DISTANCE-REGULAR GRAPH WITH INTERSECTION ARRAY $\{27,20,7 ; 1,4,21\}$ DOES NOT EXIST ${ }^{1}$

Konstantin S. Efimov
Ural State University of Economics, 62 March 8th Str., Ekaterinburg, 620144, Russia
Ural Federal University, 19 Mira Str., Ekaterinburg, 620002, Russia
konstantin.s.efimov@gmail.com

Alexander A. Makhnev
Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, 16 S. Kovalevskaya Str., Ekaterinburg, 620108, Russia
Ural Federal University, 19 Mira Str., Ekaterinburg, 620002, Russia
makhnev@imm.uran.ru

Abstract

In the class of distance-regular graphs of diameter 3 there are 5 intersection arrays of graphs with at most 28 vertices and noninteger eigenvalue. These arrays are $\{18,14,5 ; 1,2,14\},\{18,15,9 ; 1,1,10\}$, $\{21,16,10 ; 1,2,12\},\{24,21,3 ; 1,3,18\}$, and $\{27,20,7 ; 1,4,21\}$. Automorphisms of graphs with intersection arrays $\{18,15,9 ; 1,1,10\}$ and $\{24,21,3 ; 1,3,18\}$ were found earlier by A.A. Makhnev and D.V. Paduchikh. In this paper, it is proved that a graph with the intersection array $\{27,20,7 ; 1,4,21\}$ does not exist.

Keywords: Distance-regular graph, Graph Γ with strongly regular graph Γ_{3}, Automorphism.

1. Introduction

We consider undirected graphs without loops and multiple edges. For given vertex a of a graph Γ, we denote by $\Gamma_{i}(a)$ the subgraph of Γ induced by the set of all vertices at distance i from a. The subgraph $[a]=\Gamma_{1}(a)$ is called the neighbourhood of the vertex a.

Let Γ be a graph of diameter d and $i \in\{1,2,3, \ldots, d\}$. The graph Γ_{i} have the same set of vertices, and vertices u and w are adjacent in Γ_{i} if $d_{\Gamma}(u, w)=i$.

If vertices u and w are at distance i in Γ, then denote by $b_{i}(u, w)$ (by $c_{i}(u, w)$) the number of vertices in the intersection of $\Gamma_{i+1}(u)\left(\Gamma_{i-1}(u)\right)$ with $[w]$. A graph Γ of diameter d is called a distance-regular graph with intersection array $\left\{b_{0}, b_{1}, \ldots, b_{d-1} ; c_{1}, \ldots, c_{d}\right\}$ if the values $b_{i}(u, w)$ and $c_{i}(u, w)$ are independent of the choice of the vertices u and w at distance i in Γ for any $i=0, \ldots, d$. For such graph and for $0 \leq i, j, h \leq d$, the number $p_{i j}^{h}=\left[\begin{array}{c}u v \\ i j\end{array}\right]$ is independent of u and v for all vertices $u, v \in \Gamma$ with $d(u, v)=h$. The constants $p_{i j}^{h}$ are called the intersection numbers of Γ [1].

The incidence system with set of points P and set of lines \mathcal{L} is called α-partial geometry of order (s, t) (and is denoted by $\left.p G_{\alpha}(s, t)\right)$ if every line contains exactly $s+1$ points, every point lies

[^0]exactly on $t+1$ lines, any two points lie on at most one line, and, for any antiflag $(a, l) \in(P, \mathcal{L})$, there is exactly α lines passing through a and intersecting l. If $\alpha=t+1$, then the geometry is called a dual 2 -scheme; and if $\alpha=t$, then the geometry is called a net.

The point graph of a geometry of points and lines is a graph whose vertices are points of the geometry, and two different vertices are adjacent if they lie on a common line. It is easy to understand that the point graph of a partial geometry $p G_{\alpha}(s, t)$ is strongly regular with parameters

$$
v=(s+1)(1+s t / \alpha), \quad k=s(t+1), \quad \lambda=(s-1)+(\alpha-1) t, \quad \mu=\alpha(t+1) .
$$

A strongly regular graph having these parameters for some positive integers α, s, t is called a pseudogeometric graph for $p G_{\alpha}(s, t)$.

In the class of distance-regular graphs Γ of diameter 3, there are 5 hypothetical graphs with at most 28 vertices and non-integer eigenvalues. They have intersection arrays $\{18,14,5 ; 1,2,14\}$, $\{18,15,9 ; 1,1,10\}$, $\{21,16,10 ; 1,2,12\},\{24,21,3 ; 1,3.18\}$, and $\{27,20,7 ; 1,4,21\}$. Earlier, automorphisms of graphs with intersection arrays $\{18,15,9 ; 1,1,10\}$ and $\{24,21,3 ; 1,3,18\}$ were found by A.A. Makhnev and D.V. Paduchikh [4], [5].

In this paper, we study the properties of a hypothetical distance-regular graph with intersection array $\{27,20,7 ; 1,4,21\}$ and prove the following theorem.

Theorem 1. A distance-regular graph with intersection array $\{27,20,7 ; 1,4,21\}$ does not exist.

2. Preliminary results

In the proof of Theorem 1, we use triple intersection numbers [2].
Let Γ be a distance-regular graph of diameter d. If u_{1}, u_{2}, and u_{3} are vertices of Γ and r_{1}, r_{2}, and r_{3} are non-negative integers not greater than d, then $\left\{\begin{array}{c}u_{1} u_{2} u_{3} \\ r_{1} r_{2} r_{3}\end{array}\right\}$ is the set of vertices $w \in \Gamma$ such that

$$
d\left(w, u_{i}\right)=r_{i}, \quad\left[\begin{array}{c}
u_{1} u_{2} u_{3} \\
r_{1} r_{2} r_{3}
\end{array}\right]=\left|\left\{\begin{array}{c}
u_{1} u_{2} u_{3} \\
r_{1} r_{2} r_{3}
\end{array}\right\}\right| .
$$

The numbers $\left[\begin{array}{c}u_{1} u_{2} u_{3} \\ r_{1} r_{2} r_{3}\end{array}\right]$ are called triple intersection numbers. For a fixed triple of vertices u_{1}, u_{2}, u_{3}, we will write $\left[r_{1} r_{2} r_{3}\right]$ instead of $\left[\begin{array}{c}u_{1} u_{2} u_{3} \\ r_{1} r_{2} r_{3}\end{array}\right]$. Unfortunately, there are no general formulas for the numbers $\left[r_{1} r_{2} r_{3}\right.$]. However, a method for calculating some numbers $\left[r_{1} r_{2} r_{3}\right]$ was suggested in [2].

Assume that u, v, and w are vertices of the graph $\Gamma, W=d(u, v), U=d(v, w)$, and $V=d(u, w)$. Since there is exactly one vertex $x=u$ such that $d(x, u)=0$, the number $[0 j h]$ is either 0 or 1 . Hence, $[0 j h]=\delta_{j W} \delta_{h V}$. Similarly, $[i 0 h]=\delta_{i W} \delta_{h U}$ and $[i j 0]=\delta_{i U} \delta_{j V}$.

Another set of equations can be obtained by fixing the distance between two vertices from $\{u, v, w\}$ and counting the number of vertices located at all possible distances from the third:

$$
\begin{equation*}
\sum_{l=1}^{d}[l j h]=p_{j h}^{U}-[0 j h], \quad \sum_{l=1}^{d}[i l h]=p_{i h}^{V}-[i 0 h], \quad \sum_{l=1}^{d}[i j l]=p_{i j}^{W}-[i j 0] . \tag{2.1}
\end{equation*}
$$

At the same time, some triplets disappear. For $|i-j|>W$ or $i+j<W$, we have $p_{i j}^{W}=0$; therefore, $[i j h]=0$ for all $h \in\{0, \ldots, d\}$.

Let

$$
S_{i j h}(u, v, w)=\sum_{r, s, t=0}^{d} Q_{r i} Q_{s j} Q_{t h}\left[\begin{array}{c}
u v w \\
r s t
\end{array}\right] .
$$

If Krein's parameter $q_{i j}^{h}=0$, then $S_{i j h}(u, v, w)=0$.
We fix vertices u, v, and w of a distance-regular graph Γ of diameter 3 and put

$$
\{i j h\}=\left\{\begin{array}{c}
u v w \\
i j h
\end{array}\right\}, \quad[i j h]=\left[\begin{array}{c}
u v w \\
i j h
\end{array}\right], \quad[i j h]^{\prime}=\left[\begin{array}{c}
u w v \\
i h j
\end{array}\right], \quad[i j h]^{*}=\left[\begin{array}{c}
v u w \\
j i h
\end{array}\right], \quad[i j h]^{\sim}=\left[\begin{array}{c}
w v u \\
h j i
\end{array}\right] .
$$

In the cases $d(u, v)=d(u, w)=d(v, w)=2$ or $d(u, v)=d(u, w)=d(v, w)=3$, the calculation of the numbers

$$
[i j h]^{\prime}=\left[\begin{array}{c}
u w v \\
i h j
\end{array}\right], \quad[i j h]^{*}=\left[\begin{array}{c}
v u w \\
j i h
\end{array}\right], \quad[i j h]^{\sim}=\left[\begin{array}{c}
w v u \\
h j i
\end{array}\right]
$$

(symmetrizing an array of triple intersection numbers) can give new relations for the prove of the nonexistence of the graph.

3. Proof of Theorem 1

In this section, we prove Theorem 1.
Let Γ be a distance-regular graph with intersection array $\{27,20,7 ; 1,4,21\}$. Then Γ has $1+27+135+45=208$ vertices, the spectrum $27^{1},(2+\sqrt{13})^{45},-1^{117},(5-2 \sqrt{13})^{45}$, and the dual matrix Q of eigenvalues

$$
\left(\begin{array}{cccc}
1 & 45 & 117 & 45 \\
1 & \frac{10}{3} \sqrt{13}+\frac{5}{3} & -13 / 3 & -\frac{10}{3} \sqrt{13}+\frac{5}{3} \\
1 & -\frac{2}{3} \sqrt{13}+\frac{5}{3} & -13 / 3 & \frac{2}{3} \sqrt{13}+\frac{5}{3} \\
1 & -7 & 13 & -7
\end{array}\right)
$$

By [3, Lemma 3], the complement of Γ_{3} is a pseudo-geometric graph for $p G_{21}(27,5)$.

Lemma 1. The intersection numbers of the graph Γ are:
(1) $p_{11}^{1}=6, p_{21}^{1}=20, p_{32}^{1}=35, p_{22}^{1}=80, p_{33}^{1}=10$;
(2) $p_{11}^{2}=4, p_{12}^{2}=16, p_{13}^{2}=7, p_{22}^{2}=90, p_{23}^{2}=28, p_{33}^{2}=10$;
(3) $p_{12}^{3}=21, p_{13}^{3}=6, p_{22}^{3}=84, p_{23}^{3}=30, p_{33}^{3}=8$.

Proof. The lemma is proved by direct calculations.

We fix vertices u, v, and w of the graph Γ and put

$$
\{i j h\}=\left\{\begin{array}{c}
u v w \\
i j h
\end{array}\right\}, \quad[i j h]=\left[\begin{array}{c}
u v w \\
i j h
\end{array}\right] .
$$

Let $\Delta=\Gamma_{2}(u)$ and $\Lambda=\Delta_{2}$. Then Λ is a regular graph of degree 90 on 135 vertices.

Lemma 2. Let $d(u, v)=d(u, w)=2$ and $d(v, w)=1$. Then the triple intersection numbers are:
(1) $[111]=r_{4},[112]=[121]=-r_{4}+4,[122]=-r_{1}+r_{3}+r_{4}+5 ;[123]=[132]=r_{1}-r_{3}+7$, $[133]=-r_{1}+r_{3} ;$
(2) $[211]=-r_{2}-r_{4}+6,[212]=[221]=r_{2}+r_{4}+9,[222]=r_{1}-r_{2}-r_{4}+53,[223]=[232]=-r_{1}+28$, $[233]=r_{1} ;$
(3) $[311]=r_{2},[312]=[321]=-r_{2}+7,[322]=r_{2}-r_{3}+21,[323]=[332]=r_{3},[333]=-r_{3}+10$, where $r_{1}, r_{3} \in\{0,1, \ldots, 10\}, r_{2} \in\{0,1, \ldots, 6\}$, and $r_{4} \in\{0,1, \ldots, 4\}$.

Proof. Let $[111]=r_{4}$. Then $[113]=0$ and $[111]+[112]=c_{2}=4$; thus, $[112]=-r_{4}+4$. Similarly, $[121]=-r_{4}+4$.
$\operatorname{Let}[311]=r_{2}$. Then $[313]=0$ and $[311]+[312]=p_{13}^{2}=7$; thus, $[312]=-r_{2}+7$.
Using formulas (2.1), we obtain all the equalities.

By Lemma 2, we have $43 \leq[222]=r_{1}-r_{2}-r_{4}+53 \leq 63$. Since $\{v, w\} \cup \Lambda(v) \cup \Lambda(w)$ contains $182-[222]$ vertices, we have $182-[222] \leq 135$; hence, $47 \leq[222] \leq 63$ and $-r_{1}+r_{2}+r_{4} \leq 6$.

Lemma 3. Let $d(u, v)=d(u, w)=2$ and $d(v, w)=3$. Then the triple intersection numbers are:
(1) $[113]=r_{5}+r_{6}+r_{7}+r_{8}-r_{9}-26$, [121] $=-r_{5}-r_{6}-r_{7}-r_{8}+r_{10}+30$, $[122]=r_{5}+r_{6}+r_{7}+r_{8}-r_{9}-r_{10}-14,[123]=r_{9},[131]=r_{5}+r_{6}+r_{7}+r_{8}-r_{10}-26$, $[132]=r_{10},[133]=-r_{5}-r_{6}-r_{7}-r_{8}+33 ;$
(2) $[212]=r_{5}+r_{7}+r_{8}-r_{9}-9,[213]=-r_{5}-r_{7}-r_{8}+r_{9}+25,[221]=r_{5}+r_{6}+r_{8}-r_{10}-9$, $[222]=-r_{5}-r_{6}-r_{7}-2 r_{8}+r_{9}+r_{10}+97,[223]=r_{7}+r_{8}-r_{9}+2,[231]=-r_{5}-r_{6}-r_{8}+r_{10}+25$, $[232]=r_{6}+r_{8}-r_{10}+2,[233]=r_{5} ;$
(3) $[312]=r_{6},[313]=-r_{6}+7,[321]=r_{7},[322]=r_{8},[323]=-r_{7}-r_{8}+28,[331]=-r_{7}+7$, $[332]=-r_{6}-r_{8}+28,[333]=r_{6}+r_{7}+r_{8}-25$,
where $r_{5} \in\{0,1, \ldots, 8\}, r_{6}, r_{7} \in\{1,2, \ldots, 7\}, r_{8} \in\{11,12, \ldots, 27\}$, and $r_{9}, r_{10} \in\{0,1, \ldots, 7\}$.
Proof. Using (2.1), we arrive at relations (1)-(3) of the Lemma 3.

By Lemma 3, we have $47 \leq[222]=-r_{5}-r_{6}-r_{7}-2 r_{8}+r_{9}+r_{10}+97 \leq 90$.
Consider the appropriate symmetrization. Let $d(u, v)=d(u, w)=2$ and $d(v, w)=3$. Then the following equalities are true: $[123]=r_{9}=[132]^{\prime}=r_{10}^{\prime},[233]=r_{5}=r_{5}^{\prime}, r_{6}=[312]=[321]^{\prime}=r_{7}^{\prime}$, $[322]=r_{8}=r_{8}^{\prime}$. Further, $r_{7}+r_{8}-r_{9}+2=[223]=[232]^{\prime}=r_{6}^{\prime}+r_{8}^{\prime}-r_{10}^{\prime}+2$.

Lemma 4. Let $d(u, v)=d(u, w)=d(v, w)=2$. Then the triple intersection numbers are:
(1) $[111]=r_{9}+r_{10}-r_{11}-24,[112]=[121]=r_{15},[113]=[131]=r_{11},[122]=-r_{10}-r_{15}+16$, $[123]=[132]=r_{10},[133]=7-r_{11}-r_{10}$;
(2) $[211]=r_{15},[212]=[221]=-r_{10}-r_{15}+16,[213]=r_{10},[222]=2 r_{9}+2 r_{10}-11$, $[223]=[232]=28-r_{9}-r_{10},[231]=r_{10},[233]=r_{9} ;$
(3) $[311]=r_{11},[312]=[321]=r_{10},[313]=[331]=7-r_{11}-r_{10},[322]=-r_{10}-r_{15}+16$, $[323]=[332]=r_{9},[333]=r_{11}+r_{10}+3$,
where $r_{11}+24 \leq r_{9}+r_{10} \leq 28, r_{11}+r_{10} \leq 7, r_{10}+r_{15} \leq 16$, and $r_{12} \leq 22$.

Proof. Using formulas (2.1), we get the equalities:
$[111]=-r_{11}-r_{12}+4,[112]=r_{15},[113]=r_{11},[121]=r_{10}+r_{12}+r_{15}+r_{16}-28$, $[122]=-r_{10}-r_{15}+16,[123]=-r_{12}-r_{16}+28,[131]=-r_{10}+r_{11}-r_{12}-r_{16}+28,[132]=r_{10}$, $[133]=-r_{11}+r_{12}+r_{16}-21$;
$[211]=r_{12}+r_{13}+r_{14}+r_{15}-28,[212]=-r_{13}-r_{15}+16, \quad[213]=-r_{12}-r_{14}+28$, [221] $=-r_{9}-r_{10}-r_{12}-r_{13}-r_{15}+44, \quad[222]=r_{9}+r_{10}+r_{13}+r_{14}+45, \quad[223]=r_{12}$, $[231]=r_{9}+r_{10}-r_{14},[232]=-r_{9}-r_{10}+28,[233]=r_{14} ;$
$[311]=r_{11}-r_{12}-r_{13}-r_{14}+28,[312]=r_{13},[313]=-r_{11}+r_{12}+r_{14}-21,[321]=r_{9}+r_{13}-r_{16}$, $[322]=-r_{9}-r_{13}+28,[323]=r_{16},[331]=-r_{9}-r_{11}+r_{12}+r_{14}+r_{16}-21,[332]=r_{9}$, $[333]=r_{11}-r_{12}-r_{14}-r_{16}+31$.

Now consider symmetrization. The following equalities are true:
$[112]=r_{15}=r_{15}^{*},[113]=r_{11}=r_{11}^{*},[223]=r_{12}=r_{12}^{*},[233]=r_{14}=r_{14}^{\prime},[323]=r_{16}=r_{16}^{\sim}$, $[332]=r_{9}=r_{9}^{*}, r_{10}=[132]=[312]^{*}=r_{13}^{*}$.

Further, $r_{9}+r_{10}+r_{13}+r_{14}+45=[222]=[222]^{*}=r_{9}^{*}+r_{10}^{*}+r_{13}^{*}+r_{14}^{*}+45=r_{9}+r_{13}+r_{10}+r_{14}^{*}+45 ;$ therefore, $[233]=r_{14}=r_{14}^{*}=[323]=r_{16}$.

We have $[111]=-r_{11}-r_{12}+4$; hence $r_{11}+r_{12}=r_{11}^{\prime}+r_{12}^{\prime}=r_{11}^{\sim}+r_{12}^{\sim}$. Similarly, $[122]=-r_{10}-r_{15}+16$; therefore, $r_{10}+r_{15}=r_{10}^{\prime}+r_{15}^{\prime},[123]=-r_{12}-r_{16}+28$, and $r_{12}+r_{16}=r_{12}^{\prime}+r_{16}^{\prime}$.

Finally, [133] $=-r_{11}+r_{12}+r_{16}-21=-r_{11}^{\prime}+r_{12}^{\prime}+r_{16}^{\prime}-21$; thus, $r_{11}=r_{11}^{\prime}, r_{12}=r_{12}^{\prime}$, and $r_{16}=r_{16}^{\prime}$. Hence $r_{11}=[113]=[131]=-r_{10}+r_{11}-r_{12}-r_{16}+28$ and $r_{10}+r_{12}+r_{16}=28$. Further, $r_{12}=[223]=[232]=-r_{9}-r_{10}+28, r_{12}+r_{9}+r_{10}=28$, and $r_{9}=r_{16}$.

The equalities $[113]=[131]=r_{11}, r_{11}=r_{11}^{*}$, and $[311]=r_{11}+r_{10}-r_{13}$ imply that $r_{10}=r_{13}$. Hence, we obtain the equalities from the conclusion of the lemma.

By Lemma 4, we have $r_{11}+24 \leq r_{9}+r_{10} \leq 28$; hence $45 \leq[222]=2 r_{9}+2 r_{10}-11 \leq 56-11=45$. Thus, Λ is an edge-regular graph with parameters ($135,90,45$).

In view of Lemmas 2 and 3, the following inequalities hold for the number of edges e between $\Lambda(w)$ and $\Lambda-(\{w\} \cup \Lambda(w))$:

$$
2068=47 \cdot 16+47 \cdot 28 \leq e=63 \cdot 16+90 \cdot 28 \leq 3528 .
$$

Contrariwise, we have $e=90 \cdot 89-\sum_{i}[222]^{i}$; therefore, $2068 \leq e=90 \cdot 89-\sum_{i}[222]^{i} \leq 3528$, $4482 \leq \sum_{i}[222]^{i} \leq 5942$, and $49.8 \leq \sum_{i}[222]^{i} / 90 \leq 66.03$.

The resulting contradiction completes the proof of Theorem 1.

REFERENCES

1. Brouwer A. E., Cohen A. M., Neumaier A. Distance-Regular Graphs. Berlin, Heidelberg: Springer-Verlag, 1989. 495 p. DOI: 10.1007/978-3-642-74341-2
2. Jurišić A., Vidali J. Extremal 1-codes in distance-regular graphs of diameter 3. Des. Codes Cryptogr., 2012. Vol. 65. P. 29-47. DOI: 10.1007/s10623-012-9651-0
3. Makhnev A. A., Nirova M. S. Distance-regular Shilla graphs with $b_{2}=c_{2}$. Math. Notes, 2018. Vol. 103, No. 5-6. P. 780-792. DOI: 10.1134/S0001434618050103
4. Makhnev A. A., Paduchikh D. V. An automorphism group of a distance-regular graph with intersection array $\{24,21,3 ; 1,3,18\}$. Algebra Logic, 2012. Vol. 51, No. 4. P. 319-332. DOI: 10.1007/s10469-012-9194-5
5. Makhnev A.A., Paduchikh D. V. On automorphisms of distance-regular graph with intersection array $\{18,15,9 ; 1,1,10\}$. Commun. Math. Stat., 2015. Vol. 3, No. 4. P. 527-534. DOI: $10.1007 / \mathrm{s} 40304-015-0072-\mathrm{z}$

[^0]: ${ }^{1}$ This work was supported by RFBR and NSFC (project No. 20-51-53013).

