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Abstract: The paper deals with linearization problem of Poisson-Lie structures on the (1 + 1) Poincaré
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1. Introduction

Poisson-Lie structure on a Lie group G is a Poisson structure {. , .} on C∞(G), such that the
multiplication µ : G×G −→ G is a Poisson map, namely

{f ◦ µ, g ◦ µ}C∞(G×G)(x, y) = {f, g}C∞(G)(µ(x, y)), x, y ∈ G, f, g ∈ C∞(G).

By Drinfel’d [5, 6], this is equivalent to giving an antisymmetric contravariant 2−tensor π on G
such that the Schouten–Nijenhuis bracket [π, π] = 0 and satisfies the multiplicativity relation

π(xy) = lx∗π(y) + ry∗π(x), ∀x, y ∈ G,

where lx∗ and ry∗ are the left and right translations in G by x and y, respectively.
The relation above shows that the Poisson-Lie structure π must vanishing at the identity e ∈ G,

so that its derivative deπ : G →
∧2 G at e is well defined, where G is the Lie algebra of G. This

linear homomorphism turns out to be a 1-cocycle with respect to the adjoint action, and the dual
homomorphism

∧2 G∗ → G∗ satisfies the Jacobi identity; i.e., the dual G∗ of G becomes a Lie
algebra. Satisfying these properties, the map deπ is said to be a Lie bialgebra structure associated
to π.

Recall that the preceding construction is in some sense invertible [10]. Namely, if G is simply
connected then any Lie bialgebra structure δ : G →

∧2 G on the Lie algebra G = Lie (G) carries
uniquely defined Poisson–Lie structure π on G such that

(deπ)(S) = δ(S), ∀S ∈ G. (1.1)
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If we choose a local coordinates (x1, x2, ..., xn) in a neighborhood U of the unity e, the Poisson–
Lie structure π is given by

π(x) =
∑

1≤i<j≤n

πij(x)∂xi ∧ ∂xj , ∀x ∈ U,

where πij are smooth functions vanishing at e and

{xi, xj}(x) = πij(x), ∀x ∈ U.

The Taylor series of the functions πij is given by

πij(x) =
∑

1≤k≤n

ckijxk + θij(x),

where order (θij) ≥ 2 and ckij = ∂πij/∂xk(e).

In particular, the terms ckijxk define a linear Poisson structure π0, called the linear part of π,
there Poisson bracket is written in terms of the local coordinates (x1, x2, ..., xn) as

{xi, xj}0 =
∑

1≤k≤n

ckijxk. (1.2)

Further, since π satisfies the Jacobi identity, the {ckij} 1≤i<j≤n

1≤k≤n

form a set of structure constants for

the Lie algebra (G∗, δ∗) dual of Lie algebra (G, [, ]). In other words, G∗ is called the linearizing Lie
algebra of Poisson–Lie structure π.

In this paper we are interested in the following linearization problem:
Are there new coordinates where the terms θij vanish identically, so that the Poisson-Lie structure
coincides with its linear part?

For a Poisson structure P vanishing at a point x0, Weinstein [11] proved that if the linearizing
Lie algebra is semisimple, then P is formally linearizable at x0. Furthermore, Conn [3] proved that
if the linearizing Lie algebra is semisimple, then P is analytically linearizable. Duffour [7] showed
that semisimplicity does not imply smooth linearizability by giving a counterexample of a three-
dimensional solvable Lie algebra. In the case of smooth Poisson structures, Conn [4] proved that if
the linearizing Lie algebra is semisimple and of compact type then the linearization is smooth.

For a Poisson–Lie structures, Chloup–Arnould [2] gave examples of linearizable and non lin-
earizable Poisson–Lie structures. Recently, Enriquez–Etingof–Marshal [8] constructed a Poisson
isomorphism between the formal Poisson manifolds g∗ and G∗, where g is a finite dimensional qua-
sitriangular Lie bialgebra and Alekseev–Meinrenken [1] showed that for any coboundary Poisson–Lie
group G, the Poisson structure on G∗ is linearisable at the group unit.

The aim of this paper is the explicit construction of smooth linearizing coordinates for the
Poisson-Lie structures on the 2D Euclidean group generated by the Lie algebra s3(0) and the
(1 + 1) Poincaré group generated by the Lie algebra τ3(−1). We note that the notations s3(0) and
τ3(−1) are the same as in [9], where all real three-dimensional Lie algebras are classified. We adopt
the same notification throughout this paper.

In this work we present a Lie bialgebra structures on the Lie algebras s3(0) and τ3(−1) and we
adopt the classification given in [9]. Then, we give the corresponding Poisson–Lie structures on 2D
Euclidean and (1 + 1) Poincaré groups and present their Casimir functions, which describe a sym-
plectic leaves for all Poisson–Lie structures. Finally, we show that all these Poisson–Lie structures
are linearizable near the unity by constructing the explicit forme of linearizing coordinates.

The paper is organized as follows. In Section 2 we treat the 2D Euclidean group and explain
the technical methods, in Section 3 we investigate the (1 + 1) Poincaré group for which we list in
a schematic way our results in the same order and with the same notations.
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2. Poisson–Lie structures on 2D Euclidean group

2.1. 2D Euclidean Lie algebra and group

The 2D Euclidean Lie algebra s3(0) is defined by the Lie brackets:

[e3, e1] = e2, [e3, e2] = −e1, [e1, e2] = 0.

The relation above defines a solvable three-dimensional real Lie algebra where its adjoint represen-
tation ρ is as follows:

ρ(e1) =





0 0 0
0 0 −1
0 0 0



 , ρ(e2) =





0 0 1
0 0 0
0 0 0



 , ρ(e3) =





0 −1 0
1 0 0
0 0 0



 .

The generic Lie group element M with a local coordinates (x, y, z) “near {e}” is as follows

M = exp(xρ(e1)) exp(yρ(e2)) exp(zρ(e3)) =





cos(z) − sin(z) y
sin(z) cos(z) −x

0 0 1



 .

If M ′ is another generic Lie group element with “local coordinates” (x′, y′, z′), then the multiplica-
tion of two group elements would be

M.M ′ =





cos(z + z′) − sin(z + z′) y + y′ cos(z) + x′ sin(z)
sin(z + z′) cos(z + z′) −x− x′ cos(z) + y′ sin(z)

0 0 1



 .

Therewith, the 2D Euclidean group can be identified by R
3 associated with the group multiplication

law:

(x, y, z).(x′, y′, z′) = (x+ x′ cos(z)− y′ sin(z), y + y′ cos(z) + x′ sin(z), z + z′)

with the unity e = (0, 0, 0).

The left invariant fields (E1, E2, E3) associated to the basis (e1, e2, e3) have this local expression

E1 = cos(z)∂x + sin(z)∂y , E2 = − sin(z)∂x + cos(z)∂y, E3 = ∂z.

2.2. Bialgebra and Poisson-Lie structures on 2D Euclidean group

Let δ be a bialgebra structure on the Lie algebra s3(0). In the basis (e1, e2, e3) of s3(0) we write

δ(e1) = a1e2 ∧ e3 + b1e3 ∧ e1 + c1e1 ∧ e2,

δ(e2) = a2e2 ∧ e3 + b2e3 ∧ e1 + c2e1 ∧ e2,

δ(e3) = a3e2 ∧ e3 + b3e3 ∧ e1 + c3e1 ∧ e2,

this is equivalent to





δ(e1)
δ(e2)
δ(e3)



 =





a1 b1 c1
a2 b2 c2
a3 b3 c3









e2 ∧ e3
e3 ∧ e1
e1 ∧ e2



 = U





e2 ∧ e3
e3 ∧ e1
e1 ∧ e2



 .
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If (ε1, ε2, ε3) is the dual basis of (e1, e2, e3), then the Lie bracket on s∗3(0) given by δ∗ can be written:

δ∗(ε2 ∧ ε3) = a1ε1 + a2ε2 + a3ε3,
δ∗(ε3 ∧ ε1) = b1ε1 + b2ε2 + b3ε3,
δ∗(ε1 ∧ ε2) = c1ε1 + c2ε2 + c3ε3.

By a straightforward computation, we show that in order to ensure that δ is a 1-cocycle, the
system below must to be verified





a2 + b1 b2 − a1 b3 + c2
a1 − b2 a2 + b1 a3 + c2

0 0 a1 + b2









e2 ∧ e3
e3 ∧ e1
e1 ∧ e2



 =





0
0
0



 .

Hence, the matrix U has the form

U =





0 b1 c1
−b1 0 c2
−c1 −c2 c3



 , (2.1)

where the Jacobi identity fulfilled by δ∗ is b1c3 = 0.
Therefore, we get

Proposition 1. The Lie bialgebra structures δ on 2D Euclidean Lie algebra are written in
terms of the basis (e1, e2, e3) as follows:

δ(e1) = b1e3 ∧ e1 + c1e1 ∧ e2,

δ(e2) = −b1e2 ∧ e3 + c2e1 ∧ e2,

δ(e3) = −c1e2 ∧ e3 − c2e3 ∧ e1 + c3e1 ∧ e2,

where b1, c1, c2 and c3 are reals such that b1c3 = 0.

Now, let π be the Poisson-Lie structures corresponding to the bialgebra structures δ. We set:

π = π23E2 ∧E3 + π31E3 ∧ E1 + π12E1 ∧ E2,

where (E2 ∧ E3, E3 ∧ E1, E1 ∧ E2) is the basis of the bivector fields on the 2D Euclidean group.
For any element Ek of the basis (E1, E2, E3), the Lie derivative of π in the direction of Ek is

written as

LEk
π =

∑

1≤i<j≤3

Ek(πij)Ei ∧ Ej + πij ([Ek, Ei] ∧ Ej − [Ek, Ej ] ∧ Ei) , k = 1, 2, 3.

By a technical and explicit computation using the above relation, we show that the equation (1.1)
which describes the correspondence between π and δ can be transformed into the following system







E1(π23) = 0,
E2(π23) = −b1,
E3(π23)− π2 = −c1,







E1(π31) = b1,
E2(π31) = 0,
E3(π31) + π23 = −c2,







E1(π12) + π31 = c1,
E2(π12)− π23 = c2,
E3(π12) = c3.

(2.2)

The system (2.2) has for solutions:

π23(x, y, z) = (b1x− c1) sin(z) − (b1y − c2) cos(z)− c2,

π31(x, y, z) = (b1x− c1) cos(z) + (b1y − c2) sin(z) + c1,

π12(x, y, z) = −
b1
2
x2 −

b1
2
y2 + c1x+ c2y + c3z.
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Since

E2 ∧ E3 = cos(z)∂y ∧ ∂z + sin(z)∂z ∧ ∂x,

E3 ∧ E1 = − sin(z)∂y ∧ ∂z + cos(z)∂z ∧ ∂x,

E1 ∧ E2 = ∂x ∧ ∂y,

we have:

Proposition 2. In the local coordinates (x, y, z), the Poisson–Lie bracket {. , .} on 2D Eu-
clidean group is:

{y, z} = −b1y − c1 sin(z)− c2(cos(z)− 1),

{z, x} = b1x− c2 sin(z) + c1(cos(z)− 1),

{x, y} = −
b1
2
x2 −

b1
2
y2 + c1x+ c2y + c3z.

We will call this four-parametric Poisson–Lie brackets as PL(b1, c1, c2, c3).
The linear part π0 of π is straightforwardly obtained as

{y, z}0 = −b1y − c1z,

{z, x}0 = b1x− c2z,

{x, y}0 = c1x+ c2y + c3z.

2.3. Classification of Poisson–Lie structures on 2D Euclidean group

The Poisson–Lie structures on a Lie groupG are in one-to-one correspondence with the bialgebra
structures on its Lie algebra G. Thus, we obtain the complete classes of the Poisson-Lie structures
on 2D Euclidean group by using the classification of Lie bialgebra structures on s3(0), which was
given by Gomez in [9].

In [9], we find four nonequivalents (under Lie algebra automorphisms) classes of Lie bialgebra
structures on s3(0). By taking into account the change of basis:

e1 = e1, e2 = e2, e3 = −e0,

we get a correspondence between each one of those classes and our presented cocommutator δ given
in Proposition 1. This correspondence is specified by a fixed values of the parameters (b1, c1, c2, c3)
of the matrix (2.1), as presented in the table below

Table 1. Correspondence with the classification [9] of Lie bialgebra structures on s3(0).

Lie bialgebra in [6] b1 c1 c2 c3

(9) −λ 0 0 0

15’ 0 0 0 −ω

11’ 0 1 0 0

(14’) 0 α 0 −λ

In Table 1, the first column describe the number that identifies the type of Lie bialgebra
(last column of table III in [9]). The remaining of columns describe the particular values of the
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parameters (b1, c1, c2, c3) for which the cocommutator given in Proposition 1 coincides with the Lie
bialgebra parameters from [9]. Note, the parameters λ and ω are nonzero reals.

Thus, we have four nonequivalents (under group automorphisms) classes of Poisson–Lie struc-
tures on the 2D Euclidean group, that would be explicitly obtained by substituting the values of
the parameters (b1, c1, c2, c3) into the full Poisson–Lie bracket expressions PL(b1, c1, c2, c3) given in
Proposition 2 as shown in table below

Table 2. Classification of Poisson-Lie structures on the 2D Euclidean group correspond-
ing to the Lie bialgebra structures given in Table 1.

{, } {y, z} {z, x} {x, y}

PL(−λ, 0, 0, 0) λy −λx λ/2 · (x2 + y2)

PL(0, 0, 0,−ω) 0 0 −ωz

PL(0, 1, 0, 0) − sin(z) cos(z)− 1 x

PL(0, α, 0,−λ) −α sin(z) α(cos(z)− 1) αx− λz

Now, recall that a local Casimir function on a Poisson–Lie group G is a function C such that
{C, f} = 0 for any function f on G. Note that the local Casimir functions on a Poisson–Lie
group (G,π) are constant in symplectic leaves of G.

Let CPL(b1,c1,c2,c3) be the Casimir functions for the Poisson–Lie structures PL(b1, c1, c2, c3). For
the classes of Poisson–Lie structures given in Table 2, we get

CPL(−λ,0,0,0) = 2arctan
(x

y

)

+ z,

CPL(0,0,0,−ω) = f(z),

CPL(0,1,0,0) =
x sin(z)

cos(z)− 1
− y,

CPL(0,α,0,−λ) = −αy +
(αx− λz) sin(z)

cos(z)− 1
− λ ln(1− cos(z)),

where f is a C∞−function that depends only on z.

2.4. Linearization of Poisson–Lie structures on 2D Euclidean group

Now, we consider the formula (1.2), than the linear part π0 of π can be written as

π0(x) =
∑

1≤i<j≤n

(

∑

1≤k≤n

ckijxk

)

∂xi
∧ ∂xj

.

Note, the Lie bialgebra structure δ associated to π defines a linear Poisson–Lie structure on the
additive group G (G ≃ R

n), that can be expressed as

δ(a) =
∑

1≤i<j≤n





∑

1≤k≤n

ckijak



 ∂i ∧ ∂j , a = (a1, ..., an) ∈ R
n, (2.3)

where (∂1, ..., ∂n) is the canonical basis of Rn.
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The expression (2.3) coincides with the linear part π0, hence the linearization problem becomes
as follows:
Is there a local Poisson diffeomorphism ϕ : G −→ G of a neighborhood of e in G into a neighborhood
of 0 in G such that ϕ(e) = 0?

A such diffeomorphism preserves necessarily the subgroup of singular points: {x ∈ G : π(x) = 0}
and the symplectics leaves.

If (ϕ1, ..., ϕn) are the components of ϕ, then ϕ is solution of the system of equations

{ϕi, ϕj} =
∑

1≤k≤n

ckijϕk, 1 ≤ i < j ≤ n. (2.4)

Method. We calculate the equations which determine the symplectics leaves for the four classes
of Poisson–Lie structures given in Table 2, using the Casimir functions (each symplectic leaf is the
common level manifold of Casimir functions) and we determine their subgroup of singular points.

The identification of the subgroup of the singular points and the symplectics leaves of the 2D
Euclidean group with those of its Lie algebra s3(0) allows us to solve the system of equations (2.4)
for each class of Poisson–Lie structures given in Table 2. Consequently, our main result is the
following

Theorem 1. All Poisson–Lie structures on 2D Euclidean group which are given in Table 2 are
linearizable near the unity. The linearizing coordinates of each class are given in Table 3:

Table 3. Components of linearizing diffeomorphisms ϕ corresponding to the Poisson–Lie
structures given in Table 2.

ϕi(x, y, z) ϕ1(x, y, z) ϕ2(x, y, z) ϕ3(x, y, z)

PL(−λ, 0, 0, 0) x cos( z
2
) + y sin( z

2
) −x sin( z

2
) + y cos( z

2
) z

PL(0, 0, 0,−ω) x y z

PL(0, 1, 0, 0) x+ y tan( z
2
) y tan( z

2
)

PL(0, α, 0,−λ)
x− λ

α
z+

+
(

y − λ
α
ln(1 + tan2( z

2
)
)

tan( z
2
)

y 2 tan( z
2
)

Remark 1. The class PL(0, 0, 0,−ω) is linear in the local coordinates (x, y, z) (trivial case).

3. Poisson–Lie structures on (1 + 1) Poicaré group

3.1. (1 + 1) Poincaré Lie algebra and group

The (1 + 1) Poincaré Lie algebra τ3(−1) (presented in null coordinates) is defined by the Lie
brackets

[e3, e1] = −e1, [e3, e2] = e2, [e1, e2] = 0.
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1. Adjoint representation

ρ(e1) =





0 0 1
0 0 0
0 0 0



 , ρ(e2) =





0 0 0
0 0 −1
0 0 0



 , ρ(e3) =





−1 0 0
0 1 0
0 0 0



 .

2. Matrix group element

M = exp(xρ(e1)) exp(yρ(e2)) exp(zρ(e3)) =





exp(−z) 0 x
0 exp(z) −y
0 0 1



 .

3. Group multiplication law
The (1 + 1) Poincaré group can be identified by R

3 associated with the group multiplication
law:

(x, y, z).(x′, y′, z′) = (x+ x′ exp(−z), y + y′ exp(z), z + z′),

with the unity e = (0, 0, 0).
4. Basis of left invariant fields

E1 = exp(−z)∂x, E2 = exp(z)∂y, E3 = ∂z.

3.2. Lie bialgebra and Poisson–Lie structures on (1 + 1) Poincaré group

1. Lie bialgebra structures on τ3(−1)

Proposition 3. The Lie bialgebra structures δ on (1 + 1) Poincaré Lie algebra are written in
terms of the basis (e1, e2, e3) as follows:

δ(e1) = b1e3 ∧ e1 + c1e1 ∧ e2,

δ(e2) = −b1e2 ∧ e3 + c2e1 ∧ e2,

δ(e3) = −c1e2 ∧ e3 − c2e3 ∧ e1 + c3e1 ∧ e2,

with a1, b1, c1, c2 are real such that b1c3 = 0.

P r o o f. Similar to the proof of Proposition 1. �

2. Poisson–Lie structures on (1+1) Poincaré group

Proposition 4. In the local coordinates (x, y, z), the Poisson–Lie bracket {. , .} on (1 + 1)
Poincaré group is written as

{y, z} = −b1y + c1(1− exp(z)),

{z, x} = b1x+ c2(exp(−z)− 1),

{x, y} = c1x+ c2y + c3z − b1xy.

We will call this six-parametric Poisson–Lie brackets as PL(b1, c1, c2, c3).
P r o o f. Similar to the proof of Proposition 1. �

3. The linear part is as follows

{y, z}0 = −b1y − c1z,

{z, x}0 = b1x− c2z,

{x, y}0 = c1x+ c2y + c3z.



Linearization of Poisson–Lie Structures 41

3.3. Classification of Lie bialgebra and Poisson–Lie structures on (1 + 1)
Poincaré group

1. Isomorphic to the Lie algebra τ3(−1) in [9] through the change of variables

e1 = e1, e2 = e2, e3 = −e0

2. Correspondence with the classification of Lie bialgebras on τ3(−1)

Table 4. Correspondence with the classification [9] of Lie bialgebra structures on τ3(−1).

Lie bialgebra in [9] b1 c1 c2 c3

6 (ρ = −1, χ = e0 ∧ e1) 0 0 1 0

7 (ρ = −1) −λ 0 0 0

(11) 0 αβ α 0

5’ 0 0 0 -1

8 0 −α 0 -1

(14) 0 αλ α -1

In Table 4, the first column describes the number that identifies the type of Lie bialgebra (last
column of table III in [9]. Note, the parameters λ, α and β are nonzero reals.

3. Classification of Poisson Lie structures on (1+1) Poincaré group

Table 5. Correspondence with the Lie bialgebra structures given in Table 4 of Poisson–
Lie structures on the (1 + 1) Poincaré group.

{,} {y, z} {z, x} {x, y}

PL(0, 0, 1, 0) 0 exp(−z)− 1 y

PL(−λ, 0, 0, 0) λy −λx λxy

PL(0, αβ, α, 0) αβ(1− exp(z)) α(exp(−z)− 1) αβx+ αy

PL(0, 0, 0,−1) 0 0 −z

PL(0,−α, 0,−1) α(exp(z)− 1) 0 −αx− z

PL(0, αλ, α,−1) αλ(1− exp(z)) α(exp(−z)− 1)) αλx+ αy − z

4. Casimir functions

CPL(0,0,1,0) =
y

exp(z)− 1
, CPL(−λ,0,0,0) = −

x exp(z)

y
, CPL(0,αβ,α,0) =

βx exp(z) + y

exp(z) − 1
,

CPL(0,0,0,−1) = f(z), CPL(0,−α,0,−1) =
αx exp(z) + z

exp(z)− 1
− ln(exp(−z)− 1),

CPL(0,αλ,α,−1) =
αλx exp(z) + αy − z

1− exp(z)
− ln(exp(−z)− 1),

where f is a C∞−function of the only variable z.
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3.4. Linearization of Poisson-Lie structures on (1+1) Poincaré group

Theorem 2. All Poisson-Lie structures on (1 + 1) Poincaré group which are given in Table 5
are linearizable near the unity. The linearizing coordinates of each class are given below :

Table 6. Components of linearizing diffeomorphisms ϕ corresponding to the Poisson–Lie
structures given in Table 5.

ϕi(x, y, z) ϕ1(x, y, z) ϕ2(x, y, z) ϕ3(x, y, z)

PL(0, 0, 1, 0) x −y exp(z)− 1

PL(−λ, 0, 0, 0) x exp(z) −y z

PL(0, αβ, α, 0) x+ ( 1
β
y + 1)(exp(−z)− 1) y exp(−z)− 1

PL(0, 0, 0,−1) x y z

PL(0,−α, 0, 1) −x− 1
α
z exp(−z) y exp(−z)− 1

PL(0,−α, 0, 1) x+ 1
λ
y(exp(−z)− 1)− 1

αλ
z exp(−z) y 1− exp(−z)

P r o o f. We use the same method as in Theorem 1. �

Remark 2. The class PL(0, 0, 0,−1) is linear in the local coordinates (x, y, z) (trivial case).

Acknowledgements

We thank Professor Morad EL OUALI for interesting and helpful discussions. Also we thank
the referees for their time and comments.

REFERENCES

1. Alekseev A., Meinrenken E. Linearization of Poisson Lie group structures. J. Symplectic Geom., 2016.
Vol. 14, No. 1. P. 227–267. DOI: 10.4310/JSG.2016.v14.n1.a9

2. Chloup-Arnould V. Linearization of some Poisson–Lie tensor. J. Geom. Phys., 1997. Vol. 24, No. 1.
P. 46–52. DOI: 10.1016/S0393-0440(97)00004-1

3. Conn J. F. Normal forms for analytic Poisson structures. Ann. of Math. (2), 1984. Vol. 119, No. 3.
P. 577–601. DOI: 10.2307/2007086

4. Conn J.F. Normal forms for smooth Poisson structures. Ann. of Math. (2), 1985. Vol. 121, No. 3.
P. 565–593. DOI: 10.2307/1971210

5. Drinfel’d V.G. Quantum groups. J. Math. Sci., 1988. Vol. 41. P. 898–915. DOI: 10.1007/BF01247086
6. Drinfel’d V.G. Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of the

classical Yang–Baxter equations. Dokl. Akad. Nauk SSSR, 1983. Vol. 268, No. 2. P. 285–287. (in Russian)
7. Dufour J.-P. Linéarisation de certaines structures de Poisson. J. Differential Geom., 1990. Vol. 32, No. 2.

P. 415–428. (in French) DOI: 10.4310/jdg/1214445313
8. Enriquez B., Etingof P., Marshall I. Comparison of Poisson structures and Poisson–Lie dynamical r-

matrices. Int. Math. Res. Not., 2005. No. 36. P. 2183–2198. DOI: 10.1155/IMRN.2005.2183
9. Gomez X. Classification of three-dimensional Lie bialgebras. J. Math. Phys., 2000. Vol. 41. Art. no. 4939.

DOI: 10.1063/1.533385
10. Lu J.-H., Weinstein A. Poisson Lie group, dressing transformations, and Bruhat decomposition. J.

Differential Geom., 1990. Vol. 31, No. 2. P. 501–526. DOI: 10.4310/jdg/1214444324
11. Weinstein A. The local structure of Poisson manifolds. J. Differential Geom., 1983. Vol. 18, No. 3.

P. 523–557. DOI: 10.4310/jdg/1214437787

https://doi.org/10.4310/JSG.2016.v14.n1.a9
https://doi.org/10.1016/S0393-0440(97)00004-1
https://doi.org/10.2307/2007086
https://doi.org/10.2307/1971210
https://doi.org/10.1007/BF01247086
https://doi.org/10.4310/jdg/1214445313
https://doi.org/10.1155/IMRN.2005.2183
https://doi.org/10.1063/1.533385
https://doi.org/10.4310/jdg/1214444324
https://doi.org/10.4310/jdg/1214437787

	Introduction
	Poisson–Lie structures on 2D Euclidean group
	2D Euclidean Lie algebra and group
	Bialgebra and Poisson-Lie structures on 2D Euclidean group
	Classification of Poisson–Lie structures on 2D Euclidean group
	Linearization of Poisson–Lie structures on 2D Euclidean group

	Poisson–Lie structures on (1+1) Poicaré group
	(1+1) Poincaré Lie algebra and group
	Lie bialgebra and Poisson–Lie structures on (1+1) Poincaré group
	Classification of Lie bialgebra and Poisson–Lie structures on (1+1) Poincaré group
	Linearization of Poisson-Lie structures on (1+1) Poincaré group


