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Abstract: Unlike standard models of monopolistic screening (second-degree price discrimination), we con-
sider a situation where consumers are heterogeneous not only vertically, in their willingness to pay, but also
horizontally, in their tastes or “addresses” a la Hotelling’s Linear City. For such a screening game, a novel model
is composed. We formulate the game as an optimization program, prove the existence of equilibria, develop a
method to calculate equilibria, and characterize their properties. Namely, the solution structure of the resulting
menu of contracts can be either a “chain of envy” like in usual screening or a number of disconnected chains.
Unlike usual screening, “almost all” consumers get positive informational rent. Importantly, the model can be
extended to oligopoly screening.

Keywords: Screening, Price discrimination, Spatial competition, Linear city, Principal-Agent model, Non-
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1. Introduction

Motivation. In economic practice, screening or “second-degree price discrimination” is quite
usual in many industries. It typically generates a “product line”, which is a menu of quantity-price
or quality-price “packages”. E.g., “packages” can mean various bottles of a soft drink offered to a
heterogeneous consumers’ population: (300ml for $0.5), (450ml for $0.8), (1000ml for $0.95), and so
on. Profit-maximizing product lines in telephony, clothes, cars, everywhere typically demonstrate
some price discounts for higher quantity or quality. Why? To explain discounts and to construct
product lines, economists exploit knowledge about multiple consumer types, each type being de-
scribed by its “willingness-to-pay” (monetary valuation function) for higher quantity or quality.
Existing types are known, but who belongs to which type is hidden from the seller; consumers
self-select based on this asymmetric information — this kind of game is called “screening”.

In economic theory, the standard model explaining screening or product lines dates back to
Michael Spence [7]. The model is reproduced in many textbooks, monographs [5], and reviews [8].
Typically, this theory focuses on a monopolistic seller and exploits the Spence–Mirrlees “vertical-
ordering” assumption: types of consumers are numbered in such a way that a higher number has
a higher derivative of its valuation function everywhere. Then, the basic finding is the “Chain-rule
theorem” about the list of active constraints in the profit-maximizing menu of packages. This list
constitutes a “chain of envy” among consumers: the highest type is almost eager to switch to
his/her lower neighbor’s package, who in turn is almost eager to switch to his/her lower neighbor’s
package, and so on, other constraints being redundant. As a result, the solution method is clear
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and the properties of equilibria are definite. Only the highest consumer type gets his/her Pareto-
efficient quantity, others are under-served. However, everybody except the lowest type gets some
informational rent, i.e., a consumer surplus born by asymmetric information.

Among extensions of this theory, [4] shows that the named properties and the “chain of envy”
itself are not guaranteed in situations where the standard Spence-Mirrlees assumption does not
hold. Other extensions are also devoted to revealing various solution structures and properties
(see [8]).

The present paper considers one more class of non-standard, poorly studied situations. Here
the vertical heterogeneity of consumers (i.e., ordered valuations of types) is combined with their
horizontal differentiation in some space of tastes or locations. Thus we bridge the theory of screening
with another theoretical tradition, horizontal “Linear City”. The latter was pioneered by [2] and
includes plenty of models (for review, see [9]).

The rationale for combining both “vertical” and “horizontal” theories lies in the realism of the
combination. For instance, a typical city includes consumers who are heterogeneous not only in
their willingness to pay for quantity/quality but also in their geographical location. When designing
his/her product lines, each seller should have in mind not only possible switches of consumers among
the packages of his/her product line, but also a possibility to attract more consumers by lower prices
of the whole product line. The interaction between these possibly contradicting selling strategies
is the main idea here, a novel theoretical question worth studying.

Setting. Our consumers are differentiated in two ways: vertically (e.g., rich and poor) and
horizontally. In a certain industry, the horizontal dimension may mean not only geography but also
“tastes locations”, which include some other characteristic, e.g., size of clothes. Say, T-shirts may
be differentiated in qualities (vertical dimension) and sizes (horizontal dimension), suiting various
consumer tastes. Still, we stick to expressive geographical interpretation, bearing in mind that
tastes interpretation is isomorphic.

In the vertical dimension, we assume a finite number of consumer types. E.g., these types can
be “rich”, willing to pay more for quality, “middle-class”, and “poor”. In the horizontal dimension
there is a continuum of locations among each type of consumer, uniformly distributed on the real
line, the monopolistic seller being located at 0. The consumers bear some transportation costs,
paying with their time and effort to go shopping. Therefore, “the farthest customer” is one whose
net-of-price willingness-to-pay for the commodity almost equals his/her disutility of walking to the
shop. This trade-off generates a negative dependence of the seller’s range of service upon its price,
interrelated with “envy” among rich and poor.

Results. We propose a novel model for such “Principal-Agents” games and formulate it as the
Principal’s optimization program under the Participation constraints and Incentive–Compatibility
constraints (IC constraints). Such optimization (traditionally) replaces a game among agents.
Further, we reduce the Principal’s program to a convenient form, show why a solution should exist.
Discussing a solution method, we note that our optimization problem need not be a convex one,
which brings complications. In principle, one should search among all possible envy structures,
which are all possible combinations of constraints. We propose a heuristic directed-search method
to determine the set of active constraints in a smaller number of steps than a complete search. It
exploits the first-order conditions in such a way as not to miss the global maximum.

The computational issues are the necessary preliminaries, but the economic properties of solu-
tions are the main goal of theoretical studies in screening. For our model, the important finding
is that prices tend to be lower than under screening without space. Unlike the standard setting,
almost all consumers (except “the farthest customer” of each type) get some informational rent,
which is the consumer surplus. Moreover, we characterize the condition on parameters that gen-
erate equilibria with Pareto-efficient sizes of packages not only for the highest type but also for
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some other types. In this case, the usual chain structure of envy among consumer types is broken
and the graph of the solution takes the form of a broken chain, some segments being disconnected.
Examples illustrate such disconnected equilibria. The highest type in each segment gets the Pareto-
efficient size of his/her package, whereas all other agents get distorted sizes. Why should we care
about these properties? Because knowledge about Pareto-inefficiency is needed for market regu-
lation, while knowledge about the structure of solutions can help sellers to choose their pricing
policies.

Extensions and other approaches. Last but not least motivation: the present setting is one
of the possible ways to develop screening in oligopoly, which remains a difficult goal for theorists
to reach. In this field, the well-known paper by Rothschild and Stiglitz [6] is probably a good
description of a competitive market of insurance, but it does not fit well the commodity markets
because it predicts zero profit for sellers, which is not realistic. Our spatial approach appears as a
good alternative because space softens competition and allows for realistic positive profits. Another
approach to screening in oligopoly was recently developed in an important paper by Chade and
Swinkels [1]. Their firms are heterogeneous; as a result, higher types of firms serve higher consumer
types (sorting). Payoffs in such a game are not quasi-concave, but equilibria do exist. Certain
firm types distort their allocations downwards; the welfare effects of private information differ from
those under monopoly. The approach by Chade and Swinkels is an alternative (non-spatial) way
to describe oligopoly screening with positive profit, which complements our approach.

The next section introduces the model. Subsequent sections provide examples, show that equi-
libria exist, provide a method to find them, and discuss equilibria properties.

2. Screening in a “Linear City”: model and equilibria existence

“Linear City” in theory is typically a continuously inhabited interval, or, like here, the real
line (−∞,∞), where location 0 is the “city center”. For simplicity, we restrict our attention to
uniform distribution of each consumer type. Our single seller is located in the center, at 0. So,
by symmetry, it is sufficient to formally represent only one side of this city [0,∞), the other side
(−∞, 0] just mirrors the first one.2

Operating at 0, our monopolistic seller (a shop) serves the interval [0,∞) uniformly populated
by each of n consumer types. Each individual is characterized by his/her type i ∈ {1, 2, ..., n}
and by location ξi ∈ [0,∞), which is his/her distance from the seller. The seller offers at 0 some
commodity or service to all consumers, constructing a menu {(q1, T1) , ..., (qn, Tn)}, where each
package includes quality/quantity/size qi of the commodity and tariff or price Ti. (For instance,
one may think of a shop selling a soft drink. Then, the size q1 is destined to the “least thirsty”
consumers, q2 > q1 should serve “moderate thirsty” ones, while q3 > q2 should serve “very thirsty”
consumers, or very rich ones, eager to pay more.) The “transportation cost” τξi is proportional to
distance (with τ > 0). It is interpreted as the customers’ time/money, spent traveling for shopping
at point 0.3

Each point is inhabited by some mass m1 > 0 of consumers type #1, by some mass m2 > 0
of consumers type #2, mass m3 > 0 of consumers type #3, and so on. (If one interpret mi

2Choosing an infinite city instead of [−1, 1] means that we want to model sufficiently high transportation

costs, to make the city edges not served by the seller. We are going to investigate also the case of a city
completely covered by service, and the most interesting topic — two oligopolists, competing for the whole
Linear City.

3As we had said, another typical interpretation of Linear City [0,∞) is some space of characteristics, e.g.,
sizes of clothes. In this case, the “transportation cost” means disutility from inappropriate size, expressed
in money.



Screening in Space: Rich and Poor Consumers in a Linear City 69

as a probability of this type, then normalization m1 + m2 + ... + mn = 1 should be added, but
normalization plays no role in our solution.) The consumers are characterized by their monetary

valuation functions, i.e., willingness to pay for quantity/quality, denoted by ṽ1[q], ṽ2[q], ṽ3[q].
On the other side of the counter, the “Principal” in this game, the monopolistic seller, faces a

marginal cost c ≥ 0, which is his/her production cost per unit of quantity/quality. However, we
shall subtract costs from valuations/tariffs and further deal only with net-of-cost valuations v and

net-of-cost tariffs t4:

v1[q] ≡ ṽ1[q]− cq, . . . , vn[q] ≡ ṽn[q]− cq[q],

t1 ≡ T1 − cq1, . . . , tn ≡ Tn − cqn.

Respectively, the subsequent analysis looks as if costs were zero (c = 0), but the non-zero case is
also included in consideration because the summand cqi enters both sides of important constraints
and cancels out.

Assumption 1 (Boundedness+). Each net valuation vi : R+ → R+ (i = 1, 2, . . . , n) has a

finite argmaximum:
∃ qoi ≡ argmax

z
vi[z] > 0.

Each net valuation function vi is strictly concave, twice continuously differentiable, and it is strictly

increasing on [0, qoi ), i.e., below the argmaximum.

Assumption 2 (Ordering+). The family of valuations v1[·], v2[·], . . . , vn[·] satisfies the Spence–
Mirrlees ordering condition:

v′1[q] < v′2[q] < v′3[q] ∀q, vi[0] = 0 ∀i = 1, 2, . . . , n.

As a result, graphs of all net valuations vi[q] do cross at the origin and never cross again, that is
why such assumption is often called the “single-crossing condition”.

Example 1. An example of valuations’ family, used below for demonstrations, is a family of
affine transforms of some common function ν[·]:

v1[q] = a1q + ν[q], v2[q] = a2q + ν[q], v3[q] = a3q + ν[q],

with some parameters 0 < a1 < a2 < a3. E.g., it can be a family of parabolas like

v1[q] = 2q − 0.5q2, v2[q] = 3q − 0.5q2, v3[q] = 4q − 0.5q2,

see similar examples below.

Traditionally for the screening theory, in such games, consumers play the role of informed
“Agents”, or “followers”. The seller, uninformed about their types, is a “Principal”, or “leader”:
he/she plays first, they second. He/she needs to construct a menu of “packages”, being unable to
discriminate among their types. Each package (qi, ti) ≥ 0 includes quality qi and tariff ti, called
also “price”. One can show that there is no need to construct more packages than n agent types in
the market. Non-participation is perceived as one more package (0, 0). So, the menu will consist
of (0, 0) and n non-trivial elements

(q, t) = ((q1, t1), (q2, t2), . . . , (qn, tn)).

4Hereinafter, we always use brackets like f [·] to denote arguments of functions, using parentheses (·) for
grouping.
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If some packages coincide, then the consumers actually have less than n different options, but
formally we shall discuss exactly n packages designed.

After the menu is set, each agent comes and “self-selects”, i.e., buys a single package (qi, ti)
from the menu in take-it-or-leave-it fashion. He/she can choose the zero outside option (not buy
anything), then (0,0) brings him/her zero “reservation utility” ui0 = 0. Whenever any agent (i, ξ)
chooses a package (qi, ti), his/her payoff, or gross utility ui will include his/her valuation vi[qi] for
the chosen quality qi minus the tariff ti, minus his/her personal transportation cost, as follows:

ui[qi, ti, ξ] = vi[qi]− ti − τξ ≥ ui0 = 0.

Here, the parameter τ > 0 is the “distance cost” coefficient for any consumer located at ξ, i.e.,
ξ-far from the seller located at 0. In other words, the farther is the consumer from the shop, the
more he/she spends on shopping. For any type i, the endogenous range of service xi is defined as
the location of the farthest consumer among this type who comes to buy anything:

xi : (qi[ξi] > 0 ∀ξi ≤ xi) , (qi[ξi] = 0 ∀ξi > xi) .

In other words, all ξi located closer than xi to 0 do buy from the seller, more distant consumers do
not (the ranges of service xi may be different among types i).

We have normalized the marginal cost c to zero (without loss of generality). So, the Principal’s
elementary payoff from a single purchase by consumer (i, ξ) is

πi[qi, ti] ≡ mi ∗ (ti − cqi) = mi ∗ ti.

Taking into account the endogenous range of service xi = xi [qi, ti] ≥ 0, we are going to maximize
the total Principal’s expected profit, which is the integral over all consumers served (the weighted
sum of individual net tariffs)

Π = Π[q, t, x] ≡ x1 ·m1 · t1 + ...+ xn ·mn · tn → max
{(xi,qi,ti)i≤n≥0}

. (2.1)

One may be surprised that the Principal is expected to design not only the packages but also the
range of service xi. Let us explain: traditionally for such theory, the consumers goals and behavior
are expressed through inequalities. Namely, profit is maximized w.r.t. all variables simultaneously,
including those chosen by consumers, under two groups of agents “rationality constraints”. These
are almost-standard Participation constraints (2.2) and Incentive-compatibility constraints (2.3):

[qi]− ti ≥ τxi ∀i, (2.2)

vi[qi]− ti − τxi ≥ vi[qj ]− tj − τxi ∀i, j. (2.3)

Here constraint (2.2) means that the consumer’s surplus from the purchase exceeds his/her trans-
port cost. It includes the novelty of our model: without the spatial dimension, the right-hand side
of the participation constraints would be just zero. We also have in mind participation constraints

vi[qi]− ti ≥ τξi ∀ξi < xi

for all close-to-producer agents (i, ξ), but they are weaker than such constraint (2.2) for the farthest
consumer xi, and therefore dropped.

Any Incentive-compatibility constraint (2.3) means that a consumer i is not “envying” any
other (jth) package, i.e., he/she has no incentive to take package j instead of one designed for
him/her. The transport cost τxi enters both sides of the Incentive Compatibility inequality, so, it
can be dropped.

Now we show that the usual Chain–Rule applies here, i.e., that many Incentive-compatibility
constraints can be dropped or replaced.
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Lemma 1 (Chain-Rule). Solving the maximization problem (2.1)–(2.3) is equivalent to maxi-

mizing the same objective function under the following constraints:

v1[q1]− t1 ≥ τx1, . . . , vn[qn]− tn ≥ τxn, (2.4)

v2[q2]− t2 ≥ v2[q1]− t1, (2.5)

v3[q3]− t3 ≥ v3[q2]− t2, (2.6)

. . .

vn[qn]− tn ≥ vn[qn−1]− tn−1, (2.7)

qn ≥ ... ≥ q2 ≥ q1 ≥ 0, (2.8)

where some Incentive-compatibility constraints are replaced by the ordering constraints (2.8).

P r o o f. We observe that our initial optimization problem (2.1)–(2.3) differs from the classical
one only in its participation constraints. This allows us to repeat the classical proof under the
Spence–Mirrlees condition (see [3]), and claim that a constraint “no-envy from any i to his/her
lower neighbor i− 1” implies “no-envy” from i to anybody else:

(vi[qi]− ti ≥ vi[qi−1]− ti−1) ⇒ vi[qi]− ti ≥ vi[qj]− tj ∀j.

First, we combine constraint of “no-envy” from any i to any lower j < i with its inverse:
“no-envy” from j to the higher type i:

vi[qi]− vi[qj] ≥ ti − tj ≥ vj [qi]− vj [qj] (2.9)

and compare this with the Spence–Mirrlees condition expressed in finite differences:

vi[qi]− vi[q̃] ≥ vj [qi]− vj [q̃] ∀j < i,∀ (qi, q̃) | qi ≥ q̃.

We conclude that all incentive-compatible packages must satisfy the q-ordering constraint (2.8),
i.e., a higher type must take a (weakly) bigger package. Thereby, adding this ordering constraint
to the constraints system (2.2)–(2.3) does not influence optimization. Since our objective function
is increasing in ti and our constraints take the form vi[qi]− ti ≥ ..., we realize that it is sufficient to
consider only intervals qi ≤ qoi below the argmaximum, where our valuations are increasing. Then, it
is easy to check that bigger packages imply weakly higher tariffs for higher types: t1 ≤ t2 ≤ ... ≤ tn
at any solution. Hence, we can ignore in optimization each “no-envy” constraint from j < i to
higher i. Indeed, it is the right inequality in (2.9), whereas a profitable increase in both tariffs ti, tj
can make only the left equality binding, not the right one.

Second, similarly using q-ordering and the Spence–Mirrlees condition, we check that “no-envy
from any i to his/her lower neighbor i − 1” implies also “no-envy” from i to any lower type
j < i − 1. Thereby, under (2.8) all non-neighboring incentive constraints are excessive, can be
dropped without changing our optimization. �

Thus, we have introduced a new model of screening, and represented a related Principal–Agent
game as the Principal’s optimization program (2.1), (2.4)–(2.8); all equilibria of our game (if any)
are some profit-maximizing solutions.

3. Reduction of variables and existence of solutions

To reduce variables, one can look at the objective function (2.1) increasing in ti, xi, and conclude
that, for each type i, the farthest-customer’s participation constraint must be active at any
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solution, i.e., become an equality (in the opposite case we could increase profit by increasing
variables ti, xi).

So, we can use these active constraints to express the variables ti as

t1 = v1[q1]− τx1, t2 = v2[q2]− τx2, . . . , tn = vn[qn]− τxn.

Plugging these ti into the IC constraints, we obtain their left-hand sides equal to the ranges of
service xi:

v2[q2]− t2 = v2[q2]− (v2[q2]− τx2) ≡ τx2, . . . , vn[qn]− (vn[qn]− τxn) ≡ τxn.

Now we plug these expressions into the profit Π and into the IC constraints, thereby excluding the
variables ti and participation constraints. Thus we come to the reduced maximization problem to
be solved:

Π ≡ x1 ·m1 · (v1[q1]− τx1) + ...+ xn ·mn · (vn[qn]− τxn) → max
(xi,qi)i≤n

s.t. (3.1)

τx2 ≥ v2[q1]− v1[q1] + τx1,

τx3 ≥ v3[q2]− v2[q2] + τx2,

. . .

τxn ≥ vn[qn−1]− vn−1[qn−1] + τxn−1,

qn ≥ qn−1 ≥ ... ≥ q1 ≥ 0. (3.2)

Possible solution “structures” and ideas of solving. It is common in constrained opti-
mization to find a solution through exploring many possible combinations of constraints — inequal-
ities, when finding out which of them will become active (equalities) at the true global maximum.
In convex optimization, e.g., linear programming, well-known are algorithms of directed search
among these combinations. An efficient directed search reduces the number of combinations ex-
plored, keeping a warranty of the true optimum. We are going to construct a sort of such search
here. We shall denote by

A = {ICij , ICjk, ..., Oi, ...}

any possible “solutions structure”, i.e., the list (combination) of names of constraints that we assume
are active at the current step. Hereinafter, ICij denotes the Incentive Compatibility constraint like
τxi ≥ vi[qj] − vj [qj] + τxj , and an ordering constraint like qi ≥ qi−1 is denoted by Oi. Under
any A-hypothesis, we call a related solution an “A-conditional optimum”. After trying all A, we
compare all such conditional optima to select a true optimum.

Unfortunately, in general, our optimization program need not be a convex one! Indeed, one
can note that our objective function includes the summands x1 · v1[q1] where both multipliers are
increasing, this form precludes concavity of this function. Moreover, our constraints include the
difference vi+1[qi] − vi[qi] (of concave functions) that need not be convex or concave without an
additional assumption. Generally, our domain for variables is not necessarily convex. However,
our specific problem often allows for some simplifications. We start discussing them with possible
empty set of active constraints A = ∅.

Disconnected kind of solutions. To introduce additional notions and notations before our
existence theorem, we now show some specific, “disconnected” type of solutions (equilibria), that
may occur under some specific valuations vi.

Let us suppose that all incentive constraints (IC) and all ordering constraints qi ≥ qi−1 are
inactive, play no role in the solution. Then, optimization in q alone would give us the so-called
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“Pareto-optimal” package sizes qoi , because they maximize vi[qi] per se:

qo3 ≡ argmax
z≥0

v3[z] ≥ qo2 ≡ argmax
z≥0

v2[z] ≥ qo1 ≡ argmax
z≥0

v1[z] > 0, (3.3)

to3 ≡ max
z≥0

v3[z]/2 ≥ to2 ≡ max
z≥0

v2[z]/2 ≥ to1 ≡ max
z≥0

v1[z]/2 > 0. (3.4)

Using these known values q, t, now we can optimize in xi each summand xi ·mi · (vi[q
o
i ]− τxi) and

obtain “Pareto-optimal” ranges xoi of service

xo1 ≡
v1[q

o
1]

2τ
, xo2 ≡

v2[q
o
2]

2τ
, . . . xon ≡

vn[q
o
n]

2τ
. (3.5)

Such a solution means that, out of common benefit vi[q
o
i ] from their contract, the closest-to-the-

seller consumer gets one half (as “consumer surplus”), and the seller gets the other half as his/her
profit. More distant consumers get less.

To find what kind of valuations may generate such disconnected equilibria, we plug these
expressions qo1, t

o
1 into the incentive constraints. Thus we get a necessary condition (3.6) on such

valuations:

vi+1[q
o
i+1]

2
−

vi[q
o
i ]

2
≥ vi+1[q

o
i ]− vi[q

o
i ] ⇒

vi+1[q
o
i+1] ≥ 2vi+1[q

o
i ]− vi[q

o
i ] (3.6)

for all i. Is the inequality plausible, is a disconnected solution possible under any valuations vi?
The following example confirms this.

Example 2. (Separated types #1, #2, #3.) The following example with three quadratic valua-
tions vi[qi] = ai ∗ qi − bi ∗ q

2
i shows a disconnected structure:

a1 = 2; a2 = 2.2; a3 = 2.3; b1 = 5; b2 = 2; b3 = 0.8.

The masses of types are m1 = m2 = m3 = 1, and the costs are c = 0; τ = 1.
These data and direct calculations yield the following profit-maximizing Pareto-optimal

sizes/tariffs:

q∗1 = qo1 ≡ argmax
q

v2[q] = 0.2, t1 = 0.1,

q∗2 = qo2 ≡ argmax
q

v2[q] = 0.55, t2 = 0.3025,

q∗3 = qo3 ≡ argmax
q

v3[q] = 1.4375, t3 = 0.826563.

Fig. 1 exhibits our Example 2 with a disconnected equilibrium. It gives also some geometry
intuitions for this kind of solutions and for our optimization problem per se.

Thick red, green, and blue dots are the consumers’ equilibrium packages: the quantity qi lies on
the horizontal axis, the tariff ti lies on the vertical one. The valuations vi[·] of the first, second, and
third consumers are the solid curves painted red, green, and blue, respectively. Each dashed curve
shows the equilibrium level of the valuation function for one consumer among this type, namely,
for one closest to the seller. The lower is the dashed curve, the better for the consumer because its
difference in height with related solid curve demonstrates the consumer’s surplus (payoff).

Small red, green, and blue squares demonstrate the equilibrium packages which would occur
under standard, space-less screening. Comparing standard and new outcomes, we observe that
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Figure 1. Valuations and solutions.

adding space to screening can diminish distortion. Namely, space increases quantities q and also
brings benefits for the close-to-seller consumers by diminishing tariffs t.

Example 3. (Connected types #1+#2, separated #3.) This example is almost the same as
Example 2, only b2 = 3. The quadratic valuations are

vi[qi] = ai ∗ qi − bi ∗ q
2
i

with
a1 = 2; a2 = 2.2; a3 = 2.3; b1 = 5; b2 = 3; b3 = 0.8,

the same masses m1 = m2 = m3 = 1 and costs c = 0; τ = 1. The solution shows a partially
disconnected structure:

q∗1 = 0.19 < argmax
q

v2[q], t1 = 0.1104336,

q∗2 = qo2 ≡ argmax
q

v2[q] = 0.366667, t2 = 0.19712,

q∗3 = qo3 ≡ argmax
q

v3[q] = 1.4375, t3 = 0.826563.

Example 4. (Connected types #1+#2+#3.) This example is almost the same as Example 3,
only b3 = 2. The quadratic valuations are

vi[qi] = ai ∗ qi − bi ∗ q
2
i

with
a1 = 2; a2 = 2.2; a3 = 2.3; b1 = 5; b2 = 3; b3 = 2,

the same masses m1 = m2 = m3 = 1 and costs c = 0; τ = 1. It shows a completely connected
solution structure:

q∗1 = 0.182261 < argmax
q

v2[q], t1 = 0.10786,

q∗2 = 0.34472 < argmax
q

v2[q], t2 = 0.208432,

q∗3 = qo3 ≡ argmax
q

v3[q] = 0.575, t3 = 0.31449.
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Economic intuitions. Economically, why the “chain of envy”, quite usual in standard screen-
ing, can be broken in spatial screening? Why disconnected profit-maximizing solutions may hap-
pen? Well, we know that in usual screening there are no reasons for the principal to leave any
incentive compatibility constraint, or the 1st participation constraint, inactive. Such a plan would
bring waste of profit. Respectively, the 1st type in usual screening gets zero informational rent,
nothing beyond the reservation utility.

By contrast, in our spatial screening model, all closer-than-the-farthest customers get equilib-
rium payoffs higher than their reservation ones; i.e., the tariff for them is lower than it could be.
This slack is not wasted, from the view of the profit-maximizing Principal, it is a sacrifice for ex-
tending his/her service range, his/her coverage of consumers. This objective, constructing a utility

slack to attract more consumers, can make one or more incentive constraints inactive. The realism
of such a trade-off in many markets — is the main reason for building our new model of screening.

Our discussion of examples and reasons for non-active constraints ends up with the following
conclusion. Generally, the list A of active constraints may be empty, or include all IC constraints
(A = {ICn,n−1, ICn,n−1, ..., IC21}), or may consist of various combinations of active constraints.

Equilibria existence. Returning to the general case with unknown A, we should ask: are there
always solutions {(xi, qi)i≤n} to our maximization program (3.1)–(3.2)? Our domain is not empty.
Indeed, to show a sample admissible plan we can take all partial Pareto-optimal sizes qoi . These
“separate maxima” exist under our assumptions, they satisfy our ordering.5 We can supplement
these q with sufficiently small x like x1 = x2 = x3 = ε < minj vj[q

o
j ]/τ . So, a positive admissible

plan (q, x) > 0 exists. Moreover, it brings a strictly positive profit Π > 0.

Now studying our objective function, we observe that the highest-type quality qn enters Π only
once, so, this variable must take its Pareto-optimal value qn = qon at any solution. As to the other
arguments qi of the objective function, we conclude that we can restrict them as qi ≤ qoi without
sacrificing our objective function (since, for higher values of q, our profit Π becomes smaller).
Similarly, without sacrificing our objectives, variables x can be restricted as (vi[qi]− τxi) ≥ 0, i.e.,
xi ≤ vi[qi]/τ ≤ vi[q

o
i ]/τ .

Therefore, without loss of optima, we can squeeze our initial domain (positive orthant), and
maximize now our function Π(q, x) on a restricted compact domain K constructed as

K ≡
{

(q, x)| 0 ≤ qi ≤ qoi + 1, 0 ≤ xi ≤ xmax ≡ max
j

vj [q
o
j ]/τ + 1 ∀i = 1, 2, 3

}

.

Our objective function Π(q, x) is continuous. Therefore, byWeierstrass’s extreme value theorem,
we have established the following statement.

Proposition 1. Under our assumptions, there exists a solution to our maximization prob-

lem (3.1)–(3.2).

Moreover, one can conclude from our discussion that the maximum lies strictly below the
artificial upper bounds qoi + 1, xmax (being an inner solution) and brings a positive profit Π.

How can we practically find a solution under any specific valuation functions vi?

Of course, one can exploit any iterative or exact numerical method. Since we deal here with
differentiable functions, it is possible to use exact finite methods, exploiting the first-order condi-
tions, even without being sure in convex optimization. Indeed, after finding all stationary points
and border solutions, one can compare (a finite number of) related local maxima, to choose the
global one.

5We also can take sufficiently small values of x1 = x2 = x2 = ε < v1[q
o

1 ]/τ < v2[q
o

2 ]/τ < v3[q
o

3 ]/τ > 0, and
assure that the objective function can be positive under some values of the optimizers.



76 Sergey Kokovin and Fedor Vasilev

To implement this idea, solving first-order equations for all possible A-structures should be
sufficient to find the true optimum, but this way can be computationally tedious. We shall suggest
a heuristic method that explores some A-structures. To construct each step of this method, the
next section suggests a convenient way of using First-Order Conditions (FOC) for exploring any
hypothesis A about active constraints.

4. Using FOC for any hypothetical list A of active constraints

This section explains how to further reduce our variables and use First-Order Conditions to
find any A-conditional maximum under some hypothesis A. We explain it by an example.

Suppose that we have n = 4 consumer types and assume that family A of active IC constraints
(A explored on some step of our general search algorithm) connects three adjacent agent types
{#1,#2,#3} as A = {IC21, IC32}, whereas type #4 is separated and ordering constraints are not
binding. We find related A-conditional maximum as follows.

As we have ensured, the highest variable q∗3 among the chain {#1,#2,#3} must take its v3-
maximizing Pareto-value qo3 (here and further accent ∗ denotes solutions):

q∗3 = qo3 ≡ argmax v3[q3].

Similarly, the isolated variable q4 also takes its Pareto-optimal value q∗4 = qo4. (By contrast, lower
variables qi in the chain need not become Pareto-optimal because the incentive constraints may be
active.)

Whenever any ICji is active, we can define the difference function Vji[qi] ≡ vj[qi]− vi[qi]. E.g.,
for two IC included in A = {IC21, IC32}, these difference functions are

V32[q2] ≡ v3[q2]− v2[q2], V21[q2] ≡ v2[q1]− v1[q1].

(Special linear case. Such difference function V32[·] can appear linear in the particular case when the
valuations family vi[·] is built from a common function u[·] as its linear modification vi[x] = aix− u[x] with
a1 < a2 < .... In this case, V32[q2] ≡ a3q2 − a2q2 = (a3 − a2)q2, V21[q1] ≡ a2q1 − a1q1 = (a2 − a1)q2).

We can invert any difference function Vij because it is increasing, by Spence–Mirrlees assump-
tion. We denote the inverse Λij [·] ≡ V −1

ij [·]. Further, to reformulate active constraints — equations
τx3 = v3[q2] − v2[q2] + τx2 through these functions Λij , we express the volumes qi through the
differences in service ranges:

q2 = Λ32 [τx3 − τx2] ≡ V −1
32 [τx3 − τx2] ,

q1 = Λ21 [τx2 − τx1] ≡ V −1
21 [τx2 − τx1] .

Using this transform to simplify our optimization, we can get rid of all variables except the service
ranges xi:

τΠ = τx1 ·m1 · (v1[Λ21 [τx2 − τx1]]− τx1) + τx2 ·m2 · (v2[Λ32 [τx3 − τx2]]− τx2)+

τx3 ·m3 ·
(

v3[q
opt
3 ]− τx3

)

→ max
x=(x1,x2,x3)≥0

,
(4.1)

and deal with unconstrained optimization. We check after finding the unconstrained maxima
whether the ordering conditions and out-of-A IC constraints are satisfied. In the opposite case
(violated outside constraints), we reject the hypothesis A and explore another one.

In formulation (4.1), we have multiplied our objective function by τ to prepare subsequent usage
of auxiliary variables yi ≡ τxi, δij , to simplify the analysis. This trick explains also the following
remark.
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Remark 1. The parameter τ only multiplies our payoff but does not influence the main
variables — maximizers (x, q, t).

Solution for a connected component {#i,#i + 1,#i + 2} under A = {IC21, IC32}. To
find the solution components (x1, x2, x3), it is sufficient to differentiate the partial objective func-
tion (4.1) by (x1, x2, x3), explore these first-order conditions, and compare all resulting stationary
points (the points can be multiple if the function is non-concave, but their number is finite), to
choose the true maximum. Afterwards we derive the remaining variables (q, t) from these (x∗).
This gives the part (q∗i , t

∗
i , x

∗
i )i≤3 of the needed solution. Turning to the remaining type #4, the

part (q∗i , t
∗
i , x

∗
i )i≤3 is supplemented with the Pareto-optimal values (q∗4, t

∗
4, x

∗
4) = (qo4, t

o
4, x

o
4) found

for any isolated type from equations (3.3)–(3.5). Now we should check if the ordering conditions
and the unused IC constraints (IC43) are really satisfied, inactive. If it is wrong, this hypothesis
A = {IC21, IC32} is rejected, otherwise, it can be compared with other hypotheses.

To simplify using the first-order conditions, the objective function can be expressed in new
auxiliary variables δji ≡ yj − yi as:

τΠ = (y3 − δ32 − δ21) ·m1 · v1[Λ21 [δ21]]−m1 · (y3 − δ32 − δ21)
2+

(y3 − δ32) ·m2 · v2[Λ32 [δ32]]−m2 · (y3 − δ32)
2+

(y3) ·m3 · v3[q
opt
3 ]−m3 · y

2
3 → max

y=(δ21,δ32,y3)≥0
.

(4.2)

If we treat the variable y3 parametrically, it is easy to observe that the concavity in the remaining
variables δij of any summand is guaranteed when every function vi [Λi+1,i [z]] is concave for all z.
Concavity may help in practical optimization as well as the following technical lemma.

Lemma 2 (Existence of solutions for a component). Given a family A of active IC constraints
and its connected component {#i,#i + 1,#i + 2}, the first-order conditions for related function
formulated as (4.1) must give at least one solution that is a global maximum of this function.

P r o o f. Though Proposition 1 states that maxima do exist when the problem is ex-
pressed in terms of variables (q, x), the above lemma is more specific. Looking at the objective
function (4.2) we note that values of vi [Λi+1,i [z]] are bounded from above by the maximal
value maxz≥0 vi [z], whereas other terms are quadratic with minus and take arbitrarily low
(negative) values when any variable approaches infinity. So, in spite of the unknown concavity of
this objective function, we are sure that all its local maxima must be inner ones, not go to infinity. �

As to the uniqueness of a solution for any connected component, probably, it can be proved
using the assumption of “special linear case”, i.e., Λ′′

21 = 0, but this question remains unclear.

Now we explain how to use our A-conditional solutions and connected components to sequen-
tially search among A-conditional maxima for finding a true maximum. Related heuristic compu-
tational procedure hopefully economizes calculations. The next section also describes all possible
solution structures.

5. Non-active IC constraints and method of search among broken chains

We have shown how to find conditional optima for each connected component belonging to any
hypothetical family A of active constraints. Now let us show how to go step by step from one
hypothetical family A to another, revealing which constraints should be active at the solution, i.e.,
building a sequence of families that approaches the optimal family A∗.
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To begin with, we can try using Pareto-optimal sizes q∗i = qoi ≡ argmaxq vi[q] with related
profit-maximizing tariffs t∗i = toi ≡ vi[q

o
i ] and ranges x∗i = xoi = vi[q

o
i ]/2 as in (3.3)–(3.5). It can

happen that no IC or ordering constraints are violated. Then we can declare that it is a global
optimum with a disconnected solution structure: A = ∅, like our Example 2 (because adding any
constraint to A cannot enhance the objective function).

More typically, some constraints are violated at A = ∅, then some packages should become con-
nected, and finding the optimal solution structure A∗ becomes more difficult. These considerations
give us intuition for the following algorithm for finding A∗, through checking active IC constraint.

The idea of general optimization algorithm.

Let us denote by ICO ≡ {IC21, IC32, ..., ICn−1,n, O1, ..., On} the list of all possible Incentive-
compatibility and Ordering constraints in our reduced program (3.1). Now we describe an algorithm
of directed search among multiple possible combinations, various families A ⊂ ICO of active

constraints. Each family A may generate its own A-conditional-optimal solution (qA, xA), i.e., the
solution under these constraints only. If it happens that this solution (qA, xA) does not violate
other, non-included constraints ICO \ A, then we have reached an admissible A-conditionally-
optimal solution (local maximum). Otherwise, we reject the family A as a possible generator
of solutions. After we explore ALL admissible A-conditionally-optimal solutions for all possible
A ⊂ ICO (exploring finite number of combinations), we can compare their profits and choose the
best local maximum, being sure that it is a global maximum.

Computationally, it appears a tedious, long search. However, luckily, our specific optimization
problem allows for shorter, sequential, directed search among all possible families A, starting with
an empty set A = ∅ and then adding the active constraints one-by-one, going from lower to higher
consumer types, as follows. We provide reasons why during this search we cannot miss the optimal
system A∗ of active constraints.

Heuristic algorithm of sequential search among possible A-structures.
Let us denote packages by wi = (qi, ti).

1. We start from the lowest type #1. To assign his/her package w1, we first assume that his/her
upper IC21 is inactive (separated #1) and therefore assign the related Pareto-optimal values

q1 = q01, t1 = v1[q
0
1]/2, x1 =

v1[q
0
1]

2τ
.

2. Similarly, we find the second Pareto-optimal package w2 = (q2, t2), assuming that both IC21

and IC32 are inactive:

q2 = q02, t2 = v2[q
0
2]/2, x2 =

v2[q
0
2]

2τ
.

3. Now we check whether these two packages w1 and w2 violate the constraint IC21.

If IC21 is violated, then type 1 and type 2 are “connected”, i.e., their packages w1, w2 should
be optimized together, within one problem in the way explained in Section 4. In this case,
we solve program (4.2) that includes these two types: A = {IC21}. We already know that
among these agents the highest size q2 necessarily becomes Pareto-optimal: q∗2 = qo2, but the
tariff t2 will differ from Pareto-optimal v2[q

0
2]/2. Anyway, we get some partial plan — an

admissible couple (w1, w2) .

4. Now we find the third-type optimal package under the assumptions that IC32 and IC43 are
inactive and #3 is separated. Thereby, w3 should be Pareto-optimal:

q3 = q03, t3 = v3[q
0
3], x3 = v3[q

0
3]/2.
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Now we check (violated or not) the constraint IC32, using the packages w3 and w2 already
found previously. If IC32 is violated, then type 2 and type 3 become connected. They become
parts of a unified optimization problem with A = {IC32, IC21} in the case if 1 and 2 were
connected. At this stage, we apply program (4.2) and a related known method to the family
A = {IC32, IC21} and find three connected packages (w1, w2, w3). Thereby, our previously
found (w1, w2) will change.

In the opposite case, if agents #1,#2 were not connected (separated #1), we apply pro-
gram (4.2) and the related method with the smaller family A = {IC32} to find connected
packages (w2, w3). Then we check (violated or not) IC21: if it is not violated, then the
previously found Pareto-optimal w1 does not change, otherwise, it changes. In the latter
case, we again must solve the three-package component A = {IC32, IC21}. It means that
finding w3 may work in such a way that previously disconnected packages #1 and #2 become
connected.

We argue that adding a higher component wk to the previous locally-optimal partial plan
(w1, ..., wk−1) may only increase connectedness, but not break it!

Anyway, the calculations above produce some partial plan — an admissible triple (w1, w2, w3)
for three lowest components of the desired solution (w1, ..., wn).

5. Further, we proceed in the same way adding agent type #4 (package w4) to our analysis and
checking, whether #4 becomes connected with previous packages, or not. In the latter case,
the previous packages remain unchanged, otherwise, they change. When they change, any
disconnected (excluded) IC constraints below #4 may become connected into the solution
structure.

6. We repeat adding new, higher agent types one-by-one and adjusting the current plan w ac-
cordingly until we reach the highest type #n. At each step, adding a higher component wk to
the previous locally-optimal partial plan (w1, ..., wk−1) may only increase connectedness, but
not break it. When the connectedness increases, we must recalculate the lower components,
otherwise, this is not necessary.

In the end of this algorithm, various outcomes are possible: all types become separated; type 1 and
type 2 are linked but other separated; type #1 is separated, types #2 and #3 are linked but other
separated; all types can be connected, and so on.

This algorithm gives an exact solution through a finite number of steps, each step solving
equations, which are the specific first-order conditions for the related A-structure.

Commenting on the general idea, we observe that starting from the lowest types, we check
the connectivity of types. When we meet a new active IC constraint, we check if any previously
inactive constraint becomes active. The “impulse” of restrictions goes down through the chain
of lower connected types. Indeed, when ICi+1 becomes active, the lower-neighbor utility ui[wi]
decreases, therefore the lower ICi might force ui−1[wi−1] to decrease also, and so on — this is what
we mean by the “impulse”.

Why should the algorithm attain the optimal list of constraints A∗? At each step of the process,
we maximize the profit (from the partial plan) with the minimal possible number of constraints. We
always keep the partial plan admissible, always checking if any additional constraints are activated.
These considerations are not complete proof, but they support the idea that the solution found by
the algorithm should be the global maximum. We suppose that this algorithm reaches the true
optimal solution structure A∗ and the optimal plan w∗, and that we need not explore any other
structures A avoided by this method. We cannot provide more detailed proof of this fact so far.
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Conclusion

To summarize, this paper suggests a new model of screening, which is second-degree price
discrimination, for situations where consumers are both vertically and horizontally heterogeneous;
in their willingness to pay for quality and in their locations in geographical space or space of
preferred characteristics of the commodity.

The screening game is reformulated as an optimization program of the seller. The existence of
solutions, which are equilibria, is established under typical for the screening literature assumptions.
This constrained program being potentially non-convex, the heuristic algorithm is proposed to
reduce the search among all possible combinations of active constraints, “solution structures”.

The examples show that solution structures can vary: agent types can be connected by one
common chain of IC constraints (called “chain of envy” in the screening literature), or completely
separated, or consist of several chains of adjacently-numbered agents.

The important economic feature of such equilibria in spatial screening is that, like in the usual
screening, the highest (in each chain) agent type always gets a Pareto-efficient quality, whereas
others do not, their quality is distorted downwards. Unlike the usual screening, almost all agents
(all except “the farthest consumer”) get some informational rent, their payoffs are higher than their
reservation utility.

The most interesting economic extension of this study would be an application of our spatial
screening model to oligopoly screening. It promises an explanation of many real-life situations in
competition, poorly studied so far.
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