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Abstract: In this paper we establish some results relating to the growths of composition of two entire
functions with their corresponding left and right factors on the basis of their generalized order (α, β) and
generalized lower order (α, β) where α and β are continuous non-negative functions on (−∞,+∞).
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1. Introduction, definitions and notations

We denote by C the set of all finite complex numbers. Let f be an entire function defined on C.
The maximum modulus function Mf (r) and the maximum term µf (r) of

f =

∞
∑

n=0

anz
n

on |z| = r are defined as

Mf = max
|z|=r

|f(z)|, µf (r) = max
n≥0

(|an|r
n)

respectively. We use the standard notations and definitions of the theory of entire functions which
are available in [11] and [12], and therefore we do not explain those in details. For x ∈ [0,∞) and
k ∈ N where N be the set of all positive integers, define iterations of the exponential and logarithmic
functions as

exp[k] x = exp(exp[k−1] x), log[k] x = log(log[k−1] x),

with convention that

log[0] x = x, log[−1] x = expx, exp[0] x = x, exp[−1] x = log x.

Now considering this, let us recall that Juneja et al. [5] defined the (p, q)-th order and (p, q)-th
lower order of an entire function, respectively, as follows:
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Definition 1 [5]. The (p, q)-th order and (p, q)-th lower order of an entire function f are
defined as:

ρ(p,q)(f)

λ(p,q)(f)
= lim

r→+∞

sup
inf

log[p]Mf (r)

log[q] r
,

where p and q always denote positive integers with p ≥ q.

Extending the notion (p, q)-th order, recently Shen et al. [6] introduced the new concept of
[p, q] − ϕ order of an entire function where p ≥ q. Later on, combining the definition of (p, q)-
order and [p, q] − ϕ order, Biswas (see, e.g., [1]) redefined the (p, q)-order of an entire function
without restriction p ≥ q.

However the above definition is very useful for measuring the growth of entire functions. If p = l
and q = 1 then we write ρ(l,1)(f) = ρ(l)(f) and λ(l,1)(f) = λ(l)(f) where ρ(l)(f) and λ(l)(f) are
respectively known as generalized order and generalized lower order of entire function f . For
details about generalized order one may see [8]. Also for p = 2 and q = 1, we respectively denote
ρ(2,1)(f) and λ(2,1)(f) by ρ(f) and λ(f) which are classical growth indicators such as order and
lower order of entire function f . Recently, Chyzhykov et al. [3] showed that both the definitions of
generalized order and (p, q)-order have the disadvantage that they do not cover arbitrary growth
(see [3, Example 1.4]).

Taking this into account, let L be a class of continuous non-negative on (−∞,+∞) function α
such that

α(x) = α(x0) ≥ 0, for x ≤ x0 with α(x) ↑ +∞ as x → +∞

and

α
(

(1 + o(1))x
)

= (1 + o(1))α(x) as x → +∞.

We say that α ∈ L0, if α ∈ L and

α(cx) = (1 + o(1))α(x) as x0 ≤ x → +∞

for each c ∈ (0,+∞), i.e., α is slowly increasing function. Clearly L0 ⊂ L.

Further we assume that throughout the present paper α, α1, α2, β, β1 and β2 always denote
the functions belonging to L0.

Considering this, the value

ρ(α,β)[f ] = lim sup
r→+∞

α(logMf (r))

β(log r)
(α ∈ L, β ∈ L)

is called [7] the generalized order (α, β) of an entire function f . For details about the generalized
order (α, β) one may see [7]. During the past decades, several authors made close investigations on
the properties of entire functions related to the generalized order (α, β) in some different direction.
For the purpose of further applications, Biswas et al. [2] rewrite the definition of the generalized
order (α, β) of entire function in the following way after giving a minor modification to the original
definition (e.g. see, [7]) which considerably extend the definition of ϕ-order of entire function
introduced by Chyzhykov et al. [3]:

Definition 2 [2]. The generalized order (α, β) and the generalized lower order (α, β) of an
entire function f are defined as:

ρ(α,β)[f ]

λ(α,β)[f ]
= lim

r→+∞

sup
inf

α(Mf (r))

β(r)
.
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Definition 1 is a special case of Definition 2 for α(r) = log[p] r and β(r) = log[q] r.

Since for 0 ≤ r < R,

µf (r) ≤ Mf (r) ≤
R

R− r
µf (R) (cf. [10]),

it is easy to see that

ρ(α,β)[f ]

λ(α,β)[f ]
= lim

r→+∞

sup
inf

α(µf (r))

β(r)
(also see [2]).

In the paper we would like to establish some newly developed results based on the comparative
growth of composite entire functions on the basis of their generalized order (α, β) and generalized
lower order (α, β).

2. Known results

In this section we present some lemmas which will be needed in the sequel.

Lemma 1 [4]. Let f and g are any two entire functions with g(0) = 0. Also let b satisfy
0 < b < 1 and c(b) = (1− b)2/(4b). Then for all sufficiently large values of r, we have

Mf (c(b)Mg(br)) ≤ Mf◦g(r) ≤ Mf (Mg(r)).

In addition if b = 1/2, then for all sufficiently large values of r, the inequality is true

Mf◦g(r) ≥ Mf

(1

8
Mg

(r

2

))

.

Lemma 2 [9]. Let f and g be entire functions. Then for every δ > 1 and 0 < r < R, we have

µf◦g(r) ≤
δ

δ − 1
µf

( δR

R− r
µg(R)

)

.

Lemma 3 [9]. If f and g are any two entire functions. Then for all sufficiently large values
of r, the estimate is true

µf◦g(r) ≥
1

2
µf

( 1

16
µg

(r

4

))

.

3. Main results

In this section we present the main results of the paper.

Theorem 1. Let f and g be any two entire functions such that

0 < λ(α1,β1)[f ] ≤ ρ(α1,β1)[f ] < +∞, and ρ(α2,β2)[g] > 0.

If α2(β
−1
1 (r)) ∈ L1, then we have the estimate

lim sup
r→+∞

α2(β
−1
1 (α1(µf◦g(β

−1
2 (r)))))

α1(µf (β
−1
1 (r)))

≥
ρ(α2,β2)[g]

ρ(α1,β1)[f ]
.
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P r o o f. From the definition of ρ(α1,β1)[f ], we get for all sufficiently large values of r that

α1(µf (β
−1
1 (r))) ≤ (ρ(α1,β1)[f ] + ε)r. (3.1)

Further in view of the first part of Lemma 3, it follows for all sufficiently large values of r that

α1(µf◦g(β
−1
2 (r))) ≥ (1 + o(1))(λ(α1 ,β1)[f ]− ε)β1

(

µg

(β−1
2 (r)

4

))

.

Since α2(β
−1
1 (r)) ∈ L1, we obtain from above for a sequence of values of r tending to infinity that

α2(β
−1
1 (α1(µf◦g(β

−1
2 (r))))) ≥ (1 + o(1))α2

(

µg

(β−1
2 (r)

4

))

i.e., α2(β
−1
1 (α1(µf◦g(β

−1
2 (r))))) ≥ (1 + o(1))(ρ(α2 ,β2)[g]− ε)r.

Now combining (3.1) and above inequalities we get that

lim sup
r→+∞

α2(β
−1
1 (α1(µf◦g(β

−1
2 (r)))))

α1(µf (β
−1
1 (r)))

≥
ρ(α2,β2)[g]

ρ(α1,β1)[f ]
.

Hence the theorem follows. �

Theorem 2. Let f and g be any two entire functions such that

0 < λ(α1,β1)[f ] ≤ ρ(α1,β1)[f ] < +∞ and λ(α2,β2)[g] > 0.

If α2(β
−1
1 (r)) ∈ L1, then

lim inf
r→+∞

α2(β
−1
1 (α1(µf◦g(β

−1
2 (r)))))

α1(µf (β
−1
1 (r)))

≥
λ(α2,β2)[g]

ρ(α1,β1)[f ]
.

Theorem 3. Let f and g be any two entire functions such that

0 < λ(α1,β1)[f ] < +∞ and λ(α2,β2)[g] > 0.

If α2(β
−1
1 (r)) ∈ L1, then

lim sup
r→+∞

α2(β
−1
1 (α1(µf◦g(β

−1
2 (r)))))

α1(µf (β
−1
1 (r)))

≥
λ(α2,β2)[g]

λ(α1,β1)[f ]
.

The proofs of Theorem 2 and Theorem 3 would run parallel to that of Theorem 1. We omit
the details.

Theorem 4. Let f and g be any two entire functions such that

0 < λ(α1,β1)[f ] ≤ ρ(α1,β1)[f ] < +∞ and ρ(α2,β2)[g] < +∞.

If α2(β
−1
1 (r)) ∈ L1, then

lim sup
r→+∞

α2(β
−1
1 (α1(µf◦g(β

−1
2 (r)))))

α1(µf (β
−1
1 (r)))

≤
ρ(α2,β2)[g]

λ(α1,β1)[f ]
.
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P r o o f. From the definition of λ(α1,β1)[f ], we get for all sufficiently large values of r that

α1(µf (β
−1
1 (r))) ≥ (λ(α1,β1)[f ]− ε)r. (3.2)

Further taking R = 2r in Lemma 2 we obtain for all sufficiently large values of r that

α1(µf◦g(r)) ≤ (1 + o(1))(ρ(α1 ,β1)[f ] + ε)β1(µg(2r)). (3.3)

Since α2(β
−1
1 (r)) ∈ L1, we obtain from above for all sufficiently large values of r that

α2(β
−1
1 (α1(µf◦g(β

−1
2 (r))))g) ≤ (1 + o(1))α2(µg(2β

−1
2 (r)))

i.e., α2(β
−1
1 (α1(µf◦g(β

−1
2 (r))))) ≤ (1 + o(1))(ρ(α2 ,β2)[g] + ε)r.

Now combining (3.2) and above inequalities we get that

lim sup
r→+∞

α2(β
−1
1 (α1(µf◦g(β

−1
2 (r)))))

α1(µf (β
−1
1 (r)))

≤
ρ(α2,β2)[g]

λ(α1,β1)[f ]
.

Hence the theorem follows. �

Theorem 5. Let f and g be any two entire functions such that

0 < λ(α1,β1)[f ] ≤ ρ(α1,β1)[f ] < +∞ and λ(α2,β2)[g] < +∞.

If α2(β
−1
1 (r)) ∈ L1, then we have

lim inf
r→+∞

α2(β
−1
1 (α1(µf◦g(β

−1
2 (r)))))

α1(µf (β
−1
1 (r)))

≤
λ(α2,β2)[g]

λ(α1,β1)[f ]
.

Theorem 6. Let f and g be any two entire functions such that

0 < λ(α1,β1)[f ] ≤ ρ(α1,β1)[f ] < +∞ and ρ(α2,β2)[g] < +∞.

If α2(β
−1
1 (r)) ∈ L1, then we have

lim inf
r→+∞

α2(β
−1
1 (α1(µf◦g(β

−1
2 (r)))))

α1(µf (β
−1
1 (r)))

≤
ρ(α2,β2)[g]

ρ(α1,β1)[f ]
.

The proofs of Theorem 5 and Theorem 6 would run parallel to that of Theorem 4. We omit
the details.

Theorem 7. Let f, g, h and k be four entire functions such that

λ(α3,β3)[h] > 0, λ(α4,β4)[k] > 0 and ρ(α2,β2)[g] < λ(α4,β4)[k].

Also let C and D be any two positive constants.

(i) Any one of the following four conditions are assumed to be satisfied :

(a) β1(r) = C(exp(α2(r))) and β3(r) = D exp(α4(r));

(b) β1(r) = C(exp(α2(r))) and β3(r) > exp(α4(r));

(c) exp(α2(r)) > β1(r) and β3(r) = D exp(α4(r));

(d) exp(α2(r)) > β1(r) and β3(r) > exp(α4(r));
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then

lim
r→+∞

α3(µh◦k(β
−1
4 (log r)))

α1(µf◦g(β
−1
2 (log r)))

= ∞.

(ii) Any one of the following two conditions are assumed to be satisfied :

(a) β1(r) = C(exp(α2(r))) and α4(β
−1
3 (r)) ∈ L0;

(b) β3(r) > exp(α4(r)) and α4(β
−1
3 (r)) ∈ L0;

then

lim
r→+∞

exp(α4(β
−1
3 (α3(µh◦k(β

−1
4 (log r))))))

α1(µf◦g(β
−1
2 (log r)))

= ∞.

(iii) Any one of the following two conditions are assumed to be satisfied :

(a) β3(r) = D exp(α4(r)) and α2(β
−1
1 (r)) ∈ L0;

(b) β3(r) > exp(α4(r)) and α2(β
−1
1 (r)) ∈ L0;

then

lim
r→+∞

α3(µh◦k(β
−1
4 (log r)))

exp(α2(β
−1
1 (α1(µf◦g(β

−1
2 (log r))))))

= ∞.

(iv) If α2(β
−1
1 (r)) ∈ L1 and α4(β

−1
3 (r)) ∈ L0, then

lim
r→+∞

exp(α4(β
−1
3 (α3(µh◦k(β

−1
4 (log r))))))

exp(α2(β
−1
1 (α1(µf◦g(β

−1
2 (log r))))))

= ∞.

P r o o f. In view of (3.3) we get for all sufficiently large values of r that

α1(µf◦g(β
−1
2 (log r))) ≤ (1 + o(1))(ρ(α1 ,β1)[f ] + ε)β1(µg(2β

−1
2 (log r))). (3.4)

Case I. Let β1(r) = C(exp(α2(r))). Then we have from (3.4) for all sufficiently large values of r
that

α1(µf◦g(β
−1
2 (log r))) ≤ C(1 + o(1))(ρ(α1 ,β1)[f ] + ε)r(1+o(1))(ρ(α2 ,β2)

[g]+ε). (3.5)

Case II. Let exp(α2(r)) > β1(r). Then we have from (3.4) for all sufficiently large values of r that

α1(µf◦g(β
−1
2 (log r))) ≤ (1 + o(1))(ρ(α1 ,β1)[f ] + ε)r(1+o(1))(ρ(α2 ,β2)

[g]+ε). (3.6)

Case III. Let α2(β
−1
1 (r)) ∈ L0. Then we get from(3.4) for all sufficiently large values of r that

exp(α2(β
−1
1 (α1(µf◦g(β

−1
2 (log r)))))) ≤ r(1+o(1))(ρ(α2 ,β2)

[g]+ε). (3.7)

Further it follows from Lemma 3 for all sufficiently large values r that

α3(µh◦k(β
−1
4 (log r))) ≥ (1 + o(1))α3

(

µh

( 1

16
µk

(β−1
4 (log r)

4

)))

i.e., α3(µh◦k(β
−1
4 (log r))) ≥ (1 + o(1))(λ(α3 ,β3)[h]− ε)β3

(

µk

(β−1
4 (log r)

4

))

. (3.8)

Case IV. Let β3(r) = D exp(α4(r)). Then from (3.8) it follows for all sufficiently large values of r
that

α3(µh◦k(β
−1
4 (log r))) ≥ D(1 + o(1))(λ(α3 ,β3)[h]− ε)r(1+o(1))(λ(α4 ,β4)

[k]−ε). (3.9)
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Case V. Let β3(r) > exp(α4(r)). Now from (3.8) it follows for all sufficiently large values of r that

α3(µh◦k(β
−1
4 (log r))) > (1 + o(1))(λ(α3 ,β3)[h]− ε)r(1+o(1))(λ(α4 ,β4)

[k]−ε). (3.10)

Case VI. Let α4(β
−1
3 (r)) ∈ L0. Then from (3.8) we obtain for all sufficiently large values of r that

exp(α4(β
−1
3 (α3(µh◦k(β

−1
4 (log r)))))) ≥ r(1+o(1))(λ(α4 ,β4)

[k]−ε). (3.11)

Since ρ(α2,β2)[g] < λ(α4,β4)[k] we can choose ε(> 0) in such a way that

ρ(α2,β2)[g] + ε < λ(α4,β4)[k]− ε. (3.12)

Now combining (3.5) of Case I and (3.9) of Case IV it follows for all sufficiently large values of r
that

α3(µh◦k(β
−1
4 (log r)))

α1(µf◦g(β
−1
2 (log r)))

≥
D(1 + o(1))(λ(α3 ,β3)[h]− ε)r(1+o(1))(λ(α4 ,β4)

[k]−ε)

C(1 + o(1))(ρ(α1 ,β1)[f ] + ε)r(1+o(1))(ρ(α2 ,β2)
[g]+ε)

.

So from (3.12) and above we obtain that

lim inf
r→+∞

α3(µh◦k(β
−1
4 (log r)))

α1(µf◦g(β
−1
2 (log r)))

= ∞. (3.13)

Similarly combining (3.5) of Case I and (3.10) of Case V we get that

lim inf
r→+∞

α3(µh◦k(β
−1
4 (log r)))

α1(µf◦g(β
−1
2 (log r)))

= ∞. (3.14)

Analogously combining (3.6) of Case II and (3.9) of Case IV, we obtain that

lim
r→+∞

α3(µh◦k(β
−1
4 (log r)))

α1(µf◦g(β
−1
2 (log r)))

= ∞. (3.15)

Likewise combining (3.6) of Case II and (3.10) of Case V it follows that

lim
r→+∞

α3(µh◦k(β
−1
4 (log r)))

α1(µf◦g(β
−1
2 (log r)))

= ∞. (3.16)

Hence the first part of the theorem follows from (3.13), (3.14), (3.15) and (3.16).

Again combining (3.5) of Case I and (3.11) of Case VI we obtain for all sufficiently large values
of r that

exp(α4(β
−1
3 (α3(µh◦k(β

−1
4 (log r))))))

α1(µf◦g(β
−1
2 (log r)))

≥
r(1+o(1))(λ(α4 ,β4)

[k]−ε)

C(1 + o(1))(ρ(α1 ,β1)[f ] + ε)r(1+o(1))(ρ(α2 ,β2)
[g]+ε)

.

So from (3.12) and above we obtain that

lim
r→+∞

exp(α4(β
−1
3 (α3(µh◦k(β

−1
4 (log r))))))

α1(µf◦g(β
−1
2 (log r)))

= ∞.

Similarly combining (3.6) of Case II and (3.11) of Case VI we also get the same conclusion.
Therefore the second part of the theorem is established.
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Again combining (3.7) of Case III and (3.9) of Case IV it follows for all sufficiently large values
of r that

α3(µh◦k(β
−1
4 (log r)))

exp(α2(β
−1
1 (α1(µf◦g(β

−1
2 (log r))))))

≥
D(1 + o(1))(λ(α3 ,β3)[h]− ε)r(1+o(1))(λ(α4 ,β4)

[k]−ε)

r(1+o(1))(ρ(α2 ,β2)
[g]+ε)

. (3.17)

Now in view of (3.12) we obtain from (3.17) that

lim
r→+∞

α3(µh◦k(β
−1
4 (log r)))

exp(α2(β
−1
1 (α1(µf◦g(β

−1
2 (log r))))))

= ∞. (3.18)

Similarly combining (3.7) of Case III and (3.10) of Case V we get that

lim
r→+∞

α3(µh◦k(β
−1
4 (log r)))

exp(α2(β
−1
1 (α1(µf◦g(β

−1
2 (log r))))))

= ∞. (3.19)

Hence the third part of the theorem follows from (3.18) and (3.19).
Further combining (3.7) of Case III and (3.11) of Case VI we obtain for all sufficiently large

values of r that

exp(α4(β
−1
3 (α3(µh◦k(β

−1
4 (log r))))))

exp(α2(β
−1
1 (α1(µf◦g(β

−1
2 (log r))))))

≥
r(1+o(1))(λ(α4 ,β4)

[k]−ε)

r(1+o(1))(ρ(α2,β2)
[g]+ε)

.

Now in view of (3.12) we obtain from above that

lim
r→+∞

exp(α4(β
−1
3 (α3(µh◦k(β

−1
4 (log r))))))

exp(α2(β
−1
1 (α1(µf◦g(β

−1
2 (log r))))))

= ∞.

This proves the fourth part of the theorem. �

This implies the following theorem.

Theorem 8. Let f and g be any two entire functions such that

ρ(α1,β1)[f ◦ g] < ∞ and λ(α3,β3)[g] > 0.

Then

lim
r→∞

{α1(µf◦g(β
−1
1 (log r)))}2

α3(µg(β
−1
3 (log r))) · α3(µg(β

−1
3 (r)))

= 0.

P r o o f. For arbitrary positive ε we have for all sufficiently large values of r that

α1(µf◦g(β
−1
1 (log r))) ≤ (ρ(α1,β1)[f ◦ g] + ε) log r. (3.20)

Again for all sufficiently large values of r we get

α3(µg(β
−1
3 (log r))) ≥ (λ(α3,β3)[g]− ε) log r. (3.21)

Similarly for all sufficiently large values of r we have

(α3(µg(β
−1
3 (r)))) ≥ (λ(α3,β3)[g]− ε)r. (3.22)

From (3.20) and (3.21) we have for all sufficiently large values of r that

α1(µf◦g(β
−1
1 (log r)))

α3(µg(β
−1
3 (log r)))

≤
(ρ(α1,β1)[f ◦ g] + ε) log r

(λ(α3,β3)[g]− ε) log r
.
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As ε > 0 is arbitrary we obtain from above that

lim sup
r→+∞

α1(µf◦g(β
−1
1 (log r)))

α3(µg(β
−1
3 (log r)))

≤
ρ(α1,β1)[f ◦ g]

λ(α3,β3)[g]
. (3.23)

Again from (3.20) and (3.22) we get for all sufficiently large values of r that

α1(µf◦g(β
−1
1 (log r)))

α3(µg(β
−1
3 (r)))

≤
(ρ(α1,β1)[f ◦ g] + ε) log r

(λ(α3,β3)[g] − ε)r
.

Since ε > 0 is arbitrary it follows from above that

lim
r→+∞

α1(µf◦g(β
−1
1 (log r)))

α3(µg(β
−1
3 (r)))

= 0. (3.24)

Thus the theorem follows from (3.23) and (3.24). �

Remark 1. Theorem 1 to Theorem 8 can also be deduced in terms of maximum modulus of
entire functions with the help of Lemma 1.

Theorem 9. Let f and g be any two entire functions such that

ρ(α2,β2)[g] < λ(α1,β1)[f ] ≤ ρ(α1,β1)[f ].

Also let C be any positive constant and β1 ∈ L2.

(i) Any one of the following two conditions are assumed to be satisfied :

(a) β1(r) = C(exp(α2(r)));

(b) exp(α2(r)) > β1(r);

then

lim sup
r→+∞

{α1(µf◦g(β
−1
2 (log r)))}2

exp(α1(µf (β
−1
1 (log r)))) · β1(µg(2β

−1
2 (log r)))

= 0.

(ii) If α2(β
−1
1 (r)) ∈ L0, then

lim
r→+∞

exp(α2(β
−1
1 (α1(µf◦g(β

−1
2 (log r)))))) · α1(µf◦g(β

−1
2 (log r)))

exp(α1(µf (β
−1
1 (log r)))) · β1(µg(2β

−1
2 (log r)))

= 0.

P r o o f. From the definition of generalized lower order (α1, β1) of f we have for arbitrary
positive ε and for all sufficiently large values of r that

exp(α1(µf (β
−1
1 (log r)))) ≥ r(λ(α1,β1)

[f ]−ε). (3.25)

As ρ(α2,β2)[g] < λ(α1,β1)[f ] we can choose ε > 0 in such a way that

ρ(α2,β2)[g] + ε < λ(α1,β1)[f ]− ε. (3.26)

Now combining (3.5) of Case I and (3.25) we have for all large positive numbers of r,

α1(µf◦g(β
−1
2 (log r)))

exp(α1(µf (β
−1
1 (log r))))

≤
C(1 + o(1))(ρ(α1 ,β1)[f ] + ε)r(1+o(1))(ρ(α2 ,β2)

[g]+ε)

r(λ(α1,β1)
[f ]−ε)

.
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In view of (3.26) we get from above that

lim
r→+∞

α1(µf◦g(β
−1
2 (log r)))

exp(α1(µf (β
−1
1 (log r))))

= 0. (3.27)

Again combining (3.6) of Case II and (3.25) we get for all sufficiently large positive numbers of r
that

α1(µf◦g(β
−1
2 (log r)))

exp(α1(µf (β
−1
1 (log r))))

≤
(1 + o(1))(ρ(α1 ,β1)[f ] + ε)r(1+o(1))(ρ(α2 ,β2)

[g]+ε)

r(λ(α1,β1)
[f ]−ε)

.

Now in view of (3.26) we obtain from above that

lim
r→+∞

α1(µf◦g(β
−1
2 (log r)))

exp(α1(µf (β
−1
1 (log r))))

= 0. (3.28)

Further combining (3.7) of Case III and (3.25) we get for all sufficiently large positive numbers
of r that

exp(α2(β
−1
1 (α1(µf◦g(β

−1
2 (log r))))))

exp(α1(µf (β
−1
1 (log r))))

≤
r(1+o(1))(ρ(α2 ,β2)

[g]+ε)

r(λ(α1,β1)
[f ]−ε)

.

So in view of (3.26) we obtain from above that

lim
r→+∞

exp(α2(β
−1
1 (α1(µf◦g(β

−1
2 (log r))))))

exp(α1(µf (β
−1
1 (log r))))

= 0. (3.29)

Now from (3.4) we get that

lim sup
r→+∞

α1(µf◦g(β
−1
2 (log r)))

β1(µg(2β
−1
2 (log r)))

≤ ρ(α1,β1)[f ]. (3.30)

From (3.27) and (3.30) we obtain for all sufficiently large values of r that

lim sup
r→+∞

{α1(µf◦g(β
−1
2 (log r)))}2

exp(α1(µf (β
−1
1 (log r)))) · β1(µg(2β

−1
2 (log r)))

= lim
r→+∞

α1(µf◦g(β
−1
2 (log r)))

exp(α1(µf (β
−1
1 (log r))))

· lim sup
r→+∞

α1(µf◦g(β
−1
2 (log r)))

β1(µg(2β
−1
2 (log r)))

≤ 0 · ρ(α1,β1)[f ] = 0.

(3.31)

Similarly from (3.28) and (3.30) we obtain that

lim sup
r→+∞

{α1(µf◦g(β
−1
2 (log r)))}2

exp(α1(µf (β
−1
1 (log r)))) · β1(µg(2β

−1
2 (log r)))

= 0.

Therefore the first part of the theorem follows from (3.31) and above.
Again from (3.29) and (3.30) we get for all large values of r that

lim sup
r→+∞

exp(α2(β
−1
1 (α1(µf◦g(β

−1
2 (log r)))))) · α1(µf◦g(β

−1
2 (log r)))

exp(α1(µf (β
−1
1 (log r)))) · β1(µg(2β

−1
2 (log r)))

= lim
r→+∞

exp(α2(β
−1
1 (α1(µf◦g(β

−1
2 (log r))))))

exp(α1(µf (β
−1
1 (log r))))

· lim sup
r→+∞

α1(µf◦g(β
−1
2 (log r)))

β1(µg(2β
−1
2 (log r)))

≤ 0 · ρ(α1,β1)[f ] = 0,

i.e., lim
r→+∞

exp(α2(β
−1
1 (α1(µf◦g(β

−1
2 (log r)))))) · α1(µf◦g(β

−1
2 (log r)))

exp(α1(µf (β
−1
1 (log r)))) · β1(µg(2β

−1
2 (log r)))

= 0.

Thus the second part of the theorem is established. �

In the line of Theorem 9 and with the help of Lemma 1, one can easily prove the following
theorem and therefore its proof is omitted:
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Theorem 10. Let f and g be any two entire functions such that

ρ(α2,β2)[g] < λ(α1,β1)[f ] ≤ ρ(α1,β1)[f ].

Also let C be any positive constant and β1 ∈ L2.

(i) Any one of the following two conditions are assumed to be satisfied :

(a) β1(r) = C(exp(α2(r)));

(b) exp(α2(r)) > β1(r);

then

lim sup
r→+∞

{α1(Mf◦g(β
−1
2 (log r)))}2

exp(α1(Mf (β
−1
1 (log r)))) · β1(Mg(β

−1
2 (log r)))

= 0.

(ii) If α2(β
−1
1 (r)) ∈ L0, then

lim
r→+∞

exp(α2(β
−1
1 (α1(Mf◦g(β

−1
2 (log r)))))) · α1(Mf◦g(β

−1
2 (log r)))

exp(α1(Mf (β
−1
1 (log r)))) · β1(Mg(β

−1
2 (log r)))

= 0.

Theorem 11. Let f and g be any two entire functions such that

λ(α1,β1)[f ] < ∞ and ρ(α3,β3)[f ◦ g] < ∞

where α2, β1 ∈ L2. Then

lim sup
r→+∞

α1(µf◦g(β
−1
2 (log r))) · α3(µf◦g(β

−1
3 (r)))

β1(µg(2β
−1
2 (log r))) · α2(µg(β

−1
2 (r)))

≤
ρ(α3,β3)[f ◦ g] · ρ(α1,β1)[f ]

λ(α2,β2)[g]
.

P r o o f. For all sufficiently large values of r we have

α3(µf◦g(β
−1
3 (r))) ≤ (ρ(α3,β3)[f ◦ g] + ε)r. (3.32)

Again for all sufficiently large values of r it follows that

α2(µg(β
−1
2 (r))) ≥ (λ(α2,β2)[g] − ε)r. (3.33)

Now combining (3.32) and (3.33) we have for all sufficiently large values of r that

α3(µf◦g(β
−1
3 (r)))

α2(µg(β
−1
2 (r)))

≤
ρ(α3,β3)[f ◦ g] + ε

λ(α2,β2)[g]− ε
.

As ε > 0 is arbitrary we get from above that

lim sup
r→+∞

α3(µf◦g(β
−1
3 (r)))

α2(µg(β
−1
2 (r)))

≤
ρ(α3,β3)[f ◦ g]

λ(α2,β2)[g]
. (3.34)

Now from (3.30) and (3.34) we obtain that

lim sup
r→+∞

α1(µf◦g(β
−1
2 (log r))) · α3(µf◦g(β

−1
3 (r)))

β1(µg(2β
−1
2 (log r))) · α2(µg(β

−1
2 (r)))

≤ lim sup
r→+∞

α1(µf◦g(β
−1
2 (log r)))

β1(µg(2β
−1
2 (log r)))

· lim sup
r→+∞

α3(µf◦g(β
−1
3 (r)))

α2(µg(β
−1
2 (r)))

≤
ρ(α3,β3)[f ◦ g] · ρ(α1,β1)[f ]

λ(α2,β2)[g]
.

Hence the theorem follows. �

In the line of Theorem 11 and with the help of Lemma 1, one can easily proof the following
theorem and therefore its proof is omitted:
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Theorem 12. Let f and g be any two entire functions such that

λ(α1,β1)[f ] < ∞ and ρ(α3,β3)[f ◦ g] < ∞

where α2, β1 ∈ L2. Then

lim sup
r→+∞

α1(Mf◦g(β
−1
2 (log r))) · α3(Mf◦g(β

−1
3 (r)))

β1(Mg(β
−1
2 (log r))) · α2(Mg(β

−1
2 (r)))

≤
ρ(α3,β3)[f ◦ g] · ρ(α1,β1)[f ]

λ(α2,β2)[g]
.

Theorem 13. Let f and g be any two entire functions such that

ρ(α1,β1)[f ] < ∞ and λ(α3,β3)[f ◦ g] = ∞.

Then

lim
r→+∞

α3(µf◦g(r))

α1(µf (β
−1
1 (β3(r))))

= ∞.

P r o o f. Let us suppose that the conclusion of the theorem do not hold. Then we can find a
constant ∆ > 0 such that for a sequence of values of r tending to infinity

α3(µf◦g(r)) ≤ ∆ · α1(µf (β
−1
1 (β3(r)))). (3.35)

Again from the definition of ρ(α1,β1)[f ], it follows for all sufficiently large values of r that

α1(µf (β
−1
1 (β3(r)))) ≤ (ρ(α1,β1)[f ] + ǫ)β3(r). (3.36)

Thus from (3.35) and (3.36), we have for a sequence of values of r tending to infinity that

α3(µf◦g(r)) ≤ ∆(ρ(α1,β1)[f ] + ǫ)β3(r)

i.e.,
α3(µf◦g(r))

β3(r)
≤

∆(ρ(α1,β1)[f ] + ǫ)β3(r)

β3(r)

i.e., lim inf
r+∞

α3(µf◦g(r))

β3(r)
= λ(α3,β3)[f ◦ g] < ∞.

This is a contradiction. Thus the theorem follows. �

Remark 2. Theorem 13 is also valid with “limit superior” instead of “limit” if λ(α3,β3)[f ◦g] = ∞
is replaced by ρ(α3,β3)[f ◦ g] = ∞ while the other conditions remain the same.

Analogously one may also state the following theorem without its proof as it may be carried
out in the line of Theorem 13.

Theorem 14. Let f and g be any two entire functions such that

ρ(α1,β1)[g] < ∞ and ρ(α3,β3)[f ◦ g] = ∞.

Then

lim sup
r→+∞

α3(µf◦g(r))

α1(µg(β
−1
1 (β3(r))))

= ∞.

Remark 3. Theorem 14 is also valid with “limit” instead of “limit superior” if ρ(α3,β3)[f ◦g] = ∞
is replaced by λ(α3,β3)[f ◦ g] = ∞ and the other conditions remain the same.

Remark 4. Theorem 13, Theorem 14, Remark 2 and Remark 3 can also be deduced in terms of
maximum modulus of entire functions.
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4. Conclusion

Actually this paper deals with the extension of the researches on the growth properties of
composite entire functions on the basis of their generalized order (α, β) where α and β are continuous
non-negative functions on (−∞,+∞). This assumption can also be modified by the treatment of
the ideas of generalized type (α, β). Moreover, some extensions of the same may be done in the
light of generalized relative order (α, β). Furthermore, the concept of generalized order (α, β) and
generalized type (α, β) should have a broad range of applications in complex dynamics, factorization
theory of entire functions of single complex variable, the solution of complex differential equations
etc. which may be an ample scope of further research.
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