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Abstract: A family of generalized definite logarithmic integrals given by

∫

1

0

(

xim(log(a) + i log(x))k + x−im(log(a) − i log(x))k
)

(x+ 1)2
dx

built over the Lerch function has its analytic properties and special values listed in explicit detail. We use the
general method as given in [5] to derive this integral. We then give a number of examples that can be derived
from the general integral in terms of well known functions.
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1. Introduction

In connection with logarithmic integrals, the authors have the opportunity to evaluate integrals
of the form

∫ 1

0

(

xim(log(a) + i log(x))k + x−im(log(a)− i log(x))k
)

(x+ 1)2
dx (1.1)

in terms of the Lerch function. We chose this integral as it forms the general case for some integrals
published in the Tables of Gradshteyn and Rhyzik. It yields some very interesting special cases in
terms of Euler–Mascheroni constant (γ), and a pair of Zeta function values ζ(1/2) and ζ(−1/2).
The constant ζ(1/2) is used to calculate Knuth’s Series and a new integral representation for this
constant is derived. The Lerch function is also used in the Bose–Einstein condensation for an
exponential density of states function [4]. We also provide formal derivations for some definite
integrals in [3] not previously listed in current literature along with new definite integrals in terms
of special functions. In our case the constants in the equation (1.1) are general complex numbers
subject to the restrictions given below. The derivations follow the method used by us in [5]. The
generalized Cauchy’s integral formula is given by

yk

k!
=

1

2πi

∫

C

ewy

wk+1
dw. (1.2)

This method involves using a form of equation (1.2) then multiply both sides by a function,
then takes a definite integral of both sides. This yields a definite integral in terms of a contour
integral. Then we multiply both sides of equation (1.2) by another function and take the infinite
sum of both sides such that the contour integral of both equations are the same.
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2. Definite integral of the contour integral

We use the method given in [5]. The contour integral is over α = m+ w. Here the contour is
in the upper left quadrant with ℑ(α) < 0 and going round the origin with zero radius. Using a
generalization of Cauchy’s integral formula we first replace y by log(a) + ix then multiply by emxi

for the first equation and then y by log(a) − ix and multiply by e−mxi to get the second equation
followed by replacing x by log(x). Then we add these two equations, followed by multiplying both
sides by 1/2(x + 1)2 to get the equality

(

xim(log(a) + i log(x))k + x−im(log(a)− i log(x))k
)

2(x+ 1)2k!
=

1

2πi

∫

C

aww−k−1 cos(α log(x))

(x+ 1)2
dα. (2.1)

Next we take the definite integral of equation (2.1) over x ∈ [0, 1] to get the following relations

∫ 1

0

(

xim(log(a) + i log(x))k + x−im(log(a)− i log(x))k
)

2(x+ 1)2k!
dx

=
1

2πi

∫ 1

0

∫

C

aww−k−1 cos(α log(x))

(x+ 1)2
dαdx

=
1

2πi

∫

C

∫ 1

0

aww−k−1 cos(α log(x))

(x+ 1)2
dxdα

=
1

2πi

∫

C

1

2
π(m+w)aww−k−1csch(π(m+ w))dw

(2.2)

from equation (3.883.1) in [3] where the logarithmic function is defined in equation (4.1.2) in [1].
The integral is valid for a, k and m complex and ℑ(α) < 0.

3. Infinite sum of the contour integral

In this section we will again use the generalized Cauchy’s integral formula to derive equivalent
contour integrals. First we replace y by log(a)+π(2y+1)) and multiply both sides by −mπeπm(2y+1)

to get

−π
k+1meπm(2y+1) (log(a)/π + 2y + 1)k

k!
= − 1

2πi

∫

C

παw−k−1 exp(w log(a) + πα(2y + 1))dα.

Next we take the infinite sum over y ∈ [0,∞) simplify the left-hand in terms of the Lerch
function side to get

−2kπk+1eπmm

k!
Φ

(

e2mπ,−k, log(a) + π

2π

)

= − 1

2πi

∞
∑

y=0

∫

C

πmw−k−1(exp(w log(a) + πα(2y + 1)))dα

= − 1

2πi

∫

C

∞
∑

y=0

πmw−k−1(exp(w log(a) + πα(2y + 1)))dα

=
1

2πi

∫

C

1

2
πmaww−k−1csch(πα)dα.

(3.1)
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Next we derive the second contour integral by replacing k by k − 1 and dropping the linear
factor m in equation (3.1) to get

−2k−1πkeπmΦ
(

e2mπ, 1− k, (log(a) + π)/2π
)

(k − 1)!
=

1

2πi

∫

C

1

2
πaww−kcsch(πα)dα

from (1.232.3) in [3], where csch(x) = icsc(ix) from (4.5.10) in [1] and ℑ(α) < 0 for the sum to
converge.

We use (9.550) and (9.556) in [3] where Φ(z, s, v) is the Lerch function which is a generalization
of the Hurwitz Zeta and polylogarithm functions.

The Lerch function has a series representation given by

Φ(z, s, v) =

∞
∑

n=0

(v + n)−szn,

where |z| < 1, v 6= 0,−1, .. and is continued analytically by its integral representation given by

Φ(z, s, v) =
1

Γ(s)

∫ ∞

0

ts−1e−vt

1− ze−t
dt =

1

Γ(s)

∫ ∞

0

ts−1e−(v−1)t

et − z
dt,

where Re (v) > 0, or |z| ≤ 1, z 6= 1, Re (s) > 0, or z = 1, Re (s) > 1.

4. Definite integral in terms of the Lerch function

Since the right-hand sides of equation (2.2) and (3.1) are equivalent we can equate the left-hand
sides simplifying the factorials to get

∫ 1

0

(

xim(log(a) + i log(x))k + x−im(log(a)− i log(x))k
)

(x+ 1)2
dx

= (2π)k (−eπm)
(

kΦ
(

e2mπ , 1− k,
log(a) + π

2π

)

+ 2πmΦ
(

e2mπ,−k, log(a) + π

2π

))

.

(4.1)

5. Derivation of entry (4.325.3) in [3]

In this section will derive an integral representation for the Riemann zeta function. Using
equation (4.1) setting m = 0, a = 1 and simplifying the left-hand side we get

∫ 1

0

logk (1/x)

(x+ 1)2
dx = 2−k(2k − 2)ζ(k)Γ(k + 1). (5.1)

This formula is equivalent to applying integration by parts to equation (1.12.5) in [2].
Next we take the partial derivative with respect to k of equation (5.1) simplifying to get

∫ 1

0

log (log (1/x)) logk (1/x)

(x+ 1)2
dx

= 2−kΓ(k + 1)
(

(2k − 2)ζ ′(k) + ζ(k)
(

(2k − 2)ψ(0)(k + 1) + log(4)
)

)

.

(5.2)

Next we set k = 0 and simplify to get
∫ 1

0
log (log (1/x))

dx

(x+ 1)2
=

1

2
(log (π/2)− γ)

from [7, p. 236].
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6. Derivation of special case in terms of ζ(−1/2)

Using equation (5.2) and setting k = −1/2 we get

∫ 1

0

log(log(1/x))
√

log(1/x)

dx

(x+ 1)2

=
√
π
(

2
√
2ζ(−1/2) log(2)− (2

√
2− 1)(ζ ′(−1/2) + ζ(−1/2)ψ(0)(1/2))

)

.

7. Derivation of special cases in terms of ζ(1/2)

Using equation (5.2) and setting k = 1/2 we get

∫ 1

0

√

log(1/x) log
(

log(1/x)
) dx

(x+ 1)2

=

√
π

8
ζ(1/2)

(

8− 8
√
2 + 2(

√
2− 1)γ + π +

√
2(log(64/π2)− π) + log(π2/4)

)

from [7, p. 236].

8. Derivation of a special case involving combinations of rational functions of
log(x) and powers

8.1. Definite integral in terms of the hypergeometric and Lerch functions

Setting k = −1 and replacing a by ea in (4.1) we derive one equation by replacing m by ip and
a second equation by replacing m by −ip then subtracting the two equations and simplifying to get

∫ 1

0

(xp − x−p) log(x)

(a2 + log2(x))

dx

(x+ 1)2

=
1

4π(a+ π)

(

ie−iπp(a+ π)Φ
(

e−2ipπ, 2,
a+ π

2π

)

− i(a+ π)eiπpΦ
(

e2ipπ, 2,
a+ π

2π

)

− 4π2pe−iπp
(

2F1

(

1,
a+ π

2π
;
1

2

(a

π
+ 3

)

; e−2ipπ
)

+ eiπp 2F1

(

1,
a+ π

2π
;
1

2

(a

π
+ 3

)

; e2ipπ
))

)

from equation (9.559) in [3] and where ℜ(a) > 0. This is a new entry for Table 4.282 in [3].

8.2. Definite integral in terms of the Lerch functions

Setting k = −2 and replacing a by ea in (4.1) we derive one equation by replacing m by ip and
a second equation by replacing m by −ip then subtracting the two equations and simplifying to get

∫ 1

0

(xp − x−p) log(x)
(

a2 + log2(x)
)2

dx

(x+ 1)2
=

1

8π2a

(

− πpe−iπpΦ
(

e−2ipπ, 2,
a+ π

2π

)

+ ie−iπpΦ
(

e−2ipπ, 3,
a+ π

2π

)

− eiπp
(

πpΦ
(

e2ipπ, 2,
a+ π

2π

)

+ iΦ
(

e2ipπ, 3,
a+ π

2π

))

)

,

where ℜ(a) > 0. This is a new entry for Table 4.282 in [3].
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9. Derivation of a special case of combinations involving powers of the
logarithm and other powers

9.1. Derivation in terms of the hyperbolic tangent and Lerch functions

Setting k = −1 and a = 1 in (4.1) we derive one equation by replacing m by ip and a second
equation by replacing m by −ip then subtracting the two equations and simplifying to get

∫ 1

0

(xp − x−p)

(x+ 1)2
dx

log(x)
= −p tanh−1(cos(πp)) +

i

4π

(

e−iπpΦ
(

e−2ipπ, 2,
1

2

)

− eiπpΦ
(

e2ipπ, 2,
1

2

)

)

from equations (9.121.27) and (9.559) in [3]. This is a new entry for Table 4.283 in [3].

9.2. Derivation in terms of Lerch function

Setting a = 1 in (4.1) we derive one equation by replacing m by ip and a second equation by
replacing m by −ip then subtracting the two equations and simplifying the logarithmic functions
on the left-hand side to get

∫ 1

0
logk(1/x)

(

xp − x−p
)

(x+ 1)2dx = i2k−1πk csc
(πk

2

)

(

− ke−iπpΦ
(

e−2ipπ, 1− k,
1

2

)

+ 2iπpe−iπpΦ
(

e−2ipπ,−k, 1
2

)

+ eiπp
(

kΦ
(

e2ipπ, 1− k,
1

2

)

+ 2iπpΦ
(

e2ipπ,−k, 1
2

))

)

.

This is a new entry for Table 4.272 in [3].

10. Discussion

In this paper we have derived a new integral representation for ζ(1/2) the value of which is
apparently unknown in terms of known constants. We were able to derive an efficient method
for evaluating Knuth’s series using this integral representation. We also derived a new integral
representation for evaluating ζ(−1/2). We have dealt with a similar integral in the paper “A Definite
Integral Involving the Logarithmic Function in Terms of the Lerch Function” [6]. The present paper
should be seen as an extension of these results.

11. Conclusion

In this paper, we have presented a novel method for deriving some interesting definite inte-
grals using contour integration. The results presented were numerically verified for both real and
imaginary and complex values of the parameters in the integrals using Mathematica by Wolfram.
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