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Abstract: Let T+
n be the set of nonnegative trigonometric polynomials τn of degree n that are strictly posi-

tive at zero. For 0 ≤ α ≤ 2π/(n+2), we find the minimum of the mean value of polynomial (cos α− cos x)τn(x)/τn(0)
over τn ∈ T+

n on the period [−π, π).
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Let Tn be the space of trigonometric polynomials of degree n with real coefficients, and let T+
n

be the set of nonnegative polynomials from Tn that are strictly positive at zero. For a real α we
define

χn(α) = inf
τn∈T+

n

1
2πτn(0)

∫ π

−π
τn(x)(cosα− cosx) dx. (1)

In 1915, Fejér [4] (see also [2, vol. 2, Sec. 6, Problem 52]) proved the following statement.

Fejér’s Theorem. Let the polynomial τn(x) = a0 +
n∑

ν=1
(aν cos νx + bν sin νx) belong to the set

T+
n . Then √

a2
1 + b2

1 ≤ 2a0 cos
π

n + 2
. (2)

This inequality turns into the equality for the polynomial

tn(x) =
(

cos
n + 2

2
x
)2/(

cosx− cos
π

n + 2

)2
. (3)

This theorem is equivalent to the statement that

χn

(
π/(n + 2)

)
= 0. (4)

For 0 ≤ α < π, put

Q(n+3)/2,α(x) =
(

sin
n + 1

2
α sin

n + 3
2

x− sin
n + 3

2
α sin

n + 1
2

x
)/

sin
α

2
, 0 < α < π, (5)

Q(n+3)/2,0(x) = lim
α→0

Q(n+3)/2,α(x) = (n + 1) sin
n + 3

2
x− (n + 3) sin

n + 1
2

x.

In this paper we prove the following result.

1The paper was originally published in a hard accessible collection of articles Approximation of Functions
by Polynomials and Splines (The Ural Scientific Center of the Academy of Sciences of the USSR, Sverdlovsk,
1985), p. 15–22 (in Russian).
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Theorem. Let n be a nonnegative integer and 0 ≤ α ≤ 2π/(n + 2). Then (1) takes the value

χn(α) =

(
sin n+3

2 α− sin n+1
2 α

)
(1− cosα)

(n + 3) sin n+1
2 α− (n + 1) sin n+3

2 α
, 0 < α ≤ 2π

n + 2
, (6)

χn(0) = lim
α→0

χn(α) =
6

(n + 1)(n + 2)(n + 3)
,

and the infimum is attained for the polynomial

τn,α(x) =
(

Q(n+3)/2,α(x)
(cosx− cosα) sin(x/2)

)2

, (7)

where Q(n+3)/2,α is given by (5).

Note that χn(α) ≥ 0 for 0 ≤ α ≤ π/(n + 2) and χn(α) ≤ 0 for π/(n + 2) ≤ α ≤ 2π/(n + 2).
First we prove two auxiliary statements. Set α0 = π, α1 = 2π/3, and for n ≥ 2 let αn be the first
positive root of the equation

(
sin

n + 3
2

x
)/

sin
n + 1

2
x = cn, c2m = −1, c2m−1 = −m + 1

m
. (8)

It is easy to see that for r ≥ 2 we have

α2r−2 = π/r, 2π/(2r + 1) < α2r−1 < π/r. (9)

Lemma 1. If n is a nonnegative integer and 0 < α < αn, then the function Q(n+3)/2,α defined
by (5) has exactly [(n + 5)/2] zeros x0 = 0 < x1 = α < x2 < x3 < . . . < x[(n+3)/2] in the interval
[0, π]. For each polynomial τn+1 ∈ Tn+1 we have

1
2π

∫ π

−π
τn+1(x) dx =

sin n+1
2 α− sin n+3

2 α

(n + 3) sin n+1
2 α− (n + 1) sin n+3

2 α
τn(0)

+
[(n+3)/2]∑

k=1

gn+1(xk)
(
τn+1(xk) + τn+1(−xk)

)
,

(10)

where
g2r−1(x) =

sinx

2r sinx− sin 2rx
,

g2r(x) =





sinx

2
(
r sinx− sin rx cos(r + 1)x

) , x 6= π,

sin rα + sin(r + 1)α
4
(
r sin(r + 1)α + (r + 1) sin rα

) , x = π.

(11)

Moreover, the numbers
(

2π
n+2 − α

)
gn+1(x[(n+3)/2]), gn+1(xk), 1 ≤ k ≤ [(n + 1)/2], are nonnegative.

P r o o f. First we consider the case when n = 0 and 0 < α < π. The function Q3/2,α(x) =
2 sin(x/2) (cosx− cosα) has two zeros x0 = 0, x1 = α in the interval [0, π]. We have

1
2π

∫ π

−π
τ1(x) dx =

cosα

cosα− 1
τ1(0) +

τ1(α) + τ1(−α)
2(1− cosα)

, τ1 ∈ T1,

since this formula is valid for the polynomials 1, sin x, cosx and thus the lemma follows for n = 0.
Now let n = 1 and 0 < α < 2π/3. Then the function Q2,α(x) = 4 cos α

2 sinx(cosx− cosα) has
three zeros x0 = 0, x1 = α, x2 = π in the interval [0, π]. The quadrature formula

1
2π

∫ π

−π
τ2(x) dx =

1− 2 cos α

4(1− cosα)
τ2(0) +

τ2(α) + τ2(−α)
2(1− cosα)

+
1 + 2 cosα

8(1 + cosα)
(
τ2(π) + τ2(−π)

)
, τ2 ∈ T2,
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holds, for it holds for the polynomials sinx, sin 2x, (1 + cosx)(cosα − cosx), 1 − cos 2x,
(1− cosx)(cosα− cosx) which generate the space T2. This proves the lemma for n = 1.

Next we consider the case of an odd n = 2r − 1, r ≥ 2, and 0 < α < α2r−1. The function (5)
can be written in the form Qr+1,α(x) = (cos x− cosα) sinxSr−1,α(x)/ sin(α/2), where

Sr−1,α(x) =
sin rα sin(r + 1)x− sin(r + 1)α sin rx

(cosx− cosα) sinx
(12)

is a cosine polynomial of degree r − 1. To study the zeros of the polynomial Sr−1,α, we write it in

the form Sr−1,α(x) =
(f(x)− f(α)) sin rα sin rx

sinx(cosx− cosα)
, where f(x) =

sin(r + 1)x
sin rx

. When x runs over the

intervals (0, π/r), ((r − 1)π/r, π), and (kπ/r, (k + 1)π/r), 1 ≤ k ≤ r − 2, then the values of f run
continuously over the intervals ((r + 1)/r,−∞), (+∞,−(r + 1)/r), and (+∞,−∞), respectively.
Thus, taking into account the definition (8) of α2r−1, we see that for each α in the interval (0, α2r−1)
the polynomial Sr−1,α has exactly r − 1 zeros x2 < x3 < . . . < xr in the interval (α, π). Moreover,
these zeros are all simple since Sr−1,α has degree r− 1. It is known [3, p. 403, formulae 30, 31, 33]
that

1
π

∫ π

0

sinmx cos νx

sinx
dx =





1, m > ν, m + ν = 2k − 1;
0, m > ν, m + ν = 2k;
0, m ≤ ν.

(13)

It follows that for the polynomial (12) we have

1
π

∫ π

0
Sr−1,α(x) cos νx(1 + cosx)(cosα− cosx) dx = sin(r + 1)α− sin rα, ν = 0, 1, . . . , r − 1.

Consequently, for each cosine polynomial Cr−1 of degree r − 1 we have

1
π

∫ π

0
Sr−1,α(x)Cr−1(x)(1 + cosx)(cosα− cosx) dx =

(
sin(r + 1)α− sin rα

)
Cr−1(0). (14)

Thus, the polynomial Sr−1,α is orthogonal with the weight (cosx − cosα)(1 − cosx)(1 + cosx) to
all cosine polynomials of degree r − 2.

We will need the following known result (e.g., [1, pp. 162, 163]). Let the weight υ(x) and the
points a1, . . . , am in the interval [0, π] be given. A quadrature formula of the form

∫ π

0
C2ν+m−1(x)υ(x) dx =

m∑

`=1

A`C2ν+m−1(a`) +
ν∑

k=1

BkC2ν+m−1(xk)

which is exact for cosine polynomials of degree 2ν + m− 1 exists if and only if there exists a cosine
polynomial Sν of degree ν which is orthogonal to all cosine polynomials of degree ν − 1 with the
weight υ(x)(cos x − cos a1) . . . (cosx − cos am). The zeros of the polynomial Sν coincide with the
nodes x1, x2, . . . , xν ; they should be all distinct and differ from the fixed nodes a1, . . . , am.

By this result, there exist numbers ε0, . . . , εr+1 such that for each cosine polynomial C2r of
degree 2r we have

1
π

∫ π

0
C2r(x) dx =

r+1∑

k=0

εkC2r(xk), (15)

where x2, x3, . . . , xr are the zeros of the polynomial Sr−1,α in the interval (α, π), x0 = 0, x1 = α,
xr+1 = π.

Note that, for ν = 1, 2, . . . , r, the zeros of the polynomial

Sr−1,xν (x) =
sin rxν sin(r + 1)x− sin(r + 1)xν sin rx

(cosx− cosxν) sin x
(16)
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coincide with the zeros of the polynomial (cosx− cosα)Sr−1,α(x)/(cosx− cosxν). Thus,

Sr−1,xν (x) = Aν(cosx− cosα)Sr−1,α(x)/(cosx− cosxν), (17)

where Aν is a constant that does not depend on x.
It is not difficult to check that, for ν = 1, 2, . . . , r, the polynomial (16) satisfies the equations

Sr−1,xν (x) =
Dr(x− xν)−Dr(x + xν)

2 sin x
= 2

r∑

k=1

sin kxν sin kx

sinx
, (18)

where

Dr(x) = 1 + 2
r∑

k=1

cos kx =
sin 2r+1

2 x

sin(x/2)

is the Dirichlet kernel.
Using (18), we obtain

1
π

∫ π

0
Sr−1,xν (x)(sinx)2 dx = sinxν , ν = 1, 2, . . . , r. (19)

Using (19), (17) and (18), one can calculate the following coefficients of the quadrature formula
(15):

εν = 1
/(

2
r∑

k=1

(sin kxν)2
)

=
sinxν

r sinxν − sin rxν cos(r + 1)xν
, 1 ≤ ν ≤ r. (20)

By (14), we have

1
π

∫ π

0
Sr−1,α(x)(1 + cosx)(cosα− cosx) dx = sin(r + 1)α− sin rα.

Using (15) and (12), we obtain from here that

ε0 =
sin rα− sin(r + 1)α

2
(
(r + 1) sin rα− r sin(r + 1)α

) . (21)

By (13) and (12) we conclude that

1
π

∫ π

0
Sr−1,α(x)(1− cosx)(cosx− cosα) dx = (−1)r

(
sin rα + sin(r + 1)α

)
. (22)

Formulae (22), (15) and (12) imply

εr+1 =
sin rα + sin(r + 1)α

2
(
(r + 1) sin rα + r sin(r + 1)α

) . (23)

It is easy to check that ( 2π

2r + 1
− α

)
εr ≥ 0 (24)

for 0 < α < α2r−1. The statement of the lemma for n = 2r− 1, r ≥ 2, now follows from (20), (21),
(23) and (24).

Finally, let us consider the case when n = 2r− 2, r ≥ 2, and 0 < α < π/r. Function (5) can be
written in the form Q(2r+1)/2,α(x) = sin(x/2)(cosx− cosα)Θr−1,α(x)/ sin(α/2), where

Θr−1,α(x) =
sin 2r−1

2 α sin 2r+1
2 x− sin 2r+1

2 α sin 2r−1
2 x

(cosx− cosα) sin(x/2)
=

(
ϕ(x)− ϕ(α)

)
sin 2r−1

2 α sin 2r−1
2 x

(cosx− cosα) sin(x/2)
; (25)
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here, ϕ(x) =
(
sin 2r+1

2 x
)
/sin 2r−1

2 x. When x runs over the intervals (0, 2π/(2r−1)), (2(r−1)π/(2r−
1), π) and (2kπ/(2r − 1), 2(k + 1)π/(2r − 1)), 1 ≤ k ≤ r − 2, then the values of the function ϕ run
continuously over the intervals ((2r + 1)/(2r − 1),−∞), (+∞,−1) and (+∞,−∞), respectively.
Thus, for 0 < α < π/r the polynomial Θr−1,α has exactly r − 1 simple zeros x2 < x3 < . . . < xr in
the interval (α, π). With the help of (13) and (25), repeating the arguments used in the proof of
formula (14), we see that

1
π

∫ π

0
Θr−1,α(x)Cr−1(x)(cosα− cosx) dx =

(
sin

2r + 1
2

α− sin
2r − 1

2
α
)
Cr−1(0) (26)

for all cosine polynomials Cr−1 of degree r − 1. Thus, the polynomial Θr−1,α is orthogonal to all
cosine polynomials of degree r − 2 with the weight (1− cosx)(cosx− cosα). It follows that there
exist numbers δ0, δ1, . . . , δr such that the quadrature formula

1
π

∫ π

0
C2r−1(x) dx =

r∑

k=0

δkC2r−1(xk), (27)

where x2, x3, . . . , xr are the zeros of the polynomial Θr−1,α in the interval (α, π), x0 = 0, x1 = α,
is exact for all cosine polynomials C2r−1 of degree 2r − 1.

Note that, for ν = 1, 2, . . . , r, the polynomial

Θr−1,xν (x) =
sin 2r−1

2 xν sin 2r+1
2 x− sin 2r+1

2 xν sin 2r−1
2 x

(cosx− cosxν) sin(x/2)
(28)

satisfies the equation

Θr−1,xν (x) = Bν(cosx− cosα)Θr−1,α(x)/(cosx− cosxν), 1 ≤ ν ≤ r, (29)

where Bν is a constant that does not depend on x.
Moreover, the polynomial (28) can be rewritten in the form

Θr−1,xν (x) = 2
r∑

k=1

(
sin

2k − 1
2

xν sin
2k − 1

2
x
)/

sin
x

2
. (30)

This implies the equation

1
π

∫ π

0
Θr−1,xν (x)

(
sin

x

2

)2
dx = sin

xν

2
, 1 ≤ ν ≤ r. (31)

Formulae (31), (27), (29) and (30) yield

δν = 1
/(

2
r∑

k=1

(
sin

2k − 1
2

xν

)2 )
=

2 sin xν

2r sinxν − sin 2rxν
, 1 ≤ ν ≤ r. (32)

By (26) we obtain

1
π

∫ π

0
Θr−1,xν (x)(cosα− cosx) dx = sin

2r + 1
2

α− sin
2r − 1

2
α. (33)

Using (33), (27) and (25), we get

δ0 =
(

sin
2r − 1

2
α− sin

2r + 1
2

α
)/(

(2r + 1) sin
2r − 1

2
α− (2r − 1) sin

2r + 1
2

α
)
. (34)

The statement of the lemma for n = 2r− 2, r ≥ 2, now follows from (32) and (34). This completes
the proof of the lemma. ¤
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Lemma 2. Let n be a nonnegative integer, 0 ≤ α ≤ αn if n is even and 0 ≤ α < αn if n is
odd. For each polynomial τn ∈ Tn we have

1
2π

∫ π

−π
τn(x)(cosα− cosx) dx =

(
sin n+3

2 α− sin n+1
2 α

)
(1− cosα)

(n + 3) sin n+1
2 α− (n + 1) sin n+3

2 α
τn(0)

+
[(n+1)/2]∑

k=1

gn+1(xk)(cos α− cosxk)
(
τn(xk) + τn(−xk)

)
,

(35)

where x1 < x2 < · · · < x[(n+1)/2] are the zeros of the polynomial (7) in the interval (α, π], and
the numbers gn+1(xk), k = 1, 2, . . . , [(n + 1)/2], are defined by equations (11). Moreover, the
coefficients gn+1(xk)(cosα − cosxk), k = 1, 2, . . . , [(n − 1)/2], are nonnegative, as well as the
number

(
2π

n+2 − α
)
gn+1(x[(n+1)/2])(cos α− cosx[(n+1)/2]).

P r o o f. For 0 < α < αn, the statement is a straightforward consequence of Lemma 1. Let τn

be an arbitrary polynomial of degree n, then the right-hand side of (35) and the coefficients of this
quadrature formula tend uniformly to the claimed (bounded) values as α → 0, and the statement
of the lemma follows for α = 0. The case of α = αn with even n can be proved in a similar way. As
for the case of odd n, note that for an odd n ≥ 3 we have gn+1(x[(n+1)/2])(cosα− cosx[(n+1)/2]) =
g(π)(cosα+1) → −∞ as α → αn, while gn+1(x[(n−1)/2])(cosα−cosx[(n−1)/2]) → +∞ as α → αn. ¤

P r o o f o f t h e t h e o r e m. The statement of the theorem follows from the fact that for each
nonnegative polynomial τn and each number α in the interval [0, 2π/(n+2)] we have, by Lemma 2,
the inequality

1
2π

∫ π

−π
τn(x)(cos α− cosx) dx ≥

(
sin n+3

2 α− sin n+1
2 α

)
(1− cosα)

(n + 3) sin n+1
2 α− (n + 1) sin n+3

2 α
τn(0).

This inequality turns into the equality for the polynomial τn,α. This proves the theorem. ¤
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