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Abstract: Constructions related to products of maximal linked systems (MLSs) and MLSs on the product
of widely understood measurable spaces are considered (these measurable spaces are defined as sets equipped
with π-systems of their subsets; a π-system is a family closed with respect to finite intersections). We compare
families of MLSs on initial spaces and MLSs on the product. Separately, we consider the case of ultrafilters.
Equipping set-products with topologies, we use the box-topology and the Tychonoff product of Stone-type
topologies. The properties of compaction and homeomorphism hold, respectively.
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1. Introduction

In this investigation, properties of maximal linked systems (MLSs) and ultrafilters on widely
understood measurable spaces (MSs) are considered. Every such MS is realized by equipment of a
nonempty set with π-system of subsets of this set with “zero” and “unit” (the “zero” is an empty set,
and the “unit” is our original set); a π-system is a family closed with respect to finite intersections.
Of course, algebras, semi-algebras, topologies, and families of closed sets in topological spaces (TSs)
are π-systems. An important variant of a π-system is realized by a lattice of subsets of a fixed
nonempty set. A semi-algebra of sets is a π-system but, generally speaking, not a lattice.

We note that MLSs were considered in connection with the superextension and supercompact-
ness problem, see [2, 16, 17, 20, 21]. In addition, MLSs on the lattice of closed sets in a TS were
studied. The nonempty set of all MLSs of such type is equipped with Wallman-type topology. The
supercompactness property was implemented.

In [5–7, 9, 10, 12], an analog of the superextension and supercompactness property for the
space of MLSs on a π-system was investigated. Moreover, a Stone-type topology was also used. In
addition, a bitopological space was implemented. The present study continues the above works.
But here the focus is on spaces of MLSs with Stone-type topology. We consider questions related
to the products of widely understood measurable spaces. In addition, representations of MLSs on
the product of these MSs in terms of analogous MLSs on spaces-factors are indicated. Namely,
MLSs on the product of (widely understood) MSs are limited to products of MLSs on initial spaces.
This important property is complemented by a proposition of a topological nature: the properties
of compaction and homeomorphism hold. In addition, the box and Tychonoff variants of topology
product are considered (similar variants are used for the product of MSs). In connection with the
above assumptions, we use constructions of [11, 13, 14].
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2. General notions and notation

We use standard set-theoretic notation, including quantifiers and propositional connectives; ∅

stands for an empty set) and
△
= for an equality by definition. A family is a set such that all its

elements are sets themselves. We adopt the axiom of choice. For every objects x and y, denote
by {x; y} an unordered pair of x and y: x ∈ {x; y}, y ∈ {x; y}, and (z = x) ∨ (z = y) for every

z ∈ {x; y}. For every object s, denote by {s}
△
= {s; s} a singleton containing s : s ∈ {s}. In

addition, sets are objects. Then, for every objects x and y, the family (x, y)
△
= {{x}; {x; y}} is

(see [12, Ch. II, Section 2]) the ordered pair with x as the first element and y as the second. For
every ordered pair h, denote by pr1(h) and pr2(h) its first and second elements, respectively; thus,
h = (pr1(h),pr2(h)).

Denote by P(H) the family of all subsets of H. Let P ′(H)
△
= P(H) \ {∅} be the family of all

nonempty subsets of H. Denote by Fin(H) the family of all finite nonempty subsets of H. If H is
a family and S is a set, then

[H](S)
△
=

{

H ∈ H| S ⊂ H
}

∈ P(H).

For every set M and a family M ∈ P ′(P(M)), the dual family

CM[M]
△
=

{

M \M : M ∈ M
}

∈ P ′(P(M))

is realized. If A is a nonempty family and B is a set, then

A|B
△
=

{

A ∩B : A ∈ A
}

∈ P ′(P(B))

is the trace of A onto the set B. Following to [7, Section 1], if X is a nonempty family, then {∪}(X),
{∩}(X), {∪}♯(X), and {∩}♯(X) stand for the families of arbitrary unions, arbitrary intersections of
nonempty subfamilies of X, finite unions, and finite intersections of sets from X, respectively.

Remark 1. In what follows, we use two types of formulas. Namely, we use expressions of
type {x ∈ X| . . .} and expressions of type {f(z) : z ∈ . . .}. In function theory, the former is used
for the preimage of a set; we have a formula corresponding to Zermelo–Fraenkel axiomatic (we
first select a set X, for points of which some property . . . is postulated). The second expression
corresponds logically to the image of a set. This difference is essential from point of view of
bibliographic references to earlier publications of the author. Therefore, we use two variants of
separator character: | (vertical line) in the first case and : (colon) in the second. This stipulation
is important for the constructions that follow.

For sets A and B, we denote by BA (see [19, Ch. II, § 6]) the set of all mappings (functions)
from A to B; values of mappings are denoted in traditionalway. If A and B are sets, f ∈ BA, and

C ∈ P(A), then f1(C)
△
= {f(x) : x ∈ C} ∈ P(B) and (f |C) ∈ BC is, by definition, the restriction

of the mapping f to the set C : (f |C)(x)
△
= f(x) ∀x ∈ C. For mappings, index form is often used

(a family with index, see [22, Ch. I, I.1]).

In what follows, R is the real line, N
△
= {1; 2; . . .} ∈ P ′(R), and 1, n

△
= {k ∈ N| k ≤ n} for n ∈ N.

We assume that elements of N, i.e., positive integer natural numbers are not sets. Therefore, for
every set H and n ∈ N, instead of H1,n, we use the more traditional notation Hn for the set of all
mappings from 1, n to H; thus, Hn is the set of all processions (hi)i∈1,n : 1, n −→ H.

Special families. Until the end of this section, we fix a nonempty set I. The elements of
P ′(P(I)) are nonempty families of subsets of I. Define the family of all π-systems of subsets of I
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with “zero” and “unit”:

π[I]
△
=

{

I ∈ P ′(P(I))| (∅ ∈ I)&(I ∈ I)&(A ∩B ∈ I ∀A ∈ I ∀B ∈ I)
}

. (2.1)

Of course, P(I) ∈ π[I]. Consider a very useful notion of semi-algebra of sets. For L ∈ π[I], A ∈ P(I),
and n ∈ N, we introduce finite partitions of A by sets of L:

∆n(A,L)
△
=

{

(Li)i∈1,n ∈ Ln|
(

A =
n
⋃

i=1

Li

)

&
(

Lp ∩ Lq = ∅ ∀p ∈ 1, n ∀q ∈ 1, n \ {p}
)

}

.

The family of all semi-algebras of subsets of I is defined as follows:

Π[I]
△
=

{

L ∈ π[I]| ∀L ∈ L ∃n ∈ N : ∆n(I \ L,L) 6= ∅
}

. (2.2)

In addition, we introduce yet another type of π-systems; this type is important in questions of
interconnection between ultrafilters and MLSs. Namely,

π♮
∗[I]

△
=

{

I ∈ π[I]| ∀I1 ∈ I ∀I2 ∈ I ∀I3 ∈ I

((I1 ∩ I2 6= ∅)&(I2 ∩ I3 6= ∅)&(I1 ∩ I3 6= ∅)) =⇒ (I1 ∩ I2 ∩ I3 6= ∅)
}

.

Of course, very general constructions are connected with lattices. The family of all lattices of
subsets of I with “zero” and “unit” is

(LAT)0[I]
△
=

{

I ∈ π[I]| A ∪B ∈ I ∀A ∈ I ∀B ∈ I
}

, (2.3)

We introduce the family

(alg)[I]
△
=

{

A ∈ (LAT)0[I]| I \A ∈ A ∀A ∈ A
}

(2.4)

of all algebras of subsets of I. For A ∈ (alg)[I], (I,A) is an MS with algebra of sets. Moreover,

(top)[I]
△
=

{

τ ∈ (LAT)0[I]|
⋃

G∈G

G ∈ τ ∀G ∈ P ′(τ)
}

(2.5)

is the family of all topologies on I and

(clos)[I]
△
=

{

CI[τ ] : τ ∈ (top)[I]
}

∈ P ′((LAT)0[I]) (2.6)

is the family of all closed topologies [1, Ch.4, § 1] on I. So, (2.4)–(2.6) are important types of lattices
(see (2.3)). Semi-algebras (see (2.2)) are, generally speaking, not lattices: if L ∈ Π[I], then it is
possible that L /∈ (LAT)0[I].

Elements of topology. We consider the families (BAS)[I] and (p−BAS)[I] of all open bases
and subbases on I, respectively; this notation correspond to [9, Section 2] (see also [7, Section 2]).
Of course, {∪}(β) ∈ (top)[I] for β ∈ (BAS)[I]; moreover, {∩}♯(χ) ∈ (BAS)[I] for χ ∈ (p− BAS)[I].
Note that (see (2.1))

π[I] ⊂ (BAS)[I]; (2.7)

therefore, {∪}(L) ∈ (top)[I] is defined for L ∈ π[I]. If τ ∈ (top)[I], then

(τ − BAS)0[I]
△
=

{

β ∈ (BAS)[I]|τ = {∪}(β)
}

.

Moreover,

(p− BAS)0[I; τ ]
△
=

{

χ ∈ (p− BAS)[I]|{∩}♯(χ) ∈ (τ − BAS)0[I]
}

.
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Thus, we have introduced open bases and subbases of the specific TS (I, τ).

Linkedness. If J ∈ P ′(P(I)), then we suppose that

〈J − link〉[I]
△
=

{

E ∈ P ′(J )| Σ1 ∩ Σ2 6= ∅ ∀Σ1 ∈ E ∀Σ2 ∈ E
}

. (2.8)

Elements of the family (2.8 and only they are linked subfamilies of J . As a corollary,

〈J − link〉0[I]
△
=

{

E ∈ 〈J − link〉[I]| ∀S ∈ 〈J − link〉[I] (E ⊂ S) =⇒ (E = S)
}

(2.9)

is the family of all maximal linked subfamilies of J . We call every family of (2.9) an MLS (on J ). In
what follows, for our goals, it suffices to consider the case J ∈ π[I]. Therefore, until the end of this
section, suppose that J ∈ π[I]. Now, we note only several simple properties. So, {Σ} ∈ 〈J −link〉[I]
for Σ ∈ J \ {∅}. Then, by the Zorn lemma, 〈J − link〉0[I] 6= ∅. Moreover,

〈J − link〉0[I] =
{

E ∈ 〈J − link〉[I]| ∀J ∈ J (J ∩ Σ 6= ∅ ∀Σ ∈ E) =⇒ (J ∈ E)
}

.

Finally, note that, for E ∈ 〈J − link〉0[I], we have

([J ](Σ) ⊂ E ∀Σ ∈ E)&(I ∈ E). (2.10)

More detailed information on the properties of MLSs can be found in [5–7, 9–12]. Now we introduce
some constructions for a Stone-type topology. If J ∈ J , then

〈J − link〉0[I|J ]
△
=

{

E ∈ 〈J − link〉0[I]| J ∈ E
}

∈ P(〈J − link〉0[I]). (2.11)

The sets (2.11) define an open subbase. More precisely, the subbase

Ĉ
∗
0[I;J ]

△
=

{

〈J − link〉0[I|J ] : J ∈ J
}

∈ (p− BAS)[〈J − link〉0[I]]

generates the following topology of Stone type:

T∗〈I|J 〉
△
= {∪}

(

{∩}♯(Ĉ
∗
0[I;J ])

)

∈ (top)[〈J − link〉0[I]]. (2.12)

In addition, (〈J − link〉0[I],T∗〈I|J 〉) is a zero-dimensional T2-space.

3. Generalized Cartesian products

In this sections, we recall some constructions connected with Cartesian products and generalized
Cartesian products. We note also some notions connected with family products.

If X and Y are nonempty sets, X ∈ P ′(P(X)), and Y ∈ P ′(P(Y )), then

X{×}Y
△
= {pr1(z)× pr2(z) : z ∈ X × Y} ∈ P ′(P(X × Y )) (3.1)

(X ×Y is the usual product of X and Y, i.e., the set of ordered pairs); (3.1) is the simplest variant
of the constructions used below. It is easy to verify the property

X{×}Y ∈ π[X × Y ] ∀X ∈ π[X] ∀Y ∈ π[Y ]. (3.2)

We consider (X × Y,X{×}Y) as the product of the MSs (X,X ) and (Y,Y).
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Now we recall notions connected with generalized Cartesian products. If X and Y are nonempty
sets and (Yx)x∈X ∈ P ′(Y)X, then (by the axiom of choice)

∏

x∈X

Yx
△
=

{

f ∈ Y
X|f(x) ∈ Yx ∀x ∈ X

}

∈ P ′(YX). (3.3)

In connection with (3.3), note that, for every nonempty sets X, Ỹ, and Ŷ and a mapping
(Yx)x∈X ∈ P ′(Ỹ)X ∩ P ′(Ŷ)X, we have

{

f ∈ Ỹ
X| f(x) ∈ Yx ∀x ∈ X

}

=
{

f ∈ Ŷ
X| f(x) ∈ Yx ∀x ∈ X

}

. (3.4)

In what follows, in constructions of type (3.3) we take into account (3.4). If X and Y are nonempty
sets and (Yx)x∈X ∈ P ′(Y)X, then

∏

x∈X

P ′(P(Yx)) =
{

(Yx)x∈X ∈ P ′(P(Y))X| Ys ∈ P ′(P(Ys)) ∀s ∈ X
}

;

moreover, if (Ex)x∈X ∈
∏

x∈X P ′(P(Yx)), then

⊙

x∈X

Ex
△
=

{

∏

x∈X

Σx : (Σx)x∈X ∈
∏

x∈X

Ex

}

. (3.5)

We consider the family (3.5) as a box product of the families Ex, x ∈ X. Here, we note the natural
analogy with the base of the known box topology (see [18, Ch. 3]).

If H is a set, then we suppose that

(Fam)[H]
△
= {H ∈ P ′(P(H))|H ∈ H};

of course, P(H) ∈ (Fam)[H]; moreover, (alg)[H] ⊂ Π[H] ⊂ π[H] ⊂ (Fam)[H] and, by (2.5),
(top)[H] ⊂ (Fam)[H]. As a corollary, for nonempty sets X and Y, a mapping (Yx)x∈X ∈ P ′(Y)X,
and a mapping (Fx)x∈X ∈

∏

x∈X
(Fam)[Yx], we obtain

⊗

x∈X

Fx
△
=

{

H ∈ P(
∏

x∈X

Yx)| ∃(Fx)x∈X ∈
∏

x∈X

Fx :

(H =
∏

x∈X

Fx)&(∃K ∈ Fin(X) : Fs = Ys ∀s ∈ X \K)
}

.
(3.6)

In connection with (3.5), note that, for every nonempty sets X and Y, a mapping (Yx)x∈X ∈ P ′(Y)X,
and a mapping (Yx)x∈X ∈

∏

x∈X

π[Yx], we have

⊙

x∈X

Yx =
{

∏

x∈X

Σx : (Σx)x∈X ∈
∏

x∈X

Yx

}

∈ π[
∏

x∈X

Yx]. (3.7)

In connection with (3.6), note that, for the above X, Y, (Yx)x∈X, and (Yx)x∈X, we have

⊗

x∈X

Yx =
{

H ∈ P(
∏

x∈X

Yx)| ∃(Fx)x∈X ∈
∏

x∈X

Yx : (H =
∏

x∈X

Fx)

&(∃K ∈ Fin(X) : Fs = Ys ∀s ∈ X \K)
}

∈ π[
∏

x∈X

Yx].
(3.8)
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Note useful particular cases of (3.7) and (3.8): for nonempty sets X and Y and mappings
(Yx)x∈X ∈ P ′(Y)X and (τx)x∈X ∈

∏

x∈X(top)[Yx], we have

(

⊙

x∈X

τx ∈ π[
∏

x∈X

Yx]
)

&
(

⊗

x∈X

τx ∈ π[
∏

x∈X

Yx]
)

. (3.9)

Using (2.7) in (3.9), we obtain two variants of topological equipment:

(

t⊙[(τx)x∈X]
△
= {∪}(

⊙

x∈X

τx)∈(top)[
∏

x∈X

Yx]
)

&
(

t⊗[(τx)x∈X]
△
= {∪}(

⊗

x∈X

τx)∈(top)[
∏

x∈X

Yx]
)

. (3.10)

Namely, by (3.10), we obtain the following two TSs:

(

∏

x∈X

Yx, t⊙[(τx)x∈X]
)

,
(

∏

x∈X

Yx, t⊗[(τx)x∈X]
)

;

thus, we obtain the box TS and the Tychonoff product. Of course, topologies (3.10) are com-
parable. Moreover, for every nonempty sets X and Y and mappings (Yx)x∈X ∈ P ′(Y)X and
(Ix)x∈X ∈

∏

x∈X π[Yx], we have
⊗

x∈X

Ix ⊂
⊙

x∈X

Ix. (3.11)

From (3.11), the comparability of topologies (3.10) follows, since

∏

x∈X

(top)[Yx] ⊂
∏

x∈X

π[Yx].

Thus, for every nonempty sets X and Y and mappings (Yx)x∈X ∈ P ′(Y)X and (τx)x∈X ∈
∏

x∈X(top)[Yx], we have

t⊗[(τx)x∈X] ⊂ t⊙[(τx)x∈X].

4. Ultrafilters and maximal linked systems

In this section, we fix a nonempty set E and a π-system L ∈ π[E]. Recall the notions of filter
and ultrafilter on this π-system. So,

F
∗(L)

△
=

{

F ∈ P ′(L \ {∅})| (A ∩B ∈ F ∀A ∈ F ∀B ∈ F)&([L](F ) ⊂ F ∀F ∈ F)
}

is the set of all filters on L. Hence (see [7, Section 2]),

F
∗
0(L)

△
=

{

U ∈ F
∗(L)| ∀F ∈ F

∗(L) (U ⊂ F) =⇒ (U = F)
}

=
{

U ∈ F
∗(L)| ∀L ∈ L (L ∩ U 6= ∅ ∀U ∈ U) =⇒ (L ∈ U)

}

.

We recall that F∗
0(L) 6= ∅ (this is a simplest corollary of the Zorn Lemma). If L ∈ L, then

ΦL(L)
△
=

{

U ∈ F
∗
0(L)| L ∈ U

}

=
{

U ∈ F
∗
0(L)| L ∩ U 6= ∅ ∀U ∈ U

}

. (4.1)

Using (4.1), we introduce the following π-system:

(UF)[E;L]
△
= {ΦL(L) : L ∈ L} ∈ π[F∗

0(L)]. (4.2)
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From (2.7) and (4.2), the property (UF)[E;L] ∈ (BAS)[F∗
0(L)] follows and, as a corollary,

T∗
L[E]

△
= {∪}

(

(UF)[E;L]
)

∈ (top)[F∗
0(L)]. (4.3)

In connection with (4.3), note that (F∗
0(L),T

∗
L[E]) is a zero-dimensional T2-space, see [3]. Thus,

(UF)[E;L] ∈ (T∗
L[E]− BAS)0[F

∗
0(L)].

In what follows, we use the inclusion F
∗
0(L) ⊂ 〈L − link〉0[E], see [8, (3.2)]. Now, we recall one

general property (see [8, (4.2)]):

(

〈L − link〉0[E] = F
∗
0(L)

)

⇐⇒
(

L ∈ π♮
∗[E]

)

. (4.4)

In this connection, note that (see [8, (3.12)]), in the general case of L, we have

T∗
L[E] = T∗〈E|L〉|F∗

0
(L). (4.5)

In connection with (4.4), we note [8, (4.3)] where supercompactness conditions for a topology of
Wallman type were considered. Moreover, in the general case of L ∈ π[E], we have the following
representation [8, (4.1)]:

〈L − link〉0[E] \ F∗
0(L) =

{

E ∈ 〈L − link〉0[E]| ∃Σ1 ∈ E ∃Σ2 ∈ E ∃Σ3 ∈ E : Σ1 ∩ Σ2 ∩ Σ3 = ∅
}

.

Therefore, we obtain the following useful equality:

F
∗
0(L) =

{

E ∈ 〈L − link〉0[E]| Σ1 ∩ Σ2 ∩ Σ3 6= ∅ ∀Σ1 ∈ E ∀Σ2 ∈ E ∀Σ3 ∈ E
}

. (4.6)

It is easily to verify that

F
∗
0(L) ∈ C〈L−link〉0[E][T∗〈E|L〉]. (4.7)

By (4.5) and (4.7), we conclude that (F∗
0(L),T

∗
L[E]) is a closed subspace of (〈L−link〉0[E],T∗〈E|L〉).

5. The case of product of two widely understood measurable spaces

In this section, we fix nonempty sets X and Y. In addition, we fix two π-systems X ∈ π[X] and
Y ∈ π[Y ]. We recall that (see (3.1))

A{×}B
△
=

{

pr1(z)× pr2(z) : z ∈ A× B
}

for A ∈ P ′(P(X)) and B ∈ P ′(P(Y )); of course, A{×}B ∈ P ′(P(X × Y )). Note that X × Y 6= ∅

and

X{×}Y =
{

pr1(z)× pr2(z) : z ∈ X × Y
}

∈ π[X × Y ]. (5.1)

Proposition 1. For A ∈ 〈X − link〉[X] and B ∈ 〈Y − link〉[Y ], we have

A{×}B ∈ 〈X{×}Y − link〉[X × Y ].

The proof follows from the definitions.
Below, we use constructions of [11, § 7]. We recall these constructions very briefly. So (see [11,

Proposition 17]),

∀H ∈ (X{×}Y) \ {∅} ∃!z ∈ (X \ {∅})× (Y \ {∅}) : H = pr1(z) × pr2(z). (5.2)
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Using (5.2), we introduce the mappings
(

ϕ1 ∈ (X \ {∅})(X{×}Y)\{∅}
)

&
(

ϕ2 ∈ (Y \ {∅})(X{×}Y)\{∅}
)

,

for which S = ϕ1(S)× ϕ2(S) ∀S ∈ (X{×}Y) \ {∅}. By (2.8), we obtain

〈J − link〉[I] ⊂ P ′(J \ {∅}) (5.3)

for every nonempty set I and J ∈ π[I]. Then, by (5.1) and (5.3), we have
〈

X{×}Y − link
〉

[X × Y ] ⊂ P ′
(

(X{×}Y) \ {∅}
)

.

Then, by [11, Proposition 18], for E ∈ 〈X{×}Y − link〉[X × Y ], we obtain
(

(ϕ1)
1(E) ∈

〈

X − link
〉

[X]
)

&
(

(ϕ2)
1(E) ∈

〈

Y − link
〉

[Y ]
)

(5.4)

and, by [11, Proposition 19], the following inclusion holds:

E ⊂ (ϕ1)
1(E){×}(ϕ2)

1(E). (5.5)

From (2.9), (5.4), (5.5), and Proposition 1, we find (see [11, Propositions 20–21]) that, for

E ∈ 〈X{×}Y − link〉0[X × Y ],

E = (ϕ1)
1(E){×}(ϕ2)

1(E), (5.6)

where (ϕ1)
1(E) ∈ 〈X − link〉0[X] and (ϕ2)

1(E) ∈ 〈Y − link〉0[Y ]. Moreover,

∀A ∈ 〈X − link〉0[X] ∀B ∈ 〈Y − link〉0[Y ]

A{×}B ∈ 〈X{×}Y − link〉0[X × Y ],
(5.7)

see [11, Proposition 22]. As a corollary, from (5.6) and (5.7), we obtain

〈X{×}Y − link〉0[X × Y ] =
{

pr1(z){×}pr2(z) : z ∈ 〈X − link〉0[X] × 〈Y − link〉0[Y ]
}

(5.8)

(see [11, Theorem 2]). So, MLSs on the product (X × Y,X{×}Y) are exhausted by products of
MLSs on (X,X ) and (Y,Y). Note that it is possible to use that MLSs in (5.8). For arbitrary linked
families, the property similar to (5.8) is, generally speaking, incorrect.

Example 1. Assume that X = Y = 1, 3; thus, X = Y is a three-element set: 1 ∈ X, 2 ∈ X,
and 3 ∈ X. Suppose that X = P(X) and Y = P(Y ); of course, X = Y. Now, we introduce the
linked family E by the rule X × {2} ∈ E , {2} × Y ∈ E , {(2, 2)} ∈ E , and the family E does not
contain any other sets. So, E is a specific three-element family. Of course, {(2, 2)} = {2}×{2}. We
have the obvious inclusion

E ∈ 〈X{×}Y − link〉[X × Y ].

However,
E 6= A{×}B ∀A ∈ 〈X − link〉[X] ∀B ∈ 〈Y − link〉[Y ].

Indeed, let E = A{×}B for some A ∈ 〈X − link〉[X] and B ∈ 〈Y − link〉[Y ]. Then

(X × {2} ∈ A{×}B)&({2} × Y ∈ A{×}B).

Using (5.2), we find that X ∈ A and Y ∈ B. Then, X×Y ∈ A{×}B. But X×Y /∈ E . The obtained
contradiction proves the required property: E does not have a rectangular structure. �

Note that, by (5.7), we have

U1{×}U2 ∈ 〈X{×}Y − link〉0[X × Y ] ∀U1 ∈ F
∗
0(X ) ∀U2 ∈ F

∗
0(Y).
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Proposition 2. If U1 ∈ F
∗
0(X ) and U2 ∈ F

∗
0(Y), then U1{×}U2 ∈ F

∗
0(X{×}Y).

P r o o f. Fix U1 ∈ F
∗
0(X ) and U2 ∈ F

∗
0(Y). Then, in particular, U1 ∈ 〈X − link〉0[X] and

U2 ∈ 〈Y − link〉0[Y ]. By (5.7), we have

U1{×}U2 =
{

pr1(z)× pr2(z) : z ∈ U1 × U2

}

∈ 〈X{×}Y − link〉0[X × Y ]. (5.9)

Let Γ ∈ U1{×}U2, Λ ∈ U1{×}U2, and let T ∈ U1{×}U2. Using (5.9), we choose

(Γ1 ∈ U1)&(Γ2 ∈ U2)&(Λ1 ∈ U1)&(Λ2 ∈ U2)&(T1 ∈ U1)&(T2 ∈ U2)

with the following properties:

(Γ = Γ1 × Γ2)&(Λ = Λ1 × Λ2)&(T = T1 × T2). (5.10)

By (4.6), we obtain the following obvious statements:

(Γ1 ∩ Λ1 ∩ T1 6= ∅)&(Γ2 ∩ Λ2 ∩ T2 6= ∅). (5.11)

Let α ∈ Γ1 ∩ Λ1 ∩ T1 and β ∈ Γ2 ∩ Λ2 ∩ T2 (we use (5.11)). Then, by (5.10), (α, β) ∈ Γ ∩ Λ ∩ T.
Since the choice of Γ, Λ, and T was arbitrary, the required inclusion U1{×}U2 ∈ F

∗
0(X{×}Y) follows

from (4.6) and (5.9). �

Proposition 3. If U ∈ F
∗
0(X{×}Y), then ∃A ∈ F

∗
0(X ) ∃B ∈ F

∗
0(Y) : U = A{×}B.

P r o o f. Fix U ∈ F
∗
0(X{×}Y). Then, by (4.6), we have

U ∈ 〈X{×}Y − link〉0[X × Y ] (5.12)

and the following property:

A ∩B ∩ C 6= ∅ ∀A ∈ U ∀B ∈ U ∀C ∈ U . (5.13)

From (5.8) and (5.12), we conclude that U = U1{×}U2 for some U1 ∈ 〈X − link〉0[X] and
U2 ∈ 〈Y − link〉0[Y ]. In addition (see (2.10)), X ∈ U1 and Y ∈ U2.

Consider an MLS U1. For this, we fix M ∈ U1, N ∈ U1, and T ∈ U1. Then, by the choice of
U1 and U2, we have

(M × Y ∈ U)&(N × Y ∈ U)&(T × Y ∈ U), (5.14)

(see (2.10)). From (5.13) and (5.14), we obtain M ∩ N ∩ T 6= ∅. Since the choice of M, N, and
T was arbitrary, the inclusion U1 ∈ F

∗
0(X ) is obtained (see (4.6)). The inclusion U2 ∈ F

∗
0(Y) is

established similarly. �

Theorem 1. The following equality holds:

F
∗
0(X{×}Y) =

{

pr1(z){×}pr2(z) : z ∈ F
∗
0(X )× F

∗
0(Y)

}

.

The proof reduces to immediate combination of Propositions 2 and 3. Finally, we note an
important property of topological character (see [13, Theorem 5.1]). We recall that, by (3.1)
and (3.2),

T∗〈X|X 〉{×}T∗〈Y |Y〉 =
{

pr1(z)× pr2(z) : z ∈ T∗〈X|X 〉 × T∗〈Y |Y〉
}

∈ π
[

〈X − link〉0[X]× 〈Y − link〉0[Y ]
]

;
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then, by (2.7), the natural topology

T∗〈X|X 〉
⊗

T∗〈Y |Y〉
△
= {∪}

(

T∗〈X|X 〉{×}T∗〈Y |Y〉
)

∈ (top)
[

〈X − link〉0[X]× 〈Y − link〉0[Y ]
]

of the product of Stone-type TSs is realized. Moreover, the following Stone-type topology is defined:

T∗

〈

X × Y |X{×}Y
〉

∈ (top)
[

〈X{×}Y − link〉0[X × Y ]
]

.

Then, by [13, Theorem 5.1], the mapping

z 7−→ pr1(z){×}pr2(z) : 〈X − link〉0[X]× 〈Y − link〉0[Y ] −→ 〈X{×}Y − link〉0[X × Y ] (5.15)

is a homeomorphism from the TS

(

〈X − link〉0[X] × 〈Y − link〉0[Y ], T∗〈X|X 〉
⊗

T∗〈Y |Y〉
)

(5.16)

onto the TS (〈X{×}Y − link〉0[X × Y ], T∗〈X × Y |X{×}Y〉).
Note that, by (4.7), we have

F
∗
0(X{×}Y) ∈ C〈X{×}Y−link〉0[X×Y ][T∗〈X × Y |X{×}Y〉].

Moreover, using (4.5), we obtain

T∗
X{×}Y [X × Y ] = T∗〈X × Y |X{×}Y〉|F∗

0
(X{×}Y). (5.17)

So, ultrafilters of π-system X{×}Y form a closed subspace of TSs homeomorphic to (5.16). Theo-
rem 1 reveals the structure of this subspace.

6. Infinite products of maximal linked systems, 1

Unless otherwise stated, in what follows, nonempty sets X and E and a mapping
(Ex)x∈X ∈ P ′(E)X are fixed (for x ∈ X, we denote by Ex a nonempty subset of E). Define
the set

E
△
=

∏

x∈X

Ex =
{

f ∈ EX |f(x) ∈ Ex ∀x ∈ X
}

∈ P ′(EX) (6.1)

(hereinafter, the axiom of choice is used). Finally, we fix

(Lx)x∈X ∈
∏

x∈X

π[Ex]. (6.2)

We obtain (see (6.2)) the following two variants of π-systems:

⊗

x∈X
Lx =

{

H ∈ P(E)| ∃(Lx)x∈X ∈
∏

x∈X
Lx : (H =

∏

x∈X
Lx)&(∃K ∈ Fin(X) :

Ls = Es ∀s ∈ X \K)
}

∈ π[E],
(6.3)

⊙

x∈X

Lx =
{

∏

x∈X

Lx : (Lx)x∈X ∈
∏

x∈X

Lx

}

∈ π[E], (6.4)

⊗

x∈X

Lx ⊂
⊙

x∈X

Lx (6.5)

(we use [8, (6.4)–(6.5)]); in connection with (6.3)–(6.5), we recall (3.6)–(3.8). So, we have two
comparable π-systems on E.
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Now, we note one simple property:

∀(Ax)x∈X ∈ P ′(E)X ∀(Bx)x∈X ∈ P ′(E)X
(

∏

x∈X

Ax =
∏

x∈X

Bx

)

⇐⇒ (Ax = Bx ∀x ∈ X). (6.6)

Moreover, we note that

∀(H(1)
x )x∈X ∈ P(E)X ∀(H(2)

x )x∈X ∈ P(E)X
(

∏

x∈X

H(1)
x

)

∩
(

∏

x∈X

H(2)
x

)

=
∏

x∈X

(H(1)
x ∩H(2)

x ). (6.7)

The property (6.7) assumes a natural development; now, we note only that

∀(H(1)
x )x∈X ∈ P(E)X ∀(H(2)

x )x∈X ∈ P(E)X ∀(H(3)
x )x∈X ∈ P(E)X

(

∏

x∈X

H(1)
x

)

∩
(

∏

x∈X

H(2)
x

)

∩
(

∏

x∈X

H(3)
x

)

=
∏

x∈X

(H(1)
x ∩H(2)

x ∩H(3)
x ). (6.8)

By (6.6), an obvious corollary is realized; namely,

∀H ∈
(

⊙

x∈X

P(Ex)
)

\ {∅} ∃!(Σx)x∈X ∈
∏

x∈X

P ′(Ex)

H =
∏

x∈X

Σx. (6.9)

Using (6.9), we define a mapping

P :
(

⊙

x∈X

P(Ex)
)

\ {∅} −→
∏

x∈X

P ′(Ex)

by the following rule: if H ∈ (
⊙

x∈X P(Ex)) \ {∅}, then P(H) ∈
∏

x∈X P ′(Ex) is a mapping such
that

H =
∏

χ∈X

P(H)(χ). (6.10)

We can use the variant H =
∏

x∈X Σx, where (Σx)x∈X ∈
∏

x∈X P ′(Ex). In addition, by (6.9), we
have

Σχ = P
(

∏

x∈X

Σx

)

(χ) ∀(Σx)x∈X ∈
∏

x∈X

P ′(Ex) ∀χ ∈ X. (6.11)

Now, note the following obvious inclusions:
(

∏

x∈X

(Lx \ {∅}) ⊂
∏

x∈X

P ′(Ex)
)

&
(

(

⊙

x∈X

Lx

)

\ {∅} ⊂
(

⊙

x∈X

P(Ex)
)

\ {∅}
)

. (6.12)

Now, for χ ∈ X, we define Pχ : (
⊙

x∈X P(Ex)) \ {∅} −→ P ′(Eχ) by the natural rule

Pχ(H)
△
= P(H)(χ) ∀H ∈

(

⊙

x∈X

P(Ex)
)

\ {∅}. (6.13)

Of course, (6.13) defines the corresponding projection mapping. From (6.11) and (6.13), for χ ∈ X
and (Σx)x∈X ∈

∏

x∈X P ′(Ex), we obtain

Pχ

(

∏

x∈X

Σx

)

= Σχ. (6.14)
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From (6.12) and (6.14), we, in particular, obtain

Pχ

(

∏

x∈X

Lx

)

= Lχ ∀(Lx)x∈X ∈
∏

x∈X

(Lx \ {∅}) ∀χ ∈ X.

Using the notion of the set image, we suppose that ∀H ∈ P((
⊙

x∈X P(Ex)) \ {∅}) ∀χ ∈ X

P1
χ(H)

△
= (Pχ)

1(H). (6.15)

Then, the following obvious property holds: if H ∈ P((
⊙

x∈X Lx) \ {∅}) and χ ∈ X, then

P1
χ(H) ∈ P(Lχ \ {∅}). (6.16)

We can use a natural combination of (5.3) and (6.16): a linked system can be used as H. In addition,
by [13, Proposition 3.2], we have

P1
χ(E) ∈ 〈Lχ − link〉[Eχ] ∀E ∈

〈

⊙

x∈X

Lx − link
〉

[E] ∀χ ∈ X.

As a corollary, for E ∈ 〈
⊙

x∈X Lx − link〉[E], we obtain the mapping

(P1
x(E))x∈X ∈

∏

x∈X

〈Lx − link〉[Ex]. (6.17)

Proposition 4. If (Ex)x∈X ∈
∏

x∈X〈Lx − link〉[Ex], then
⊙

x∈X Ex ∈ 〈
⊙

x∈X Lx − link〉[E].

This proposition corresponds to [13, Proposition 3.1]. To prove Proposition 4, it suffices to
use (6.7) (and the axiom of choice). From (6.17) and Proposition 4, we obtain

⊙

x∈X

P1
x(E) ∈ 〈

⊙

x∈X

Lx − link〉[E] ∀E ∈ 〈
⊙

x∈X

Lx − link〉[E]. (6.18)

Note an obvious analog of (5.5); namely, for E ∈ 〈
⊙

x∈X Lx − link〉0[E], we have

E ⊂
⊙

x∈X

P1
x(E);

therefore (see (2.9) and (6.18)), by [13, Proposition 3.4], we obtain

E =
⊙

x∈X

P1
x(E). (6.19)

In connection with (6.19), note that, by [13, Proposition 3.5], we have

P1
χ(E) ∈ 〈Lχ − link〉0[Eχ] ∀E ∈ 〈

⊙

x∈X

Lx − link〉0[E] ∀χ ∈ X.

Then, (6.17) is supplemented by the following statement:

(P1
x(E))x∈X ∈

∏

x∈X

〈Lx − link〉0[Ex] ∀E ∈ 〈
⊙

x∈X

Lx − link〉0[E]. (6.20)

Moreover, by [13, Proposition 3.6], we obtain the following property:

⊙

x∈X

Ex ∈
〈

⊙

x∈X

Lx − link
〉

0
[E] ∀(Ex)x∈X ∈

∏

x∈X

〈Lx − link〉0[Ex].
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By (6.19) and (6.20), the following basic statement (see [13, Theorem 3.1]) holds:

〈

⊙

x∈X

Lx − link
〉

0
[E] =

{

⊙

x∈X

Ex : (Ex)x∈X ∈
∏

x∈X

〈Lx − link〉0[Ex]
}

. (6.21)

In (6.21), we have a natural analog of (5.8). In connection with (6.21), we note that

∏

x∈X

F
∗
0(Lx) =

{

(Ux)x∈X ∈ P ′(P(E))X | Us ∈ F
∗
0(Ls) ∀s ∈ X

}

⊂
∏

x∈X

〈Lx − link〉0[Ex]. (6.22)

Then, by (6.21) and (6.22), we obtain

⊙

x∈X

Ux ∈
〈

⊙

x∈X

Lx − link
〉

0
[E] ∀(Ux)x∈X ∈

∏

x∈X

F
∗
0(Lx). (6.23)

Proposition 5. If (Ux)x∈X ∈
∏

x∈X F
∗
0(Lx), then

⊙

x∈X Ux ∈ F
∗
0(
⊙

x∈X Lx).

P r o o f. Fix (Ux)x∈X ∈
∏

x∈X F
∗
0(Lx). Then, for χ ∈ X, we obtain

Uχ ∈ F
∗
0(Lχ). (6.24)

Recall (4.6) and (6.4). Then, by (4.6) and (6.23), we have

(

Σ1 ∩ Σ2 ∩ Σ3 6= ∅ ∀Σ1 ∈
⊙

x∈X

Ux ∀Σ2 ∈
⊙

x∈X

Ux ∀Σ3 ∈
⊙

x∈X

Ux

)

=⇒
(

⊙

x∈X

Ux ∈ F
∗
0

(

⊙

x∈X

Lx

)

)

.
(6.25)

Let A ∈
⊙

x∈X Ux, B ∈
⊙

x∈X Ux, and let C ∈
⊙

x∈X Ux. Then, by (3.7), for some

(

(Ax)x∈X ∈
∏

x∈X

Ux

)

&
(

(Bx)x∈X ∈
∏

x∈X

Ux

)

&
(

(Cx)x∈X ∈
∏

x∈X

Ux

)

,

we obtain the following equalities:

(

A =
∏

x∈X

Ax

)

&
(

B =
∏

x∈X

Bx

)

&
(

C =
∏

x∈X

Cx

)

. (6.26)

From (6.22), for x ∈ X, we obtain the inclusions Ax ∈ P(E), Bx ∈ P(E), and Cx ∈ P(E). Then,
by (6.8) and (6.26)

A ∩ B ∩ C =
∏

x∈X

(Ax ∩ Bx ∩ Cx). (6.27)

In addition, for x ∈ X, we obtain Ax ∈ Ux, Bx ∈ Ux, and Cx ∈ Ux; then, by (4.6) and (6.24)
Ax ∩ Bx ∩ Cx 6= ∅. So,

(Ax ∩ Bx ∩Cx)x∈X ∈ P ′(E)X .

Using (6.27) (and the axiom of choice), we obtain A ∩ B ∩ C 6= ∅. Since the choice of A, B, and
C was arbitrary, it is established that the premise of implication (6.25) is true. So, we obtain the
required property

⊙

x∈X

Ux ∈ F
∗
0(
⊙

x∈X

Lx).

�
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Proposition 6. If U ∈ F
∗
0(
⊙

x∈X Lx), then ∃(Ux)x∈X ∈
∏

x∈X F
∗
0(Lx) : U =

⊙

x∈X Ux.

P r o o f. Fix U ∈ F
∗
0(
⊙

x∈X Lx). Then, in particular,

U ∈
〈

⊙

x∈X

Lx − link
〉

0
[E].

By (6.21), U =
⊙

x∈X Ex, where

(Ex)x∈X ∈
∏

x∈X

〈Lx − link〉0[Ex].

By formula (4.6), we get

Σ1 ∩Σ2 ∩Σ3 6= ∅ ∀Σ1 ∈ U ∀Σ2 ∈ U ∀Σ3 ∈ U . (6.28)

Let χ ∈ X. Then, Eχ ∈ 〈Lχ − link〉0[Eχ]. Therefore, by formula (4.6), we get

(

Σ1 ∩ Σ2 ∩ Σ3 6= ∅ ∀Σ1 ∈ Eχ ∀Σ2 ∈ Eχ ∀Σ3 ∈ Eχ
)

=⇒ ( Eχ ∈ F
∗
0(Lχ)). (6.29)

Choose arbitrary A ∈ Eχ, B ∈ Eχ, and C ∈ Eχ. By (5.3), A ∈ P ′(E), B ∈ P ′(E), and C ∈ P ′(E).
Now, we introduce (Ãx)x∈X ∈ P ′(E)X by the rule

(Ãχ
△
= A)&(Ãx

△
= Ex ∀x ∈ X \ {χ}).

Similarly, we introduce (B̃x)x∈X ∈ P ′(E)X by the rule

(B̃χ
△
= B)&(B̃x

△
= Ex ∀x ∈ X \ {χ}).

Finally, define (C̃x)x∈X ∈ P ′(E)X by the rule

(C̃χ
△
= C)&(C̃x

△
= Ex ∀x ∈ X \ {χ}).

Then, by (6.8), we obtain the following obvious equality:

(

∏

x∈X

Ãx

)

∩
(

∏

x∈X

B̃x

)

∩
(

∏

x∈X

C̃x

)

=
∏

x∈X

(Ãx ∩ B̃x ∩ C̃x). (6.30)

Note that, by (2.10), (Ãx ∈ Ex)&(B̃x ∈ Ex)&(C̃x ∈ Ex) for x ∈ X. Therefore,

(

(Ãx)x∈X ∈
∏

x∈X

Ex

)

&
(

(B̃x)x∈X ∈
∏

x∈X

Ex

)

&
(

(C̃x)x∈X ∈
∏

x∈X

Ex

)

.

By the choice of (Ex)x∈X , we obtain (see (3.7))

(

∏

x∈X

Ãx ∈ U
)

&
(

∏

x∈X

B̃x ∈ U
)

&
(

∏

x∈X

C̃x ∈ U
)

.

As a corollary, by (6.28), we have the following important statement:

(

∏

x∈X

Ãx

)

∩
(

∏

x∈X

B̃x

)

∩
(

∏

x∈X

C̃x

)

6= ∅.
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Then, from (6.30), we obtain Ãx ∩ B̃x ∩ C̃x 6= ∅ for x ∈ X. In particular,
Ãχ ∩ B̃χ ∩ C̃χ 6= ∅. As a corollary, A ∩ B ∩ C 6= ∅. Since the choice of A, B, and C was
arbitrary, the following property holds:

Σ1 ∩Σ2 ∩Σ3 6= ∅ ∀Σ1 ∈ Eχ ∀Σ2 ∈ Eχ ∀Σ3 ∈ Eχ.

From (6.29), we obtain Eχ ∈ F
∗
0(Lχ). Since the choice of χ was arbitrary,

Ex ∈ F
∗
0(Lx) ∀x ∈ X.

As a corollary, by the choice of (Ex)x∈X , we obtain

(Ex)x∈X ∈
∏

x∈X

F
∗
0(Lx) : U =

⊙

x∈X

Ex.

�

Theorem 2. The following equality is true:

F
∗
0(
⊙

x∈X

Lx) =
{

⊙

x∈X

Ux : (Ux)x∈X ∈
∏

x∈X

F
∗
0(Lx)

}

.

The proof immediately follows from Propositions 5 and 6. Returning to (6.21), we note that

f
△
=

(

⊙

x∈X

Ex
)

(Ex)x∈X∈
∏

x∈X

〈Lx−link〉0[Ex]
∈
〈

⊙

x∈X

Lx − link
〉

0
[E]

∏

x∈X

〈Lx−link〉0[Ex]

(6.31)

is a surjection. Moreover (see (2.11)), by [14, Proposition 4.3], for (Lx)x∈X ∈
∏

x∈X Lx, we have

f−1
(

〈
⊙

x∈X

Lx − link〉0[E|
∏

x∈X

Lx]
)

=
∏

x∈X

〈Lx − link〉0[Ex|Lx]. (6.32)

Moreover, the following set-product is defined:

∏

x∈X

Ĉ
∗
0[Ex;Lx] =

{

(Hx)x∈X ∈ P(P ′(P(E)))X | Hχ ∈ Ĉ
∗
0[Eχ;Lχ] ∀χ ∈ X

}

.

In addition (see Section 2), Ĉ∗
0[Ex;Lx] ∈ P ′(P(〈Lx − link〉0[Ex])) for x ∈ X. Then, by (3.5), we

have

⊙

x∈X

Ĉ
∗
0[Ex;Lx] =

{

∏

x∈X

Hx : (Hx)x∈X ∈
∏

x∈X

Ĉ
∗
0[Ex;Lx]

}

∈ P ′
(

P
(

∏

x∈X

〈Lx − link〉0[Ex]
))

;

thus, the box product of the families Ĉ∗
0[Ex;Lx], x ∈ X, is defined. Moreover, we have the property

Ĉ
∗
0

[

E;
⊙

x∈X

Lx

]

∈ (p− BAS)
[

〈
⊙

x∈X

Lx − link〉0[E]
]

.

From (6.32), we obtain the following statement:

f−1(H) ∈
⊙

x∈X

Ĉ
∗
0[Ex;Lx] ∀H ∈ Ĉ

∗
0

[

E;
⊙

x∈X

Lx

]

. (6.33)
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Now, we recall that (see (2.12)), for x ∈ X,

T∗〈Ex|Lx〉 ∈ (top)[〈Lx − link〉0[Ex]] : Ĉ
∗
0[Ex;Lx] ⊂ T∗〈Ex|Lx〉. (6.34)

Then,

(T∗〈Ex|Lx〉)x∈X ∈
∏

x∈X

(top)[〈Lx − link〉0[Ex]].

By (3.9),
⊙

x∈X

T∗〈Ex|Lx〉 =
{

∏

x∈X

Gx : (Gx)x∈X ∈
∏

x∈X

T∗〈Ex|Lx〉
}

∈ π
[

∏

x∈X

〈Lx − link〉0[Ex]
]

is used as an open base for the corresponding box topology:

t⊙[(T∗〈Ex|Lx〉)x∈X ] = {∪}(
⊙

x∈X

T∗〈Ex|Lx〉) ∈ (top)
[

∏

x∈X

〈Lx − link〉0[Ex]
]

.

Moreover, by (6.34), we obtain
⊙

x∈X

Ĉ
∗
0[Ex;Lx] ⊂

⊙

x∈X

T∗〈Ex|Lx〉 ⊂ t⊙[(T∗〈Ex|Lx〉)x∈X ]. (6.35)

On the other hand, by (2.12), the following inclusion holds:

Ĉ
∗
0[E;

⊙

x∈X

Lx] ∈ (p− BAS)0

[

〈

⊙

x∈X

Lx − link
〉

0
[E];T∗

〈

E|
⊙

x∈X

Lx

〉

]

. (6.36)

Therefore, from (6.33) and (6.35), we find that f is a continuous mapping in the sense of topologies

t⊙
[

(T∗〈Ex|Lx〉)x∈X
]

, T∗

〈

E|
⊙

x∈X

Lx

〉

; (6.37)

we use [15, Proposition 1.4.1]. So, we established the continuity of the mapping (6.31). In addition,
the space-product of the families 〈Lx−link〉0[Ex], x ∈ X, is equipped with box topology. Moreover,
note that f (6.31) is a bijection from

∏

x∈X

〈Lx − link〉0[Ex]

onto 〈
⊙

x∈X Lx− link〉0[E]; see [14, Proposition 5.2]. As a result, f (6.31) is a continuous bijection,
i.e., condensation in the sense of topologies (6.37). So, the TS

(

∏

x∈X

〈Lx − link〉0[Ex], t⊙[(T∗〈Ex|Lx〉)x∈X ]
)

condenses on the following space of Stone type:
(

〈

⊙

x∈X

Lx − link
〉

0
[E],T∗

〈

E|
⊙

x∈X

Lx

〉

)

. (6.38)

In addition, by (4.7), we obtain

F
∗
0

(

⊙

x∈X

Lx

)

∈ C〈
⊙

x∈X

Lx−link〉0[E]

[

T∗〈E|
⊙

x∈X

Lx〉
]

.

Theorem 2 reveals the structure of the set F∗
0(
⊙

x∈X Lx). By (4.5), we have

T∗⊙

x∈X

Lx
[E] = T∗

〈

E|
⊙

x∈X

Lx

〉

|F∗

0
(
⊙

x∈X

Lx);

thus, ultrafilters of the π-system
⊙

x∈X Lx form a closed subspace of the space (6.38).
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7. Infinite products of maximal linked systems, 2

We use the notation of the previous section: X, E, (Ex)x∈X , and E. By (3.8), (6.3), and(6.5),
we have

⊗

x∈X

Lx =
{

Λ ∈ P(E)| ∃(Lx)x∈X ∈
∏

x∈X

Lx :

(

Λ =
∏

x∈X

Lx

)

&
(

∃K ∈ Fin(X) : Ls = Es ∀s ∈ X \K
)

}

∈ π[E] ∩ P
(

⊙

x∈X

Lx

)

.
(7.1)

Consider a widely understood MS

(

E,
⊗

x∈X

Lx

)

:
⊗

x∈X

Lx ⊂
⊙

x∈X

Lx. (7.2)

Note that (see (2.10)) the following inclusion is true:

∏

x∈X

〈Lx − link〉0[Ex] ⊂
∏

x∈X

(Fam)[Ex].

Therefore, by [13, (4.5), Proposition 4.1], we obtain

⊗

x∈X

Ex =
{

H ∈ P(E)| ∃(Σx)x∈X ∈
∏

x∈X

Ex :

(

H =
∏

x∈X

Σx

)

&
(

∃K ∈ Fin(X) : Σs = Es ∀s ∈ X \K
)

}

∈
〈

⊗

x∈X

Lx − link
〉

0
[E] ∀(Ex)x∈X ∈

∏

x∈X

〈Lx − link〉0[Ex].

(7.3)

We recall that (see [13, Theorem 4.1]) the following equality is true:

〈

⊗

x∈X

Lx − link
〉

0
[E] =

{

⊗

x∈X

Ex : (Ex)x∈X ∈
∏

x∈X

〈Lx − link〉0[Ex]
}

(7.4)

By (6.10), (6.12), (6.13), and (7.2), we have

Λ =
∏

x∈X

Px(Λ) ∀Λ ∈
(

⊗

x∈X

Lx

)

\ {∅}.

We use notation (6.15) for the image operation. Then, by [13, Propostion 4.2], we have

(P1
x(E))x∈X ∈

∏

x∈X

〈Lx − link〉0[Ex] ∀E ∈
〈

⊗

x∈X

Lx − link
〉

0
[E] (7.5)

(we use (5.3)). In this connection, we use the following useful property:

(Ex)x∈X =
(

P1
χ

(

⊗

x∈X

Ex
)

)

χ∈X
∀(Ex)x∈X ∈

∏

x∈X

〈Lx − link〉0[Ex]; (7.6)

in (7.6), we use (7.4), (7.5), and [14, Proposition 6.1]. Now, we recall (6.22); hence (see (7.4)),

⊗

x∈X

Ux ∈
〈

⊗

x∈X

Lx − link
〉

0
[E] ∀(Ux)x∈X ∈

∏

x∈X

F
∗
0(Lx). (7.7)
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Moreover, by (7.1), the general constructions imply the following obvious inclusion:

F
∗
0(
⊗

x∈X

Lx) ⊂
〈

⊗

x∈X

Lx − link〉0[E]. (7.8)

In what follows, we consider questions related to a representation of ultrafilters on
⊗

x∈X Lx as
products (7.7). In this connection, we recall [4]. But, in the present constructions, we use a scheme
based on (4.6).

Proposition 7. If (Ux)x∈X ∈
∏

x∈X

F
∗
0(Lx), then

⊗

x∈X

Ux ∈ F
∗
0(

⊗

x∈X

Lx).

P r o o f. Fix
(Ux)x∈X ∈

∏

x∈X

F
∗
0(Lx).

Then, by (7.7), we have
⊗

x∈X

Ux ∈
〈

⊗

x∈X

Lx − link
〉

0
[E]. (7.9)

The inclusion Ux ∈ F
∗
0(Lx) holds for x ∈ X; therefore,

Σ1 ∩ Σ2 ∩ Σ3 = (Σ1 ∩ Σ2) ∩ Σ3 6= ∅ ∀Σ1 ∈ Ux ∀Σ2 ∈ Ux ∀Σ3 ∈ Ux (7.10)

(we use the axioms of filter). Moreover, by (4.6) and (7.9), we obtain the following implication:

(

Σ1 ∩ Σ2 ∩ Σ3 6= ∅ ∀Σ1 ∈
⊗

x∈X

Ux ∀Σ2 ∈
⊗

x∈X

Ux ∀Σ3 ∈
⊗

x∈X

Ux

)

=⇒
(

⊗

x∈X

Ux ∈ F
∗
0

(

⊗

x∈X

Lx

)

)

.
(7.11)

Now, we choose arbitrary sets

(

A ∈
⊗

x∈X

Ux

)

&
(

B ∈
⊗

x∈X

Ux

)

&
(

C ∈
⊗

x∈X

Ux

)

. (7.12)

Using (7.3), (7.8), (7.9), and (7.12), we obtain

(

A ∈ P(E)
)

&
(

B ∈ P(E)
)

&
(

C ∈ P(E)
)

.

In addition, for some (Ãx)x∈X ∈
∏

x∈X Ux, we have

(

A =
∏

x∈X

Ãx

)

&
(

∃K ∈ Fin(X) : Ãs = Es ∀s ∈ X \K
)

. (7.13)

Similarly, for some (B̃x)x∈X ∈
∏

x∈X Ux, we have

(

B =
∏

x∈X

B̃x

)

&
(

∃K ∈ Fin(X) : B̃s = Es ∀s ∈ X \K
)

.

Finally, for some (C̃x)x∈X ∈
∏

x∈X Ux, we obtain

(

C =
∏

x∈X

C̃x

)

&
(

∃K ∈ Fin(X) : C̃s = Es ∀s ∈ X \K
)

. (7.14)
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Then, Ãx ∈ Ux, B̃x ∈ Ux, and C̃x ∈ Ux for x ∈ X. Therefore, by (7.10), for x ∈ X, we have

Ãx ∩ B̃x ∩ C̃x 6= ∅; (7.15)

as a corollary, Ãx ∩ B̃x ∩ C̃x ∈ P ′(E). Then, by (7.15), we have

∏

x∈X

(Ãx ∩ B̃x ∩ C̃x) 6= ∅ (7.16)

(we use the axiom of choice). In addition, (Ãx)x∈X ∈ P(E)X , (B̃x)x∈X ∈ P(E)X , and
(C̃x)x∈X ∈ P(E)X . Then, by (6.8) and (7.13)–(7.14), we have

A ∩ B ∩ C =
∏

x∈X

(Ãx ∩ B̃x ∩ C̃x).

From (7.16), the property A ∩ B ∩ C 6= ∅ follows. Since the choice of A, B, and C was arbitrary
(see (7.12)), the premise of implication (7.11) is true. As a corollary, we obtain

⊗

x∈X

Ux ∈ F
∗
0

(

⊗

x∈X

Lx

)

.

�

Proposition 8. If U ∈ F
∗
0(
⊗

x∈X Lx), then

∃(Ux)x∈X ∈
∏

x∈X

F
∗
0(Lx) : U =

⊗

x∈X

Ux. (7.17)

P r o o f. Fix U ∈ F
∗
0(
⊗

x∈X Lx). Then, by (7.8), we have

U ∈ 〈
⊗

x∈X

Lx − link〉0[E]. (7.18)

Therefore, from (7.4) and (7.18), we find that, for some mapping

(Ex)x∈X ∈
∏

x∈X

〈Lx − link〉0[Ex],

the following equality holds:

U =
⊗

x∈X

Ex. (7.19)

In addition, Ex ∈ 〈Lx − link〉0[Ex] for x ∈ X. Fix χ ∈ X; then Eχ ∈ 〈Lχ − link〉0[Eχ]. By (4.6), we
obtain the following implication:

(

Σ1 ∩ Σ2 ∩ Σ3 6= ∅ ∀Σ1 ∈ Eχ ∀Σ2 ∈ Eχ ∀Σ3 ∈ Eχ
)

=⇒ (Eχ ∈ F
∗
0(Lχ)). (7.20)

Choose arbitrary sets A ∈ Eχ, B ∈ Eχ, and C ∈ Eχ. Using (2.10), we introduce

(Ãx)x∈X ∈
∏

x∈X

Ex

by the following rule: Ãχ
△
= A and Ãx

△
= Ex for x ∈ X \ {χ}. We obtain

A
△
=

∏

x∈X

Ãx ∈ P(E). (7.21)
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Therefore, for A (7.21), we find that ∃(Σx)x∈X ∈
∏

x∈X Ex :
(

A =
∏

x∈X

Σx

)

&(∃K ∈ Fin(X) : Σs = Es ∀s ∈ X \K).

Then, by (3.6), (3.8), and (7.19), we conclude that A ∈ U . Introduce (see (2.10)) a mapping

(B̃x)x∈X ∈
∏

x∈X

Ex

by the rule: B̃χ
△
= B and B̃x

△
= Ex for x ∈ X \ {χ}. Then

B
△
=

∏

x∈X

B̃x ∈ P(E). (7.22)

So, B (7.22) is a set, for which ∃(Σx)x∈X ∈
∏

x∈X Ex :
(

B =
∏

x∈X

Σx

)

&(∃K ∈ Fin(X) : Σs = Es ∀s ∈ X \K).

As a result, we conclude that (see (3.6) and (7.19)) B ∈ U . Finally, we introduce (see (2.10)) a
mapping

(C̃x)x∈X ∈
∏

x∈X

Ex

by the following rule: C̃χ
△
= C and C̃x

△
= Ex for x ∈ X \ {χ}. Then

C
△
=

∏

x∈X

C̃x ∈ P(E) (7.23)

is a set, for which, by (7.23), ∃(Σx)x∈X ∈
∏

x∈X Ex :

(C =
∏

x∈X

Σx)&(∃K ∈ Fin(X) : Σs = Es ∀s ∈ X \K).

From (3.6) and (7.19), we conclude that C ∈ U . So, A ∈ U , B ∈ U , and C ∈ U . By the choice of U ,
we have (see (4.6)) the property

A ∩ B ∩ C 6= ∅. (7.24)

But (Ãx)x∈X ∈ P(E)X , (B̃x)x∈X ∈ P(E)X , and (C̃x)x∈X ∈ P(E)X ; therefore (see (6.8) and
(7.21)–(7.23)),

A ∩ B ∩ C =
∏

x∈X

(Ãx ∩ B̃x ∩ C̃x).

Then, by (7.24), we obtain Ãx ∩ B̃x ∩ C̃x 6= ∅ ∀x ∈ X. In particular,

A ∩B ∩ C = Aχ ∩Bχ ∩ Cχ 6= ∅.

Since the choice of A, B, and C was arbitrary, we obtain

Σ1 ∩Σ2 ∩Σ3 6= ∅ ∀Σ1 ∈ Eχ ∀Σ2 ∈ Eχ ∀Σ3 ∈ Eχ.

Then (see (7.20)) Eχ ∈ F
∗
0(Lχ). Since the choice of χ was arbitrary, it is established that Ex ∈ F

∗
0(Lx)

∀x ∈ X. So,

(Ex)x∈X ∈
∏

x∈X

F
∗
0(Lx).

Using (7.19), we obtain the required statement (7.17). �
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Theorem 3. The following equality holds:

F
∗
0(
⊗

x∈X

Lx) =
{

⊗

x∈X

Ux : (Ux)x∈X ∈
∏

x∈X

F
∗
0(Lx)

}

.

The proof immediately follows from Propositions 7 and 8. In connection with Theorem 3, we
recall constructions of [4].

Following to [14], we introduce the following natural mapping:

g
△
=

(

⊗

x∈X

Ex
)

(Ex)x∈X∈
∏

x∈X

〈Lx−link〉0[Ex]
∈
〈

⊗

x∈X

Lx − link
〉

0
[E]

∏

x∈X

〈Lx−link〉0[Ex]

. (7.25)

So,

g :
∏

x∈X

〈Lx − link〉0[Ex] −→
〈

⊗

x∈X

Lx − link
〉

0
[E];

in addition,

g((Ex)x∈X) =
⊗

x∈X

Ex ∀(Ex)x∈X ∈
∏

x∈X

〈

Lx − link
〉

0
[Ex]. (7.26)

The properties of g (see (7.25), (7.26)) were considered in [14]. Now we will restrict ourselves to
listing them. Note that

⊗

x∈X
Ĉ
∗
0[Ex;Lx] =

{

C ∈ P
(
∏

x∈X
〈Lx − link〉0[Ex]

)

| ∃(Fx)x∈X ∈
∏

x∈X
Ĉ
∗
0[Ex;Lx] :

(C =
∏

x∈X

Fx)&(∃K ∈ Fin(X) : Fs = 〈Ls − link〉0[Es] ∀s ∈ X \K)
} (7.27)

(in (7.27), we use (3.6) and take into account that, for x ∈ X,

〈Lx − link〉0[Ex|Ex] = 〈Lx − link〉0[Ex],

see [7, (4.7)]). Then, by [14, Proposition 6.2], we obtain

g−1(H) ∈
⊗

x∈X

Ĉ
∗
0[Ex;Lx] ∀H ∈ Ĉ

∗
0[E;

⊗

x∈X

Lx]. (7.28)

Now, we recall (6.34). As a corollary, the following π-system is defined:

⊗

x∈X

T∗〈Ex|Lx〉 =
{

H ∈ P
(

∏

x∈X

〈Lx − link〉0[Ex]
)

| ∃(Bx)x∈X ∈
∏

x∈X

T∗〈Ex|Lx〉 :

(

H =
∏

x∈X

Bx

)

&(∃K ∈ Fin(X) : Bs = 〈Ls − link〉0[Es] ∀s ∈ X \K)
}

∈ π
[

∏

x∈X

〈Lx − link〉0[Ex]
]

;

(7.29)

we use (3.6) and (3.9). By means of (2.7), (3.10), and (7.29), the topology

t⊗[(T∗〈Ex|Lx〉)x∈X ] = {∪}
(

⊗

x∈X

T∗〈Ex|Lx〉
)

∈ (top)
[

∏

x∈X

〈Lx − link〉0[Ex]
]

(7.30)

is defined. From (6.34) and (7.30), we obtain

⊗

x∈X

Ĉ
∗
0[Ex;Lx] ⊂

⊗

x∈X

T∗〈Ex|Lx〉 ⊂ t⊗[(T∗〈Ex|Lx〉)x∈X ]. (7.31)
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Therefore, by (7.28) and (7.31), we have the following property:

g−1(H) ∈ t⊗[(T∗〈Ex|Lx〉)x∈X ] ∀H ∈ Ĉ
∗
0[E;

⊗

x∈X

Lx]. (7.32)

Using (6.36) and (7.32), we obtain the following important property: g (7.25) is a continuous
mapping in the sense of TS

(

∏

x∈X

〈Lx − link〉0[Ex], t⊗[(T∗〈Ex|Lx〉)x∈X ]
)

,
(

〈
⊗

x∈X

Lx − link〉0[E],T∗〈E|
⊗

x∈X

Lx〉
)

; (7.33)

we use [15, Proposition 1.4.1]. Now, we recall [14, Proposition 6.4] that g is a bijection from
∏

x∈X〈Lx − link〉0[Ex] onto 〈
⊗

x∈X Lx − link〉0[E] (in this connection, we recall (7.6)). In addition,
we recall the following useful statement [14, Proposition 6.5]:

g1(H) ∈ Ĉ
∗
0[E;

⊗

x∈X

Lx] ∀H ∈
⊗

x∈X

C
∗
0[Ex;Lx].

By means of this property, the following important statement was established in [14, Proposi-
tion 7.1]: g is an open mapping in the sense of TS (7.33). So, we obtain the following basic
statement (see [14, Theorem 7.1]).

Theorem 4. The mapping g (7.25) is a homeomorphism from the TS

(

∏

x∈X

〈Lx − link〉0[Ex], t⊗[(T∗〈Ex|Lx〉)x∈X ]
)

onto the TS

(〈
⊗

x∈X

Lx − link〉0[E],T∗〈E|
⊗

x∈X

Lx〉).

From (4.7), we obtain

F
∗
0(
⊗

x∈X

Lx) ∈ C〈
⊗

x∈X

Lx−link〉0[E][T∗〈E|
⊗

x∈X

Lx〉].

Theorem 3 reveals the structure of the set F∗
0(
⊗

x∈X Lx). By (4.5), we have

T∗⊗

x∈X

Lx
[E] = T∗〈E|

⊗

x∈X

Lx〉)|F∗

0
(
⊗

x∈X

Lx).

Thus, ultrafilters of our π-system
⊗

x∈X Lx form a closed subspace of the second TS in (7.33).

8. Some corollaries for ultrafilter spaces

In this section, we consider some statements related to products of spaces with topologies of
type (4.3). But, at first, we note general properties connected with subspaces of TSs.

For every TS (X, τ), X 6= ∅, and (Y, ϑ), Y 6= ∅, denote by C(X, τ,Y, ϑ) the set of all
mappings from YX continuous with respect to the topologies τ and ϑ. Similarly, for nonempty sets
X and Y, let

YX
(∗)

△
= {f ∈ YX| f1(X) = Y}
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be the set of all surjections from X onto Y, let

(bi)[X;Y]
△
=

{

f ∈ YX
(∗)| ∀x1 ∈ X ∀x2 ∈ X (f(x1) = f(x2)) =⇒ (x1 = x2)

}

be the set of all bijections from X onto Y; finally, for τ1 ∈ (top)[X] and τ2 ∈ (top)[Y], let

C0
c(X, τ1,Y, τ2)

△
= C(X, τ1,Y, τ2) ∩ (bi)[X;Y] (8.1)

be the set of all condensations from (X, τ1) onto (Y, τ2). We note yet another important notion:
for every TS (X, τ1), X 6= ∅, and (Y, τ2), Y 6= ∅, let

Cop(X, τ1,Y, τ2)
△
=

{

f ∈ C(X, τ1,Y, τ2)|f
1(G) ∈ τ2 ∀G ∈ τ1

}

be the set of all open mappings from (X, τ1) in (Y, τ2). Then

(Hom)[X; τ1;Y; τ2]
△
= Cop(X, τ1,Y, τ2) ∩ (bi)[X;Y] ∈ P(C0

c (X, τ1,Y, τ2))

is the set (possibly empty) of all homeomorphisms from (X, τ1) onto (Y, τ2). Now, we note several
simple general properties.

(1) If (X, τ1), X 6= ∅, and (Y, τ2), Y 6= ∅, are two TS, f ∈ C(X, τ1,Y, τ2), and A ∈ P ′(X),
then f1(A) ∈ P ′(Y) and

(f |A) ∈ C
(

A, τ1|A, f
1(A), τ2|f1(A)

)

.

(2) If X and Y are nonempty sets, f ∈ (bi)[X;Y], and A ∈ P ′(X), then (f |A) ∈ (bi)[A; f1(A)].

Immediate combination of (1) and (2) implies the following properties.

(3) If (X, τ1), X 6= ∅, and (Y, τ2), Y 6= ∅, are two TS, f ∈ C0
c(X, τ1,Y, τ2), and A ∈ P ′(X),

then (f |A) ∈ C0
c(A, τ1|A, f

1(A), τ2|f1(A)).

(4) If (X, τ1), X 6= ∅, and (Y, τ2), Y 6= ∅, are two TS, f ∈ (Hom)[X; τ1;Y; τ2], and A ∈ P ′(X),
then

(f |A) ∈ (Hom)
[

A; τ1|A, f
1(A), τ2|f1(A)

]

.

Now, we note some statements on the structure of a subspace of the product of TSs. If (X, τ1),
X 6= ∅, and (Y, τ2), Y 6= ∅, are two TS, then, similarly to Section 5, in what follows, we suppose
that

τ1
⊗

τ2
△
= {∪}(τ1{×}τ2). (8.2)

Note that (3.6) and (8.2) should be distinguished; in (8.2), we consider a topology. Then, using
[15, Proposition 2.3.2], for every TS (X, τ1), X 6= ∅, and (Y, τ2), Y 6= ∅, and sets A ∈ P ′(X) and
B ∈ P ′(Y), we obtain

(τ1
⊗

τ2)|A×B = τ1|A
⊗

τ2|B . (8.3)

Moreover, if X and Y are nonempty sets, (Yx)x∈X ∈ P ′(Y)X, (τx)x∈X ∈
∏

x∈X(top)[Yx], and
(Ax)x∈X ∈

∏

x∈XP ′(Yx), then

t⊙[(τx)x∈X]|∏
x∈X

Ax
= t⊙

[

(τx|Ax
)x∈X

]

; (8.4)

of course, we keep in mind that, in the case under consideration,

(Ax)x∈X ∈ P ′(Y)X , (τx|Ax
)x∈X ∈

∏

x∈X

(top)[Ax],
∏

x∈X

Ax ∈ P ′(
∏

x∈X

Yx).
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In (8.4), we have an analogy with [15, Proposition 2.3.2] (an obvious verification of (8.4) we omit).
Finally, for every nonempty sets X and Y, mappings (Yx)x∈X ∈ P ′(Y)X, (τx)x∈X ∈

∏

x∈X(top)[Yx],
and (Ax)x∈X ∈

∏

x∈X P ′(Yx), we have

t⊗[(τx)x∈X]|∏
x∈X

Ax
= t⊗[(τx|Ax

)x∈X]. (8.5)

Now, we consider some topological properties for products of ultrafilter spaces. We begin with
the simplest case.

The case of product of two ultrafilter spaces. In this subsection, we fix nonempty sets
X and Y. In addition, we fix π-systems X ∈ π[X] and Y ∈ π[Y ]. Then

T∗
X [X] ∈ (top)[F∗

0(X )] and T∗
Y [Y ] ∈ (top)[F∗

0(Y)];

F
∗
0(X ) ∈ P ′(〈X − link〉0[X]) and F

∗
0(Y) ∈ P ′(〈Y − link〉0[Y ]).

We recall (4.5):
(

T∗
X [X] = T∗〈X|X 〉|F∗

0
(X )

)

&
(

T∗
Y [Y ] = T∗〈Y |Y〉|F∗

0
(Y)

)

. (8.6)

By (8.2), the following topology is defined:

T∗
X [X]

⊗

T∗
Y [Y ] ∈ (top)[F∗

0(X )× F
∗
0(Y)].

Using (8.3) and (8.6), we obtain

T∗
X [X]

⊗

T∗
Y [Y ] =

(

T∗〈X|X 〉
⊗

T∗〈Y |Y〉
)

|F∗

0
(X )×F∗

0
(Y), (8.7)

where

T∗〈X|X 〉
⊗

T∗〈Y |Y〉 ∈ (top)
[

〈X − link〉0[X]× 〈Y − link〉0[Y ]
]

.

The mapping (5.15) is a homeomorphism. Finally, we recall (5.17). Now, we note that

z 7−→ pr1(z){×}pr2(z) : F
∗
0(X )× F

∗
0(Y) −→ F

∗
0(X{×}Y) (8.8)

is defined correctly (see Theorem 1). In addition, the mapping (8.8) is a restriction of (5.15) to the
set F

∗
0(X ) × F

∗
0(Y). To make this and subsequent statements shorter, we introduce new notation.

In this subsection, denote by u and v the mappings (5.15) and (8.8), respectively. Then,

v = (u|F∗
0(X )× F

∗
0(Y)). (8.9)

Moreover, by Theorem 1 and (5.15), we obtain

F
∗
0(X{×}Y) = u1(F∗

0(X )× F
∗
0(Y)). (8.10)

Theorem 5. The mapping (8.8) is a homeomorphism in the sense of topologies (8.7) and

T∗
X{×}Y [X × Y ] : v ∈ (Hom)

[

F
∗
0(X )× F

∗
0(Y);T

∗
X [X]

⊗

T∗
Y [Y ];F∗

0(X{×}Y);T∗
X{×}Y [X × Y ]

]

.

P r o o f. We use (8.9) and (8.10) in constructions connected with (4). For this, we note that
(see Section 5)

u ∈ (Hom)
[

〈X − link〉0[X]× 〈Y − link〉0[Y ];T∗〈X|X 〉
⊗

T∗〈Y |Y〉; 〈X{×}Y − link〉0[X × Y ];

T∗〈X × Y |X{×}Y〉
]

.



Products of Ultrafilters and Maximal Linked Systems 27

Consider (4) with the following specific definitions:

X = 〈X − link〉0[X]× 〈Y − link〉0[Y ], τ1 = T∗〈X|X 〉
⊗

T∗〈Y |Y〉,

Y = 〈X{×}Y − link〉0[X × Y ], τ2 = T∗〈X × Y |X{×}Y〉,

f = u, A = F
∗
0(X )× F

∗
0(Y).

(8.11)

Using (4), (8.9) and (8.11), we obtain

v ∈ (Hom)
[

F
∗
0(X )× F

∗
0(Y); (T∗〈X|X 〉

⊗

T∗〈Y |Y〉)|F∗

0
(X )×F∗

0
(Y),u

1(F∗
0(X )× F

∗
0(Y));

T∗〈X × Y |X{×}Y〉|u1(F∗

0
(X )×F∗

0
(Y))

]

.
(8.12)

Then, we use (4.5), (8.7), (8.9), and (8.10). We have the chain of equalities

T∗
X{×}Y [X × Y ] = T∗〈X × Y |X{×}Y〉|F∗

0
(X{×}Y) = T∗〈X × Y |X{×}Y〉|u1(F∗

0
(X )×F∗

0
(Y)).

Using (8.7), (8.9), (8.10), and (8.12), we obtain the required property of v. �

The case of box topology on the product of ultrafilter spaces. In this and subsequent
subsections, we use nonempty sets X and E and the mapping (Ex)x∈X ∈ P ′(E)X defined in
Section 6. Moreover, we follow (6.1) for the set E. In what follows, we fix (Lx)x∈X (6.2). Then,
by (4.3), we have

(T∗
Lx

[Ex])x∈X ∈
∏

x∈X

(top)[F∗
0(Lx)]. (8.13)

In addition,

F
∗
0(Lx) ∈ P ′(〈Lx − link〉0[Ex]) ∀x ∈ X.

Therefore,

(F∗
0(Lx))x∈X ∈

∏

x∈X

P ′(〈Lx − link〉0[Ex]).

Using (4.5), we obtain

T∗
Lx

[Ex] = T∗〈Ex|Lx〉|F∗

0
(Lx) ∀x ∈ X. (8.14)

From (3.10) and (8.13), the following property is extracted:

t⊙[(T
∗
Lx

[Ex])x∈X ] ∈ (top)[
∏

x∈X

F
∗
0(Lx)]. (8.15)

We recall that, by Proposition 5, the mapping

(Ux)x∈X 7−→
⊙

x∈X

Ux :
∏

x∈X

F
∗
0(Lx) −→ F

∗
0(
⊙

x∈X

Lx) (8.16)

is defined correctly. By (6.31), this mapping (8.16) is a restriction of (6.31) to the set
∏

x∈X F
∗
0(Lx).

For brevity, we denote the mapping (8.16) by w. By (6.22), we have

w
△
= (

⊙

x∈X

Ux)(Ux)x∈X∈
∏

x∈X

F∗

0
(Lx) ∈ F

∗
0(
⊙

x∈X

Lx)
∏

x∈X
F∗

0
(Lx). (8.17)

Then
∏

x∈X

F
∗
0(Lx) ∈ P ′(

∏

x∈X

〈Lx − link〉0[Ex])
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and

w = (f |
∏

x∈X

F
∗
0(Lx)). (8.18)

Moreover, we recall that, by (6.31) and Theorem 2,

F
∗
0(
⊙

x∈X

Lx) = f1(
∏

x∈X

F
∗
0(Lx)). (8.19)

Theorem 6. The mapping (8.16) is a condensation in the sense of topologies (8.15)
and T∗

E
[
⊙

x∈X Lx] :

w ∈ C0
c

(

∏

x∈X

F
∗
0(Lx), t⊙[(T

∗
Lx

[Ex])x∈X ],F∗
0(
⊙

x∈X

Lx),T
∗⊙

x∈X

Lx
[E]

)

. (8.20)

P r o o f. We use (8.17)–(8.19) in constructions connected with (3). For this, we recall that
(see Section 6)

f ∈ C0
c

(

∏

x∈X

〈Lx − link〉0[Ex], t⊙[(T∗〈Ex|Lx〉)x∈X ], 〈
⊙

x∈X

Lx − link〉0[E],T∗〈E|
⊙

x∈X

Lx〉
)

.

Now, we use (3) with the following specific definitions:

X =
∏

x∈X

〈Lx − link〉0[Ex], τ1 = t⊙[(T∗〈Ex|Lx〉)x∈X ],

Y = 〈
⊙

x∈X

Lx − link〉0[E], τ2 = T∗〈E|
⊙

x∈X

Lx〉,

f = f , A =
∏

x∈X

F
∗
0(Lx).

(8.21)

Then, by (3), (8.18), and (8.21), we obtain

w ∈ C0
c

(

∏

x∈X

F
∗
0(Lx), t⊙[(T∗〈Ex|Lx〉)x∈X ]| ∏

x∈X

F∗

0
(Lx), f

1(
∏

x∈X

F
∗
0(Lx)),T∗〈E|

⊙

x∈X

Lx〉|f1(
∏

x∈X

F∗

0
(Lx))

)

.

By (8.19), the following inclusion holds:

w ∈ C0
c

(

∏

x∈X

F
∗
0(Lx), t⊙[(T∗〈Ex|Lx〉)x∈X ]| ∏

x∈X

F∗

0
(Lx),F

∗
0(
⊙

x∈X

Lx),T∗〈E|
⊙

x∈X

Lx〉|F∗

0
(
⊙

x∈X

Lx)

)

. (8.22)

Now, we use (8.4) with the following specific definitions:

X = X, Y = P ′(P(E)). (8.23)

Using (8.23), we also suppose that

(Yx)x∈X = (〈Lx−link〉0[Ex])x∈X , (τx)x∈X = (T∗〈Ex|Lx〉)x∈X , (Ax)x∈X = (F∗
0(Lx))x∈X . (8.24)

In this connection (see (8.23) and (8.24)), we recall that, by (2.8) and (2.9), the following chain of
inclusions holds:

〈Lx − link〉0[Ex] ⊂ 〈Lx − link〉[Ex] ⊂ P ′(Lx) ⊂ P ′(P(Ex)) ⊂ P ′(P(E)) = Y;
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moreover, 〈Lx − link〉0[Ex] 6= ∅ for x ∈ X. Therefore (see (8.23)),

(〈Lx − link〉0[Ex])x∈X ∈ P ′(Y)X.

This corresponds to the conditions for (8.4). Then, from (8.4), (8.23), and (8.24), we have

t⊙[(T∗〈Ex|Lx〉)x∈X ]| ∏

x∈X

F∗

0
(Lx) = t⊙[(T∗〈Ex|Lx〉|F∗

0
(Lx))x∈X ] = t⊙[(T

∗
Lx

[Ex])x∈X ]; (8.25)

of course, in (8.25), we use (4.5). Moreover, by (4.5), we have

T∗〈E|
⊙

x∈X

Lx〉|F∗

0
(
⊙

x∈X

Lx) = T ⊙

x∈X

Lx
[E]. (8.26)

From (8.22), (8.25), and (8.26), we obtain (8.20). �

The case of generalized Cartesian product of ultrafilter spaces. We follow the previous
subsection (see also Sections 6 and 7), using X, E, (Ex)x∈X , E, and (Lx)x∈X . Of course, we use
(8.13)–(8.14). Then, by (3.10) and (8.13), we have

t⊗[(T
∗
Lx

[Ex])x∈X ] ∈ (top)[
∏

x∈X

F
∗
0(Lx)]. (8.27)

From Proposition 7, we conclude that

(Ux)x∈X 7−→
⊗

x∈X

Ux :
∏

x∈X

F
∗
0(Lx) −→ F

∗
0(
⊗

x∈X

Lx) (8.28)

is a restriction of the mapping g (7.25) to the set
∏

x∈X F
∗
0(Lx). We denote this mapping (8.28) by

r for brevity; so,

r
△
= (

⊗

x∈X

Ux)(Ux)x∈X∈
∏

x∈X

F∗

0
(Lx) ∈ F

∗
0(
⊗

x∈X

Lx)
∏

x∈X
F∗

0
(Lx). (8.29)

Similar to (8.18), we obtain the following equality:

r = (g|
∏

x∈X

F
∗
0(Lx)). (8.30)

Moreover, note that, by (7.25) and Theorem 3, we have

F
∗
0(
⊗

x∈X

Lx) = g1(
∏

x∈X

F
∗
0(Lx)). (8.31)

Theorem 7. The mapping (8.28) is a homeomorphism in the sense of topologies (8.27)
and T∗⊗

x∈X

Lx
[E] :

r ∈ (Hom)
[

∏

x∈X

F
∗
0(Lx); t⊗[(T

∗
Lx

[Ex])x∈X ];F∗
0(
⊗

x∈X

Lx);T
∗⊗

x∈X

Lx
[E]

]

. (8.32)

P r o o f. We use (8.29)–(8.31) in constructions connected with (4). For this, we note that, by
Theorem 4,

g ∈ (Hom)
[

∏

x∈X

〈Lx − link〉0[Ex]; t⊗[(T∗〈Ex|Lx〉)x∈X ]; 〈
⊗

x∈X

Lx − link〉0[E];T∗〈E|
⊗

x∈X

Lx〉
]

.



30 Alexander G. Chentsov

Now, we use (4) with

X =
∏

x∈X

〈Lx − link〉0[Ex], τ1 = t⊗[(T∗〈Ex|Lx〉)x∈X ],

Y = 〈
⊗

x∈X

Lx − link〉0[E], τ2 = T∗〈E|
⊗

x∈X

Lx〉,

f = g, A =
∏

x∈X
F
∗
0(Lx).

(8.33)

Then, by (4), (8.30), and (8.31), we obtain (see (8.33)) the following property:

r ∈ (Hom)
[

∏

x∈X

F
∗
0(Lx); t⊗[(T∗〈Ex|Lx〉)x∈X ]| ∏

x∈X

F∗

0
(Lx);

g1(
∏

x∈X

F
∗
0(Lx));T∗〈E|

⊗

x∈X

Lx〉|g1(
∏

x∈X

F∗

0
(Lx))

]

.

Using (8.31), we get the obvious inclusion:

r ∈ (Hom)
[

∏

x∈X

F
∗
0(Lx); t⊗[(T∗〈Ex|Lx〉)x∈X ]| ∏

x∈X

F∗

0
(Lx);F

∗
0(
⊗

x∈X

Lx);

T∗〈E|
⊗

x∈X

Lx〉|F∗

0
(
⊗

x∈X

Lx)

]

.
(8.34)

Now, using (4.5) and (8.34), we obtain

r ∈ (Hom)
[

∏

x∈X

F
∗
0(Lx); t⊗[(T∗〈Ex|Lx〉)x∈X ]| ∏

x∈X

F∗

0
(Lx);F

∗
0(
⊗

x∈X

Lx);T
∗⊗

x∈X

Lx
[E]

]

. (8.35)

In what follows, we use (8.5). In addition, we suppose that, in (8.5),

(X = X)&(Y = P ′(P(E))). (8.36)

Using (8.36), we suppose that, in (8.5),

(Yx)x∈X = (〈Lx − link〉0[Ex])x∈X , (τx)x∈X = (T∗〈Ex|Lx〉)x∈X ,

(Ax)x∈X = (F∗
0(Lx))x∈X .

Then we obtain the following chain of equalities:

t⊗
[

(T∗〈Ex|Lx〉)x∈X
]

| ∏

x∈X

F∗

0
(Lx) = t⊗

[

(T∗〈Ex|Lx〉|F∗

0
(Lx))x∈X

]

= t⊗
[

(T∗
Lx

[Ex])x∈X
]

.

Therefore, by (8.35), the following inclusion holds:

r ∈ (Hom)
[

∏

x∈X

F
∗
0(Lx); t⊗

[

(T∗
Lx

[Ex])x∈X
]

,F∗
0(
⊗

x∈X

Lx);T
∗⊗

x∈X

Lx
[E]

]

.

So, the property (8.32) is established. �
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9. Conclusion

In this paper, some questions related to the structure of ultrafilters and MLSs on products of
widely understood MSs were considered. In this connection, two basic directions were developed:
the direction connected with representations for ultrafilter and MLSs on the products of MSs
(set-theoretical direction) and (topological) direction connected with topological relations between
TSs of Stone type arising under consideration of topology products (in the box and Cartesian
variants) and topologies on the sets of ultrafilters and MLSs for the product of the corresponding
measurable structures. In the first direction, the following property is established: ultrafilters and
MLSs on products of MSs are exhausted by products of ultrafilters and MLSs, respectively. In
the second direction, important properties of homeomorphism and compaction were obtained. In
addition, the compaction property is established for the box products of TSs. In the case of the
generalized Cartesian product, the homeomorphism property holds. This comparison shows the
better character of Tychonoff’s product of TSs compared to box TSs.
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