

dt =

t1
∫

t0

(

a′u(t, u(t))M(t, u(t))u′′(t)h(t)g(t) +

+ a(t, u(t))M(t, u(t))g′′(t)h(t) + b′u(t, u(t))M(t, u(t))u′(t)h(t)g(t) +

+ b(t, u(t))M(t, u(t))g′(t)h(t) + c′u(t, u(t))M(t, u(t))(u′(t))2h(t)g(t) +

+ 2c(t, u(t))M(t, u(t))u′(t)g′(t)h(t) +M(t, u(t))d′u(t, u(t))h(t)g(t) +

+ a(t, u(t))M ′
u(t, u(t))u

′′(t)h(t)g(t) + b(t, u(t))M ′
u(t, u(t))u

′(t)h(t)g(t) +

+ c(t, u(t))M ′
u(t, u(t))(u

′(t))2h(t)g(t) +M ′
u(t, u(t))d(t, u(t))h(t)g(t)

)

dt

∀u ∈ D (N) , ∀h, g ∈ D
(

N ′
u

)

,

or
t1
∫

t0

(

a(t, u(t))M(t, u(t))h′′(t)g(t) + b(t, u(t))M(t, u(t))h′(t)g(t) +

+ 2c(t, u(t))M(t, u(t))u′(t)h′(t)g(t)
)

dt =

t1
∫

t0

(

a(t, u(t))M(t, u(t))g′′(t)h(t) +

+ b(t, u(t))M(t, u(t))g′(t)h(t) + 2c(t, u(t))M(t, u(t))u′(t)g′(t)h(t)
)

dt

∀u ∈ D (N) , ∀h, g ∈ D
(

N ′
u

)

.

(2.6)

Integrating by parts and taking into consideration that h, g ∈ D (N ′
u), we obtain

t1
∫

t0

(

a(t, u(t))M(t, u(t))h′′(t)g(t) + b(t, u(t))M(t, u(t))h′(t)g(t) +

+ 2c(t, u(t))M(t, u(t))u′(t)h′(t)g(t)
)

dt =

t1
∫

t0

(

a′′tt(t, u(t))M(t, u(t))h(t)g(t) +

+ 2a′′tu(t, u(t))u
′(t)M(t, u(t))h(t)g(t) + 2a′t(t, u(t))M

′
t(t, u(t))h(t)g(t) +

+ 2a′t(t, u(t))M
′
u(t, u(t))u

′(t)h(t)g(t) + 2a′t(t, u(t))M(t, u(t))h(t)g′(t) +

+ a′′uu(t, u(t))(u
′(t))2M(t, u(t))h(t)g(t) + a′u(t, u(t))u

′′(t)M(t, u(t))h(t)g(t) +

+ 2a′u(t, u(t))u
′(t)M ′

t(t, u(t))h(t)g(t) + 2a′u(t, u(t))M
′
u(t, u(t))(u

′(t))2h(t)g(t) +
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+ 2a′u(t, u(t))u
′(t)M(t, u(t))h(t)g′(t) + 2a(t, u(t))M ′

t(t, u(t))g
′(t)h(t) +

+ 2a(t, u(t))M ′
u(t, u(t))u

′(t)h(t)g′(t) + a(t, u(t))M(t, u(t))h(t)g′′(t) +

+ a(t, u(t))M ′′
tt(t, u(t))h(t)g(t) + 2a(t, u(t))M ′′

tu(t, u(t))u
′(t)h(t)g(t) +

+ a(t, u(t))M ′′
uu(t, u(t))(u

′(t))2h(t)g(t) + a(t, u(t))M ′
u(t, u(t))u

′′(t)h(t)g(t) −

− b′t(t, u(t))M(t, u(t))h(t)g(t) − b′u(t, u(t))u
′(t)M(t, u(t))h(t)g(t) −

− b(t, u(t))M ′
t(t, u(t))h(t)g(t) − b(t, u(t))M ′

u(t, u(t))u
′(t)h(t)g(t) −

− b(t, u(t))M(t, u(t))h(t)g′(t)− 2c′t(t, u(t))M(t, u(t))u′(t)h(t)g(t) −

− 2c′u(t, u(t))M(t, u(t))(u′(t))2h(t)g(t) − 2c(t, u(t))(u′(t))2M ′
u(t, u(t))h(t)g(t) −

− 2c(t, u(t))M ′
t(t, u(t))u

′(t)h(t)g(t) − 2c(t, u(t))M(t, u(t))u′′(t)h(t)g(t) −

− 2c(t, u(t))M(t, u(t))u′(t)h(t)g′(t)
)

dt.

Thus, equality (2.6) can be written in the form

t1
∫

t0

(

a′′tt(t, u(t))M(t, u(t))h(t)g(t) + 2a′′tu(t, u(t))u
′(t)M(t, u(t))h(t)g(t) +

+ 2a′t(t, u(t))M
′
t(t, u(t))h(t)g(t) + 2a′t(t, u(t))M

′
u(t, u(t))u

′(t)h(t)g(t) +

+ 2a′t(t, u(t))M(t, u(t))h(t)g′(t) + a′′uu(t, u(t))(u
′(t))2M(t, u(t))h(t)g(t) +

+ a′u(t, u(t))u
′′(t)M(t, u(t))h(t)g(t) + 2a′u(t, u(t))u

′(t)M ′
t(t, u(t))h(t)g(t) +

+ 2a′u(t, u(t))M
′
u(t, u(t))(u

′(t))2h(t)g(t) + 2a′u(t, u(t))u
′(t)M(t, u(t))h(t)g′(t) +

+ 2a(t, u(t))M ′
t(t, u(t))g

′(t)h(t) + 2a(t, u(t))M ′
u(t, u(t))u

′(t)h(t)g′(t) +

+ a(t, u(t))M ′′
tt(t, u(t))h(t)g(t) + 2a(t, u(t))M ′′

tu(t, u(t))u
′(t)h(t)g(t) +

+ a(t, u(t))M ′′
uu(t, u(t))(u

′(t))2h(t)g(t) + a(t, u(t))M ′
u(t, u(t))u

′′(t)h(t)g(t) −

− b′t(t, u(t))M(t, u(t))h(t)g(t) − b′u(t, u(t))u
′(t)M(t, u(t))h(t)g(t) −

− b(t, u(t))M ′
t(t, u(t))h(t)g(t) − b(t, u(t))M ′

u(t, u(t))u
′(t)h(t)g(t) −

− 2b(t, u(t))M(t, u(t))h(t)g′(t)− 2c′t(t, u(t))M(t, u(t))u′(t)h(t)g(t) −

− 2c′u(t, u(t))M(t, u(t))(u′(t))2h(t)g(t) − 2c(t, u(t))(u′(t))2M ′
u(t, u(t))h(t)g(t) −

− 2c(t, u(t))M ′
t(t, u(t))u

′(t)h(t)g(t) − 2c(t, u(t))M(t, u(t))u′′(t)h(t)g(t) −

− 4c(t, u(t))M(t, u(t))u′(t)h(t)g′(t)
)

dt = 0

∀u ∈ D (N) , ∀h, g ∈ D
(

N ′
u

)

.

Hence, we get

a′′tt(t, u(t))M(t, u(t)) + 2a′t(t, u(t))M
′
t(t, u(t)) + a(t, u(t))M ′′

tt(t, u(t)) −

− b′t(t, u(t))M(t, u(t)) − b(t, u(t))M ′
t(t, u(t)) = 0,

(2.7)

2a′′tu(t, u(t))M(t, u(t)) + 2a′t(t, u(t))M
′
u(t, u(t)) + 2a′u(t, u(t))M

′
t(t, u(t)) +

+ 2a(t, u(t))M ′′
tu(t, u(t))− 2c′t(t, u(t))M(t, u(t)) − 2c(t, u(t))M ′

t(t, u(t))−

−b′u(t, u(t))M(t, u(t)) − b(t, u(t))M ′
u(t, u(t)) = 0,

(2.8)

a′t(t, u(t))M(t, u(t)) + a(t, u(t))M ′
t(t, u(t)) − b(t, u(t))M(t, u(t)) = 0, (2.9)

a(t, u(t))M ′′
uu(t, u(t)) + a′′uu(t, u(t))M(t, u(t)) + 2a′u(t, u(t))M

′
u(t, u(t)) −

− 2c′u(t, u(t))M(t, u(t)) − 2c(t, u(t))M ′
u(t, u(t)) = 0,

(2.10)

a′u(t, u(t))M(t, u(t)) + a(t, u(t))M ′
u(t, u(t))− 2c(t, u(t))M(t, u(t)) = 0. (2.11)
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Note that conditions (2.7)–(2.11) are reduced to (2.4) and (2.5). �

Remark 1. If M =M(t), then

Φ(v, g) =

t1
∫

t0

M(t)v(t)g(t) dt (2.12)

is a nonlocal bilinear form and conditions (2.4) and (2.5) are represented in the form

a′u(t, u(t)) − 2c(t, u(t)) = 0, (2.13)

a′t(t, u(t))M(t) + a(t, u(t))M ′(t)− b(t, u(t))M(t) = 0. (2.14)

Remark 2. If M = M(t) and a = a(t), b = b(t), c = c(t), then conditions (2.4) and (2.5) can
be written in the form

c(t) = 0, (2.15)

a′(t)M(t) + a(t)M ′(t)− b(t)M(t) = 0. (2.16)

Remark 3. If M(t, u(t)) ≡ 1, then

Φ(v, g) =

t1
∫

t0

v(t)g(t) dt (2.17)

and conditions (2.4) and (2.5) take the form

a′u(t, u(t)) − 2c(t, u(t)) = 0, (2.18)

a′t(t, u(t)) − b(t, u(t)) = 0. (2.19)

Remark 4. If M(t, u(t)) ≡ 1 and a = a(t), b = b(t), c = c(t), then conditions (2.4) and (2.5)
are reduced to

c(t) = 0, (2.20)

a′(t)− b(t) = 0. (2.21)

3. Finding a solution to the IPCV

Theorem 3. If conditions (2.4) and (2.5) hold, then the corresponding functional is given as

FN [u] =

t1
∫

t0

(

−
1

2
M(t, u(t))a(t, u(t))(u′(t))2 +BM (t, u(t))

)

dt, (3.1)

where

BM (t, u(t)) =

1
∫

0

M(t, ũ(t, λ))d(t, ũ(t, λ))(u(t) − u0(t)) dλ+BM (t, u0(t)), (3.2)

ũ(t, λ) = u0(t) + λ(u(t)− u0(t)), u0 = u0(t) is a fixed element of D(N), and BM ∈ C2([t0, t1]× T ).



On the Potentiality of a Class of Operators 31

P r o o f. According to formula (1.3) and conditions (2.4) and (2.5) we have

FN [u]− FN [u0] =

=

t1
∫

t0

1
∫

0

[

M(t, ũ(t, λ))a(t, ũ(t, λ))ũ′′tt(t, λ)(u(t) − u0(t)) +

+M(t, ũ(t, λ))b(t, ũ(t, λ))ũ′t(t, λ)(u(t) − u0(t)) +

+M(t, ũ(t, λ))c(t, ũ(t, λ))(ũ′t(t, λ))
2(u(t)− u0(t)) +

+M(t, ũ(t, λ))d(t, ũ(t, λ))(u(t) − u0(t))
]

dλdt =

=

t1
∫

t0

1
∫

0

[

−M ′
t(t, ũ(t, λ))a(t, ũ(t, λ))ũ

′
t(t, λ)(u(t) − u0(t))−

−M ′
ũ(t,λ)(t, ũ(t, λ))a(t, ũ(t, λ))(ũ

′
t(t, λ))

2(u(t)− u0(t))−

−M(t, ũ(t, λ))a′t(t, ũ(t, λ))ũ
′
t(t, λ)(u(t) − u0(t))−

−M(t, ũ(t, λ))a′ũ(t,λ)(t, ũ(t, λ))(ũ
′
t(t, λ))

2(u(t)− u0(t))−

−M(t, ũ(t, λ))a(t, ũ(t, λ))ũ′t(t, λ)(u(t) − u0(t))
′ +

+M(t, ũ(t, λ))b(t, ũ(t, λ))ũ′t(t, λ)(u(t) − u0(t)) +

+M(t, ũ(t, λ))c(t, ũ(t, λ))(ũ′t(t, λ))
2(u(t)− u0(t)) +

+M(t, ũ(t, λ))d(t, ũ(t, λ))(u(t) − u0(t))
]

dλdt =

=

t1
∫

t0

1
∫

0

[

ũ′t(t, λ)(u(t) − u0(t))
(

−M ′
t(t, ũ(t, λ))a(t, ũ(t, λ))−

−M(t, ũ(t, λ))a′t(t, ũ(t, λ)) +M(t, ũ(t, λ))b(t, ũ(t, λ))
)

+

+ (ũ′t(t, λ))
2(u(t)− u0(t))

(

−M ′
ũ(t,λ)(t, ũ(t, λ))a(t, ũ(t, λ)) −

−M(t, ũ(t, λ))a′ũ(t,λ)(t, ũ(t, λ)) +M(t, ũ(t, λ))c(t, ũ(t, λ))
)

−

−M(t, ũ(t, λ))a(t, ũ(t, λ))ũ′t(t, λ)(u(t) − u0(t))
′ +

+M(t, ũ(t, λ))d(t, ũ(t, λ))(u(t) − u0(t))
]

dλdt =

=

t1
∫

t0

1
∫

0

[

−c(t, ũ(t, λ))M(t, ũ(t, λ))(ũ′t(t, λ))
2(u(t) − u0(t))−

− a(t, ũ(t, λ))M(t, ũ(t, λ))ũ′t(t, λ)(u(t) − u0(t))
′ +

+M(t, ũ(t, λ))d(t, ũ(t, λ))(u(t) − u0(t))
]

dλdt.

(3.3)

Note that, using (2.4), we get

1
∫

0

[

−c(t, ũ(t, λ))M(t, ũ(t, λ))(ũ′t(t, λ))
2(u(t) − u0(t))−

− a(t, ũ(t, λ))M(t, ũ(t, λ))ũ′t(t, λ)(u(t) − u0(t))
′
]

dλ =
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=

1
∫

0

[

−c(t, ũ(t, λ))M(t, ũ(t, λ))(ũ′t(t, λ))
2(u(t) − u0(t))−

− a(t, ũ(t, λ))M(t, ũ(t, λ))ũ′t(t, λ)
∂ũ′t(t, λ)

∂λ

]

dλ =

=

1
∫

0

[

−c(t, ũ(t, λ))M(t, ũ(t, λ))(ũ′t(t, λ))
2(u(t) − u0(t))−

−
∂

∂λ

(

a(t, ũ(t, λ))M(t, ũ(t, λ))(ũ′t(t, λ))
2
)

+

+ a′ũ(t,λ)(t, ũ(t, λ))M(t, ũ(t, λ))(ũ′t(t, λ))
2(u(t)− u0(t)) +

+ a(t, ũ(t, λ))M ′
ũ(t,λ)(t, ũ(t, λ))(ũ

′
t(t, λ))

2(u(t)− u0(t)) +

+ a(t, ũ(t, λ))M(t, ũ(t, λ))ũ′t(t, λ)(u(t) − u0(t))
′
]

dλ =

=

1
∫

0

[

c(t, ũ(t, λ))M(t, ũ(t, λ))(ũ′t(t, λ))
2(u(t)− u0(t))−

−
∂

∂λ

(

a(t, ũ(t, λ))M(t, ũ(t, λ))(ũ′t(t, λ))
2
)

+

+ a(t, ũ(t, λ))M(t, ũ(t, λ))ũ′t(t, λ)(u(t) − u0(t))
′
]

dλ =

=

1
∫

0

[

c(t, ũ(t, λ))M(t, ũ(t, λ))(ũ′t(t, λ))
2(u(t)− u0(t)) +

+ a(t, ũ(t, λ))M(t, ũ(t, λ))ũ′t(t, λ)(u(t) − u0(t))
′
]

dλ−

− a(t, u(t))M(t, u(t))(u′(t))2 + a(t, u0(t))M(t, u0(t))(u
′
0(t))

2.

Hence,

1
∫

0

[

−c(t, ũ(t, λ))M(t, ũ(t, λ))(ũ′t(t, λ))
2(u(t) − u0(t))−

− a(t, ũ(t, λ))M(t, ũ(t, λ))ũ′t(t, λ)(u(t) − u0(t))
′
]

dλ =

=

1
∫

0

[

c(t, ũ(t, λ))M(t, ũ(t, λ))(ũ′t(t, λ))
2(u(t)− u0(t)) +

+ a(t, ũ(t, λ))M(t, ũ(t, λ))ũ′t(t, λ)(u(t) − u0(t))
′
]

dλ−

− a(t, u(t))M(t, u(t))(u′(t))2 + a(t, u0(t))M(t, u0(t))(u
′
0(t))

2

and

1
∫

0

[

−c(t, ũ(t, λ))M(t, ũ(t, λ))(ũ′t(t, λ))
2(u(t) − u0(t))−

− a(t, ũ(t, λ))M(t, ũ(t, λ))ũ′t(t, λ)(u(t) − u0(t))
′
]

dλ =

= −
1

2
a(t, u(t))M(t, u(t))(u′(t))2 +

1

2
a(t, u0(t))M(t, u0(t))(u

′
0(t))

2.
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Thus, (3.3) becomes

FN [u]− FN [u0] =

t1
∫

t0

(

−
1

2
a(t, u(t))M(t, u(t))(u′(t))2 +

1

2
a(t, u0(t))M(t, u0(t))(u

′
0(t))

2 +

+

1
∫

0

M(t, ũ(t, λ))d(t, ũ(t, λ))(u(t) − u0(t)) dλ

)

dt.

The use of (3.2) yields functional (3.1). �

Remark 5. If M =M(t) and a = a(t), b = b(t), c = c(t), then

FN [u] =

t1
∫

t0

(

−
1

2
M(t)a(t)(u′(t))2 +BM (t, u(t))

)

dt, (3.4)

where

BM (t, u(t)) =

1
∫

0

M(t)d(t, ũ(t, λ))(u(t) − u0(t)) dλ +BM (t, u0(t)). (3.5)

Remark 6. If M(t, u(t)) ≡ 1 and a = a(t), b = b(t), c = c(t), then

FN [u] =

t1
∫

t0

(

−
a(t)

2
(u′(t))2 +B(t, u(t))

)

dt,

where

B(t, u(t)) =

1
∫

0

d(t, ũ(t, λ))(u(t) − u0(t)) dλ +B(t, u0(t)).

4. The structure of variational equation (2.1)

Theorem 4. Conditions (2.4) and (2.5) hold if and only if equation (2.1) takes the form

N(u) ≡ a(t, u(t))u′′(t) +
1

M(t, u(t))

[

M ′
t(t, u(t))a(t, u(t)) +M(t, u(t))a′t(t, u(t))

]

u′(t) +

+
1

2M(t, u(t))

[

M ′
u(t, u(t))a(t, u(t)) +M(t, u(t))a′u(t, u(t))

]

(u′(t))2 +
(BM )′u(t, u(t))

M(t, u(t))
= 0.

(4.1)

P r o o f. According to (1.1), for functional (3.1), we have

δFN [u, h] =

t1
∫

t0

(

−
1

2
M ′

u(t, u(t))a(t, u(t))(u
′(t))2h(t)−

−
1

2
M(t, u(t))a′u(t, u(t))(u

′(t))2h(t)−M(t, u(t))a(t, u(t))u′(t)h′(t) + (BM )′u(t, u(t))h(t)
)

dt =

=

t1
∫

t0

(

−
1

2
M ′

u(t, u(t))a(t, u(t))(u
′(t))2h(t)−

1

2
M(t, u(t))a′u(t, u(t))(u

′(t))2h(t) +
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+M ′
t(t, u(t))a(t, u(t))u

′(t)h(t) +M ′
u(t, u(t))a(t, u(t))(u

′(t))2h(t) +M(t, u(t))a′t(t, u(t))u
′(t)h(t) +

+M(t, u(t))a′u(t, u(t))(u
′(t))2h(t) +M(t, u(t))a(t, u(t))u′′(t)h(t) + (BM )′u(t, u(t))h(t)

)

dt =

=

t1
∫

t0

(

M(t, u(t))a(t, u(t))u′′(t)+
(

M ′
t(t, u(t))a(t, u(t)) +M(t, u(t))a′t(t, u(t))

)

u′(t) +

+
1

2

(

M ′
u(t, u(t))a(t, u(t)) +M(t, u(t))a′u(t, u(t))

)

(u′(t))2 + (BM )′u(t, u(t))
)

h(t)dt = Φ(u;N(u), h)

∀u ∈ D(N), ∀h ∈ D(N ′
u).

Hence, equation (2.1) is represented in form (4.1).

On the other hand, equation (4.1) is derived from the stationarity condition of functional (3.1).
This means that conditions (2.4) and (2.5) must be satisfied. �

5. Examples

Example 1. Consider the Emden–Fowler equation [1]

N(u) ≡ u′′(t) +
k1

t
u′(t) + k2t

m−1un(t) = 0, t ∈ [t0, t1], t0 > 0, (5.1)

where k1, k2, m, and n are constants, n ∈ N.

In this case,

a = 1, b(t) =
k1

t
, c = 0, d(t, u(t)) = k2t

m−1un(t).

The operator N (5.1) is not potential on D(N) (2.2) relative to bilinear form (2.17) because
condition (2.21) is not satisfied.

We find M = M(t) such that the operator N (5.1) is potential on D(N) (2.2) relative to a
bilinear form of type (2.12).

From condition (2.16), we obtain

M(t) = tk1 .

Thus, the operator N (5.1) is potential on D(N) (2.2) relative to the following bilinear form:

Φ(v, g) =

t1
∫

t0

tk1v(t)g(t) dt.

By formula (3.5), we get

BM (t, u(t)) =
k2

n+ 1
tm−1+k1un+1(t),

and functional (3.4) takes the form

FN [u] =

t1
∫

t0

(

−
tk1

2
(u′(t))2 +

k2

n+ 1
tm−1+k1un+1(t)

)

dt. (5.2)
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Remark 7. The operator N of the Emden equation [8]

N(u) ≡ u′′(t) +
2

t
u′(t) + u5(t) = 0, t ∈ [t0, t1], t0 > 0,

is potential on D(N) (2.2) relative to the following bilinear form:

Φ(v, g) =

t1
∫

t0

t2v(t)g(t) dt

(see Example 1; k1 = 2, k2 = 1, m = 1, and n = 5).
In this case, functional (5.2) becomes

FN [u] =

t1
∫

t0

(

−
t2

2
(u′(t))2 +

t2

6
u6(t)

)

dt. (5.3)

Note that functional (5.3) was obtained in another way in [8].

Example 2. Consider the following equation:

N(u) ≡ 2tu′′(t) + 2u′(t) + t(u′(t))2 − u(t)− 1 = 0, t ∈ [t0, t1]. (5.4)

In this case,
a(t) = 2t, b = 2, c(t) = t, d(u(t)) = −u(t)− 1.

The operator N (5.4) is not potential on D(N) (2.2) relative to bilinear forms (2.12) and (2.17)
because c(t) 6= 0.

We find M = M(u(t)) such that the operator N (5.4) is potential on D(N) (2.2) relative to a
bilinear form of type (2.3).

From conditions (2.4) and (2.5), we obtain

M(u(t)) = eu(t).

Thus, the operator N (5.4) is potential on D(N) (2.2) relative to the following bilinear form:

Φ(u; v, g) =

t1
∫

t0

eu(t)v(t)g(t) dt.

By formula (3.2), we get
BM (u(t)) = −eu(t)u(t),

and functional (3.1) takes the form

FN [u] =

t1
∫

t0

(

−teu(t)(u′(t))2 − eu(t)u(t)
)

dt.

Example 3. Consider the following equation [8]:

N(u) ≡ u′′(t)−
(u′(t))2

u(t)
+

1

u2(t)
= 0, t ∈ [t0, t1]. (5.5)
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Here,

a = 1, b = 0, c(u(t)) = −
1

u(t)
, d(u(t)) =

1

u2(t)
.

The operator N (5.5) is not potential on D(N) (2.2) relative to bilinear forms (2.12) and (2.17)
because conditions (2.13) and (2.18) do not hold.

We find M = M(u(t)) such that the operator N (5.5) is potential on D(N) (2.2) relative to a
bilinear form of type (2.3).

From conditions (2.4) and (2.5), we obtain

M(u(t)) =
1

u2(t)
.

Thus, the operator N (5.5) is potential on D(N) (2.2) relative to the following bilinear form:

Φ(u; v, g) =

t1
∫

t0

1

u2(t)
v(t)g(t) dt.

By formula (3.2), we get

BM (u(t)) = −
1

3u3(t)
,

and functional (3.1) takes the form

FN [u] =

t1
∫

t0

(

−
(u′(t))2

2u2(t)
−

1

3u3(t)

)

dt.

6. Conclusion

In the paper, we obtained the following results: the potentiality of the operator of a second-
order ordinary differential equation relative to a local bilinear form was investigated, a formula
for constructing the functional was given, and the structure of the corresponding Euler–Lagrange
equation was defined. In particular, applications and extensions of the work consist in the possibility
to establish connections between the invariance of the functional, the given equation, and its first
integrals and to spread the proposed scheme of investigation to higher-order equations.
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