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Abstract: In the class of distance-regular graphs of diameter 3 there are 5 intersection arrays of graphs
with at most 28 vertices and noninteger eigenvalue. These arrays are {18, 14, 5; 1, 2, 14}, {18, 15, 9; 1, 1, 10},
{21, 16, 10; 1, 2, 12}, {24, 21, 3; 1, 3, 18}, and {27, 20, 7; 1, 4, 21}. Automorphisms of graphs with intersection ar-
rays {18, 15, 9; 1, 1, 10} and {24, 21, 3; 1, 3, 18} were found earlier by A.A. Makhnev and D.V. Paduchikh. In this
paper, it is proved that a graph with the intersection array {27, 20, 7; 1, 4, 21} does not exist.
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1. Introduction

We consider undirected graphs without loops and multiple edges. For given vertex a of a
graph Γ, we denote by Γi(a) the subgraph of Γ induced by the set of all vertices at distance i
from a. The subgraph [a] = Γ1(a) is called the neighbourhood of the vertex a.

Let Γ be a graph of diameter d and i ∈ {1, 2, 3, . . . , d}. The graph Γi have the same set of
vertices, and vertices u and w are adjacent in Γi if dΓ(u,w) = i.

If vertices u and w are at distance i in Γ, then denote by bi(u,w) (by ci(u,w)) the number
of vertices in the intersection of Γi+1(u) (Γi−1(u)) with [w]. A graph Γ of diameter d is called a
distance-regular graph with intersection array {b0, b1, . . . , bd−1; c1, . . . , cd} if the values bi(u,w) and
ci(u,w) are independent of the choice of the vertices u and w at distance i in Γ for any i = 0, . . . , d.

For such graph and for 0 ≤ i, j, h ≤ d, the number phij =

[

uv

ij

]

is independent of u and v for all

vertices u, v ∈ Γ with d(u, v) = h. The constants phij are called the intersection numbers of Γ [1].
The incidence system with set of points P and set of lines L is called α-partial geometry of

order (s, t) (and is denoted by pGα(s, t)) if every line contains exactly s+1 points, every point lies
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exactly on t+ 1 lines, any two points lie on at most one line, and, for any antiflag (a, l) ∈ (P,L),
there is exactly α lines passing through a and intersecting l. If α = t + 1, then the geometry is
called a dual 2-scheme; and if α = t, then the geometry is called a net.

The point graph of a geometry of points and lines is a graph whose vertices are points of
the geometry, and two different vertices are adjacent if they lie on a common line. It is easy to
understand that the point graph of a partial geometry pGα(s, t) is strongly regular with parameters

v = (s+ 1)(1 + st/α), k = s(t+ 1), λ = (s − 1) + (α − 1)t, µ = α(t+ 1).

A strongly regular graph having these parameters for some positive integers α, s, t is called a
pseudogeometric graph for pGα(s, t).

In the class of distance-regular graphs Γ of diameter 3, there are 5 hypothetical graphs with
at most 28 vertices and non-integer eigenvalues. They have intersection arrays {18, 14, 5; 1, 2, 14},
{18, 15, 9; 1, 1, 10}, {21, 16, 10; 1, 2, 12}, {24, 21, 3; 1, 3.18}, and {27, 20, 7; 1, 4, 21}. Earlier, automor-
phisms of graphs with intersection arrays {18, 15, 9; 1, 1, 10} and {24, 21, 3; 1, 3, 18} were found by
A.A. Makhnev and D.V. Paduchikh [4], [5].

In this paper, we study the properties of a hypothetical distance-regular graph with intersection
array {27, 20, 7; 1, 4, 21} and prove the following theorem.

Theorem 1. A distance-regular graph with intersection array {27, 20, 7; 1, 4, 21} does not exist.

2. Preliminary results

In the proof of Theorem 1, we use triple intersection numbers [2].
Let Γ be a distance-regular graph of diameter d. If u1, u2, and u3 are vertices of Γ and r1, r2,

and r3 are non-negative integers not greater than d, then

{

u1u2u3
r1r2r3

}

is the set of vertices w ∈ Γ

such that

d(w, ui) = ri,

[

u1u2u3
r1r2r3

]

=

∣

∣

∣

∣

{

u1u2u3
r1r2r3

} ∣

∣

∣

∣

.

The numbers

[

u1u2u3
r1r2r3

]

are called triple intersection numbers. For a fixed triple of vertices u1, u2, u3,

we will write [r1r2r3] instead of

[

u1u2u3
r1r2r3

]

. Unfortunately, there are no general formulas for the

numbers [r1r2r3]. However, a method for calculating some numbers [r1r2r3] was suggested in [2].
Assume that u, v, and w are vertices of the graph Γ, W = d(u, v), U = d(v,w), and V = d(u,w).

Since there is exactly one vertex x = u such that d(x, u) = 0, the number [0jh] is either 0 or 1.
Hence, [0jh] = δjW δhV . Similarly, [i0h] = δiW δhU and [ij0] = δiUδjV .

Another set of equations can be obtained by fixing the distance between two vertices from
{u, v, w} and counting the number of vertices located at all possible distances from the third:

d
∑

l=1

[ljh] = pUjh − [0jh],

d
∑

l=1

[ilh] = pVih − [i0h],

d
∑

l=1

[ijl] = pWij − [ij0]. (2.1)

At the same time, some triplets disappear. For |i − j| > W or i + j < W , we have pWij = 0;
therefore, [ijh] = 0 for all h ∈ {0, . . . , d}.

Let

Sijh(u, v, w) =
d

∑

r,s,t=0

QriQsjQth

[uvw

rst

]

.
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If Krein’s parameter qhij = 0, then Sijh(u, v, w) = 0.

We fix vertices u, v, and w of a distance-regular graph Γ of diameter 3 and put

{ijh} =

{

uvw

ijh

}

, [ijh] =

[

uvw

ijh

]

, [ijh]′ =

[

uwv

ihj

]

, [ijh]∗ =

[

vuw

jih

]

, [ijh]∼ =

[

wvu

hji

]

.

In the cases d(u, v) = d(u,w) = d(v,w) = 2 or d(u, v) = d(u,w) = d(v,w) = 3, the calculation of
the numbers

[ijh]′ =

[

uwv

ihj

]

, [ijh]∗ =

[

vuw

jih

]

, [ijh]∼ =

[

wvu

hji

]

(symmetrizing an array of triple intersection numbers) can give new relations for the prove of the
nonexistence of the graph.

3. Proof of Theorem 1

In this section, we prove Theorem 1.

Let Γ be a distance-regular graph with intersection array {27, 20, 7; 1, 4, 21}. Then Γ has
1 + 27 + 135 + 45 = 208 vertices, the spectrum 271, (2 +

√
13)45,−1117, (5− 2

√
13)45, and the dual

matrix Q of eigenvalues

















1 45 117 45

1
10

3

√
13 +

5

3
−13/3 −10

3

√
13 +

5

3

1 −2

3

√
13 +

5

3
−13/3

2

3

√
13 +

5

3
1 −7 13 −7

















.

By [3, Lemma 3], the complement of Γ3 is a pseudo-geometric graph for pG21(27, 5).

Lemma 1. The intersection numbers of the graph Γ are:

(1) p111 = 6, p121 = 20, p132 = 35, p122 = 80, p133 = 10;

(2) p211 = 4, p212 = 16, p213 = 7, p222 = 90, p223 = 28, p233 = 10;

(3) p312 = 21, p313 = 6, p322 = 84, p323 = 30, p333 = 8.

P r o o f. The lemma is proved by direct calculations. �

We fix vertices u, v, and w of the graph Γ and put

{ijh} =

{

uvw

ijh

}

, [ijh] =

[

uvw

ijh

]

.

Let ∆ = Γ2(u) and Λ = ∆2. Then Λ is a regular graph of degree 90 on 135 vertices.

Lemma 2. Let d(u, v) = d(u,w) = 2 and d(v,w) = 1. Then the triple intersection numbers

are:

(1) [111] = r4, [112] = [121] = −r4 + 4, [122] = −r1 + r3 + r4 + 5; [123] = [132] = r1 − r3 + 7,
[133] = −r1 + r3;
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(2) [211] = −r2−r4+6, [212] = [221] = r2+r4+9, [222] = r1−r2−r4+53, [223] = [232] = −r1+28,
[233] = r1;

(3) [311] = r2, [312] = [321] = −r2+7, [322] = r2− r3+21, [323] = [332] = r3, [333] = −r3+10,

where r1, r3 ∈ {0, 1, . . . , 10}, r2 ∈ {0, 1, . . . , 6}, and r4 ∈ {0, 1, . . . , 4}.

P r o o f. Let [111] = r4. Then [113] = 0 and [111] + [112] = c2 = 4; thus, [112] = −r4 + 4.
Similarly, [121] = −r4 + 4.

Let [311] = r2. Then [313] = 0 and [311] + [312] = p213 = 7; thus, [312] = −r2 + 7.

Using formulas (2.1), we obtain all the equalities. �

By Lemma 2, we have 43 ≤ [222] = r1 − r2 − r4 +53 ≤ 63. Since {v,w} ∪Λ(v)∪Λ(w) contains
182 − [222] vertices, we have 182 − [222] ≤ 135; hence, 47 ≤ [222] ≤ 63 and −r1 + r2 + r4 ≤ 6.

Lemma 3. Let d(u, v) = d(u,w) = 2 and d(v,w) = 3. Then the triple intersection numbers

are:

(1) [113] = r5 + r6 + r7 + r8 − r9 − 26, [121] = −r5 − r6 − r7 − r8 + r10 + 30,
[122] = r5 + r6 + r7 + r8 − r9 − r10 − 14, [123] = r9, [131] = r5 + r6 + r7 + r8 − r10 − 26,
[132] = r10, [133] = −r5 − r6 − r7 − r8 + 33;

(2) [212] = r5 + r7 + r8 − r9 − 9, [213] = −r5 − r7 − r8 + r9 + 25, [221] = r5 + r6 + r8 − r10 − 9,
[222] = −r5−r6−r7−2r8+r9+r10+97, [223] = r7+r8−r9+2, [231] = −r5−r6−r8+r10+25,
[232] = r6 + r8 − r10 + 2, [233] = r5;

(3) [312] = r6, [313] = −r6 + 7, [321] = r7, [322] = r8, [323] = −r7 − r8 + 28, [331] = −r7 + 7,
[332] = −r6 − r8 + 28, [333] = r6 + r7 + r8 − 25,

where r5 ∈ {0, 1, . . . , 8}, r6, r7 ∈ {1, 2, . . . , 7}, r8 ∈ {11, 12, . . . , 27}, and r9, r10 ∈ {0, 1, . . . , 7}.

P r o o f. Using (2.1), we arrive at relations (1)–(3) of the Lemma 3. �

By Lemma 3, we have 47 ≤ [222] = −r5 − r6 − r7 − 2r8 + r9 + r10 + 97 ≤ 90.

Consider the appropriate symmetrization. Let d(u, v) = d(u,w) = 2 and d(v,w) = 3. Then the
following equalities are true: [123] = r9 = [132]′ = r′10, [233] = r5 = r′5, r6 = [312] = [321]′ = r′7,
[322] = r8 = r′8. Further, r7 + r8 − r9 + 2 = [223] = [232]′ = r′6 + r′8 − r′10 + 2.

Lemma 4. Let d(u, v) = d(u,w) = d(v,w) = 2. Then the triple intersection numbers are:

(1) [111] = r9 + r10 − r11 − 24, [112] = [121] = r15, [113] = [131] = r11, [122] = −r10 − r15 + 16,
[123] = [132] = r10, [133] = 7− r11 − r10;

(2) [211] = r15, [212] = [221] = −r10 − r15 + 16, [213] = r10, [222] = 2r9 + 2r10 − 11,
[223] = [232] = 28− r9 − r10, [231] = r10, [233] = r9;

(3) [311] = r11, [312] = [321] = r10, [313] = [331] = 7 − r11 − r10, [322] = −r10 − r15 + 16,
[323] = [332] = r9, [333] = r11 + r10 + 3,

where r11 + 24 ≤ r9 + r10 ≤ 28, r11 + r10 ≤ 7, r10 + r15 ≤ 16, and r12 ≤ 22.
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P r o o f. Using formulas (2.1), we get the equalities:
[111] = −r11 − r12 + 4, [112] = r15, [113] = r11, [121] = r10 + r12 + r15 + r16 − 28,

[122] = −r10 − r15 + 16, [123] = −r12 − r16 + 28, [131] = −r10 + r11 − r12 − r16 + 28, [132] = r10,
[133] = −r11 + r12 + r16 − 21;

[211] = r12 + r13 + r14 + r15 − 28, [212] = −r13 − r15 + 16, [213] = −r12 − r14 + 28,
[221] = −r9 − r10 − r12 − r13 − r15 + 44, [222] = r9 + r10 + r13 + r14 + 45, [223] = r12,
[231] = r9 + r10 − r14, [232] = −r9 − r10 + 28, [233] = r14;

[311] = r11−r12−r13−r14+28, [312] = r13, [313] = −r11+r12+r14−21, [321] = r9 + r13 − r16,
[322] = −r9 − r13 + 28, [323] = r16, [331] = −r9 − r11 + r12 + r14 + r16 − 21, [332] = r9,
[333] = r11 − r12 − r14 − r16 + 31.

Now consider symmetrization. The following equalities are true:
[112] = r15 = r∗15, [113] = r11 = r∗11, [223] = r12 = r∗12, [233] = r14 = r′14, [323] = r16 = r∼16,

[332] = r9 = r∗9, r10 = [132] = [312]∗ = r∗13.
Further, r9+r10+r13+r14+45 = [222] = [222]∗ = r∗9+r∗10+r∗13+r∗14+45 = r9+r13+r10+r∗14+45;

therefore, [233] = r14 = r∗14 = [323] = r16.
We have [111] = −r11 − r12 + 4; hence r11 + r12 = r′11 + r′12 = r∼11 + r∼12. Similarly,

[122] = −r10−r15+16; therefore, r10+r15 = r′10+r′15, [123] = −r12−r16+28, and r12+r16 = r′12+r′16.
Finally, [133] = −r11 + r12 + r16 − 21 = −r′11 + r′12 + r′16 − 21; thus, r11 = r′11, r12 = r′12, and

r16 = r′16. Hence r11 = [113] = [131] = −r10+ r11− r12− r16+28 and r10+ r12+ r16 = 28. Further,
r12 = [223] = [232] = −r9 − r10 + 28, r12 + r9 + r10 = 28, and r9 = r16.

The equalities [113] = [131] = r11, r11 = r∗11, and [311] = r11 + r10 − r13 imply that r10 = r13.
Hence, we obtain the equalities from the conclusion of the lemma. �

By Lemma 4, we have r11+24 ≤ r9+r10 ≤ 28; hence 45 ≤ [222] = 2r9+2r10−11 ≤ 56−11 = 45.
Thus, Λ is an edge-regular graph with parameters (135,90,45).

In view of Lemmas 2 and 3, the following inequalities hold for the number of edges e between
Λ(w) and Λ− ({w} ∪ Λ(w)):

2068 = 47 · 16 + 47 · 28 ≤ e = 63 · 16 + 90 · 28 ≤ 3528.

Contrariwise, we have e = 90 · 89 −∑

i[222]
i; therefore, 2068 ≤ e = 90 · 89 −∑

i[222]
i ≤ 3528,

4482 ≤
∑

i[222]
i ≤ 5942, and 49.8 ≤

∑

i[222]
i/90 ≤ 66.03.

The resulting contradiction completes the proof of Theorem 1.
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