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Abstract: We suggest an explicit continuation formula for a solution to the Cauchy problem for the Poisson
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1. Introduction

In this paper, we continue the research provided in [12]. We propose an explicit formula for
the reconstruction of a solution of the Poisson equation in a bounded domain from its values and
the values of its normal derivative on a part of the boundary, i.e., we give an explicit continuation
formula for a solution to the Cauchy problem for the Poisson equation.

Let us introduce the following notation: R3 is a three-dimensional real Euclidean space,

x = (x1, x2, x3), y = (y1, y2, y3) ∈ R
3,

x′ = (x1, x2), y′ = (y1, y2) ∈ R
2,

s = α2 = |y′ − x′|2 = (y1 − x1)
2 + (y2 − x2)

2,

r2 = s+ (y3 − x3)
2 = |y − x|2, τ = tg

π

2ρ
, ρ > 1,

Gρ = {y : |y′| < τy3, y3 > 0}, ∂Gρ = {y : |y′| = τy3, y3 > 0}, Gρ = Gρ ∪ ∂Gρ,

ε, ε1, and ε2 are sufficiently small positive constants,

Gε
ρ = {y : |y′| < τ(y3 − ε)}, ∂Gε

ρ = {y : |y′| = τ(y3 − ε)}, G
ε
ρ = Gε

ρ ∪ ∂Gε
ρ,

and Ωρ is a bounded simply connected domain whose boundary ∂Ωρ in R3 consists of a part of the
conic surface T ≡ ∂Gρ and a smooth surface S lying inside the cone Gρ. The case ρ = 1 is the limit
case. In this case, G1 is the half-space y3 > 0, ∂G1 is the hyperplane y3 = 0, and Ω1 is a bounded
simply connected domain whose boundary consists of a compact connected part of the hyperplane
y3 = 0 and a smooth surface S in the half-space y3 ≥ 0, Ωρ = Ωρ∪∂Ωρ, and S0 is the interior of S.

The Poisson equation or potential equation [15]

−△U(x) ≡ −
3

∑

i=1

∂2U

∂x2i
= f(x) (1.1)

is a classical example of second-order elliptic partial differential equations and a mathematical
model for some important physical phenomena. Let Hλ(Ωρ) be the set of real functions of the class
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C2,λ(Ωρ) ∩ C1(Ωρ) satisfying the Poisson equation. Let a function f be Hölder continuous with
exponent λ ∈ (0, 1), i.e., f ∈ Cs,λ(Ωρ) and s ∈ Z+.

Problem 1. Assume that we know the Cauchy data for a solution to equation (1.1) on the
surface S:

U(y) = f1(y),
∂U(y)

∂n
= f2(y), y ∈ S (1.2)

where n = (n1, n2, n3) is the outward unit normal to the surface ∂Ωρ at a point y, and f1 and f2
are continuous functions. Given f1(y) and f2(y) on S, find U(x), x ∈ Ωρ.

Problem 2. Let f1 and f2 be given on S. Find conditions on f1 and f2 that are necessary and
sufficient for the existence of a solution to system (1.1) satisfying (1.2) and from the class H(Ωρ).

It is well-known that the Cauchy problem (1.2) for the Poisson equation (1.1) is ill-posed [3, 5].
Hadamard [17] noted that a solution to Problem 1 is not stable. The possibility of intro-
ducing a positive parameter σ, depending on the accuracy of the initial data, was noticed by
M.M. Lavrentev [23]. The uniqueness of the solution follows from the general theorem by Holm-
gren [6]. It has applications in many different areas such as plasma physic, electrocardiography,
and corrosion non-destructive evaluation (e.g., [7, 9, 10, 13, 19]). Traditionally, regularization tech-
niques, such as Tikhonov regularization [44] and the quasi-reversibility approach [22], were used to
provide robust numerical schemes [18].

We suppose that a solution to the problem exists (in this event, it is unique) and is continuously
differentiable in the closed domain, and the Cauchy data are given exactly. In this case, we establish
an explicit continuation formula. This formula enables us to state a simple and convenient criterion
for the solvability of the Cauchy problem.

The result established here is a multidimensional analog of theorems and Carleman-type for-
mulas [4] by G.M. Goluzin, V.I. Krylov, V.A. Fok, and F.M. Kuni in the theory of holomorphic
functions of one variable [14, 16].

The method for obtaining these results is based on an explicit form of the fundamental solution
of the Poisson equation which depends on a positive parameter that vanishes together with its
derivatives on a fixed cone and outside it, as the parameter tends to infinity, while the pole of the
fundamental solution lies inside the cone. Following to M.M. Lavrent’ev, a fundamental solution
with these properties is called a Carleman function for the cone [8, 23]. Having constructed a
Carleman function explicitly, we write a continuation formula. The existence of a Carleman function
follows from S.N. Mergelyan’s approximation theorem [28]. However, this theorem shows no way
for writing the Carleman function explicitly.

The Carleman function of the Cauchy problem for the Laplace equation and some close prob-
lems, in the case when ∂Ωρ \S is a part of a conic surface, was constructed in [45]. Mergelyan [28]
suggested a method to construct the Carleman function of the Cauchy problem for the Laplace
equation in the case when S is a part, with a smooth boundary, of the boundary of a simply-
connected domain. Based on [28] and approximative theorems, the Carleman matrix for elliptic
systems was constructed in [41].

In [1], some theorems of existence of the Carleman matrix and a solvability criterion for a
wider class of boundary value problems for elliptic systems were established. It was proved earlier
in [1, 41] that, for every Cauchy problem for elliptic systems, the Carleman matrix exists if the
Cauchy data are given on a boundary set of positive measure.

Following Tikhonov [21, 43], we call the family of functions Uσδ(x) the regularized solution to
the Cauchy problem for equation (1.1). The regularized solution determines the stability of the
approximate method.
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In the paper, based on results from [23, 45–48] on the Cauchy problem for the Laplace and
Helmholtz equations, we construct the Carleman–Yarmuhamedov function in an explicit form. We
use it to prove the Carleman formulas and a criterion for the solvability of the Cauchy problem.

In recent decades, interest in the classical ill-posed problems of mathematical physics has been
preserved. This direction of investigation of the properties of solutions to the Cauchy problem for
the Laplace equation was started in [2, 20, 23, 24, 42] and was further developed in [25–27, 30–40].

2. Construction of a Carleman–Yarmukhamedov function

According to [45], we define the Carleman–Yarmukhamedov function Φ(y, x) by the equality

−2π2K(0)Φ(y, x) =

∞
∫

0

Im

[

K(w)

w

]

du√
s+ u2

, w = i
√

s+ u2 + y3 − x3. (2.1)

Here, K(w) is an entire function of complex variable that takes real values for real w (w = a+ib,
a and b are real numbers) such that K(a) 6= ∞, |a| <∞, K(0) 6= 0, ∀R > 0, ∃CR > 0

sup
|Rew|<R, Imw≤−CR

(

|K(w)| + |Imw||K ′(w)| + |Imw|2|K ′′(w)|
)

<∞.

For real w, since K(w) is real, we have K(w) = K(w). Then (2.1) implies that ∀R > 0

sup
|Rew|<R

{|K(w)| + (1 + |Imw|)|K ′(w)| + (1 + |Imw|2)|K ′′(w)|} <∞. (2.2)

Now we write (2.1) in the form

−2π2K(0)Φ(y, x) =

∞
∫

0

{

(y3 − x3)ImK(w)√
s+ u2

− ReK(w)

}

du

r2 + u2
, (2.3)

where

Im

(

K(w)

w

)

=
1

2i

{

K(w)

w
− K(w)

w

}

=
wK(w) −wK(w)

2i(r2 + u2)

=
(y3 − x3) ImK(w) −

√
s+ u2 ReK(w)

r2 + u2
.

(2.4)

From (2.2) and (2.3), it follows that, for y 6= x, the integral in (2.1) converges absolutely.

If K(w) ≡ 1, then the function Φ(y, x) is the classical fundamental solution to the Laplace
equation, i.e.,

Φ(y, x) ≡ Φ0(r) = 1/(4πr).

Theorem 1 [45]. The function Φ(y, x) defined by (2.1) or (2.3)–(2.4) is representable in the
form

Φ(y, x) = Φ0(r) +G(y, x), (2.6)

where Φ0(r) = 1/(4πr) and the function G(y, x) is harmonic in the variable y in R
3, including

y = x.
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From Theorem 1 it follows that the function Φ(y, x) of the variable y is a fundamental solution
of the Poisson equation. Therefore, for the function U(y) ∈ H(Ωρ) and for every point x ∈ Ωρ, the
Green’s formula is valid [15]:

U(x) =

∫

Ωρ

Φ(y, x)f(y)dy −
∫

∂Ωρ

[

U(y)
∂Φ(y, x)

∂n
− Φ(y, x)

∂U(y)

∂n

]

dSy, (2.5)

where f(x) ∈ Cλ(Ωρ), λ ∈ (0, 1), is bounded, i.e., the former integral on the right-hand side of (2.5)
satisfies equation (1.1) in the domain.

3. The Mittag-Leffler entire function

The continuation formulas below are expressed explicitly in terms of the Mittag-Leffler entire
function; therefore, we now present its basic properties without proof. These properties as well as
detailed proofs can be found in [11, Chapter 3, §2], [47].

The Mittag-Leffler entire function is defined by the series

Eρ(w) =
∞
∑

n=0

wn

Γ(1 + n/ρ)
, ρ > 0, w ∈ C, E1(w) = ew,

where Γ is the Euler gamma-function. Hereinafter, we suppose that ρ > 1. Let

γ = γ(1, β), 0 < β <
π

ρ
, ρ > 1,

be the contour in the complex w-plane that consists of the ray argw = −β, |w| ≥ 1, the arc
−β ≤ argw ≤ β of the circle |w| = 1, and the ray argw = β, |w| ≥ 1, which is passed so that
argw does not decrease. The contour γ splits the complex domain C into the two simply connected
infinite domains Ω− and Ω+ lying to the left and to the right of γ, respectively. We suppose that

π

2ρ
< β <

π

ρ
, ρ > 1.

Under these conditions, the following integral representations are valid:

Eρ(w) = ρew
ρ

+ ψρ(w), w ∈ Ω+,

Eρ(w) = ψρ(w), E′
ρ(w) = ψ′

ρ(w), w ∈ Ω−,

where

ψρ(w) =
ρ

2πi

∫

γ

eζ
ρ

ζ − w
dζ, ψ′

ρ(w) =
ρ

2πi

∫

γ

eζ
ρ

(ζ − w)2
dζ. (3.1)

Since Eρ(w) takes real vales for real w, we obtain

Reψρ(w) =
ψρ(w) + ψρ(w)

2
=

ρ

2πi

∫

γ

eζ
ρ

(ζ − Rew)

(ζ −w)(ζ − w)
dζ,

Imψρ(w) =
ψρ(w)− ψρ(w)

2i
=
ρImw

2πi

∫

γ

eζ
ρ

(ζ − w)(ζ − w)
dζ,

Im
ψ′
ρ(w)

Imw
=

ρ

2πi

∫

γ

2eζ
ρ

(ζ − Rew)

(ζ − w)2(ζ − w)2
dζ.



114 Ermamat N. Sattorov and Zuxro E. Ermamatova

Hereinafter, we take

β =
π

2ρ
+
ε2
2
, ρ > 1,

in the definition of the contour γ(1, β). It is clear that, if

π

2ρ
+ ε2 ≤ |argw| ≤ π, (3.2)

then w ∈ Ω−
ρ and Eρ(w) = ψρ(w).

Define

Tk,p(w) =
ρ

2πi

∫

γ

ζpeζ
p

(ζ − w)k(ζ − w)k
dζ, k = 1, 2, . . . , p = 0, 1, . . . .

The following inequalities are valid for π/(2ρ) + ε2 ≤ |argw| ≤ π:

|Eρ(w)| ≤
C1

1 + |w| , |E′
ρ(w)| ≤

C2

1 + |w|2 , (3.3)

|Tk,p(w)| ≤
C3

1 + |w|2k , k = 1, 2, · · · , (3.4)

where C1, C2, and C3 are constants independent of w. Take in (2.1)

β =
π

2ρ
+
ε2
2
<
π

ρ
, ρ > 1.

Then Eρ(w) = ψρ(w), where ψρ(w) is defined by (3.1). Moreover, note that cos ρβ < 0 and the
integral converges:

∫

γ

|ζ|pecos ρβ|ζ|ρ|dζ| <∞, p = 0, 1, . . . . (3.5)

4. Carleman formulas

Let the Mittag-Leffler entire function be the function K(w) in (2.1):

K(w) = eaw
2

Eρ(σw),

where

ρ > 1, w = i
√

s+ u2 + y3 − x3, K(0) = Eρ(0) = 1, a > 0 σ ≥ 0.

Denote by Φσ(y, x) the corresponding fundamental solution and by Φσ(y − x) its derivative with
respect to the variable σ:

Ψσ(y − x) ≡ dΦσ

dσ
(y − x).

It follows from Theorem 1 that Ψσ(y − x) satisfies the Poisson equation in R
3. Then

−2π2Φσ(y − x) =

∞
∫

0

Im

[

eaw
2

Eρ(σw)

w

]

du√
s+ u2

= ea(y3−x3)2
∞
∫

0

ϕσ(y, x, u)
e−as−au2

u2 + r2
du,

(4.1)
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where

ϕσ(y − x, u) =

[

(y3 − x3)√
u2 + s

ImEρ(σw) − ReEρ(σw)

]

cos(ν
√

s+ u2)

+

[

ImEρ(σw) +
(y3 − x3)√
s+ u2

ReEρ(σw)

]

sin(ν
√

s+ u2), ν = 2a(y3 − x3),

Ψσ(y − x) ≡ dΦσ

dσ
(y − x) =

∞
∫

0

Im
[

eaw
2

E′
ρ(σw)

] du√
s+ u2

. (4.2)

Lemma 1 [47]. Let M be a compact set in Gρ, and let δ be the distance from M to ∂Gρ. Then,
for σ ≥ 0, the following inequalities are valid for x ∈M and y ∈ R3\Gρ (|y′| ≥ τy3):

|Φσ(y − x)|+
∣

∣

∣

∣

∂

∂yk
Φσ(y − x)

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∂i

∂xij

∂

∂yk
Φσ(y − x)

∣

∣

∣

∣

∣

≤ C4(ρ, δ)r

1 + σδ
,

r ≥ δ > 0, i,= 0, 1, k, j = 1, 2, 3.

(4.3)

|Ψσ(y − x)|+
∣

∣

∣

∣

∂

∂yk
Ψσ(y − x)

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∂i

∂xij

∂

∂yk
Ψσ(y − x)

∣

∣

∣

∣

∣

≤ C5(ρ, δ)r

1 + σδ
,

r ≥ δ > 0, i = 0, 1, k, j = 1, 2, 3,

(4.4)

where the constants C4 and C5 are independent of x, y, and σ.

Theorem 2. Let f be bounded and locally Hölder continuous in Ωρ, U(y) ∈ Hλ(Ωρ), and

U(y) = f1(y),
∂U

∂n
(y) = f2(y), y ∈ S,

where f1(y) and f2(y) are given functions of the class C(S). Then the Carleman formulas

∂iU(x)

∂xij
= lim

σ→∞

∂iUσ(x)

∂xij

= lim
σ→∞

[
∫

Ωρ

f(y)
∂iΦσ(y − x)

∂xij
dy −

∫

S

{

f1(y)
∂i

∂xij

∂Φσ(y − x)

∂n
− f2(y)

∂iΦσ(y − x)

∂xij

}

dSy

] (4.5)

are valid for every x ∈ Ωρ, where i = 0, 1, j = 1, 2, 3,

∂0Uσ

∂x0j
= Uσ,

∂0Φσ

∂x0j
= Φσ,

and the convergence in (4.5) is uniform on compact sets in Ωρ.

P r o o f. From Green’s formula (2.5), for every x ∈ Ωρ, we obtain

∂iU(x)

∂xij
=

∫

Ωρ

f(y)
∂iΦσ(y − x)

∂xij
dy −

∫

∂Ωρ

[

f1(y)
∂i

∂xij

∂Φσ(y − x)

∂n
− f2(y)

∂i

∂xij
Φσ(y − x)

]

dSy, (4.6)

∂Ωρ = S ∪ (∂Ωρ \ S). According to [47], let us estimate

Φσ,
∂Φσ

∂yj
,

∂i

∂xij

∂Φσ

∂yj
.
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Lemma 1 yields the assertion of Theorem 2. Indeed, if M is a compact set in Ωρ then M ⊂ Gρ.
Therefore, the inequalities in Lemma 1 for Φσ(y − x) and its derivatives remain also valid in the
case where x ∈ M ⊂ Ωρ and y ∈ ∂Ωρ\S ⊂ ∂Gρ (in this case, δ is the distance from the compact
set M ⊂ Ωρ to ∂Ωρ). Now, let σ tend to infinity. The proof of Theorem 2 is complete. �

We can write (4.5) in the following equivalent form:

∂iU(x)

∂xij
=

∞
∫

0

∂i

∂xij
J(σ, x) +

∫

Ωρ

f(y)
∂iΦ0(r)

∂xij
dy

−
∫

S

[

f1(y)
∂i

∂xij

∂Φ0(r)

∂n
− f2(y)

∂iΦ0(r)

∂xij

]

dSy, x ∈ Ωρ,

(4.7)

where

∂i

∂xij
J(σ, x)=

∫

Ωρ

f(y)
∂iΨσ(y − x)

∂xij
dy−

∫

S

[

f1(y)
∂i

∂xij

∂Ψσ(y − x)

∂n
−f2(y)

∂iΨσ(y − x)

∂xij

]

dSy,

x ∈ Ωρ, i = 0, 1, j = 1, 2, 3,
∂0U

∂x0j
= U,

∂0Φ0

∂x0j
= Φ0,

∂0Ψσ

∂x0j
= Ψσ,

∂0J

∂x0j
= J.

(4.8)

The functions Ψσ(y − x) and Φ0(r) are defined by equalities (4.2) and (4.1), respectively. The
proof of (4.7) follows from the formulas

lim
σ−→∞

∂i

∂xij
P (σ, x) =

∞
∫

0

∂i

∂xij

∂P (σ, x)

∂σ
+

∂i

∂xij
P (x)

and

∂i

∂xij

∂P (σ, x)

∂σ
=

∫

Ωρ

f(y)
∂iΨσ(y − x)

∂xij
dy −

∫

S

[

f1(y)
∂i

∂xij

∂Ψσ

∂n
(y − x)− f2(y)

∂iΨσ

∂xij
(y − x)

]

dSy,

x ∈ Ωρ, i = 0, 1, j = 1, 2, 3;

moreover, the differentiation under the integral sign is legal and

∂i

∂xij

∂P (σ, x)

∂σ
=

∂i

∂xij
J(σ, x).

Theorem 3. Let S ⊂ C2, f1(y) ∈ C1(S0)∩L(S), f2(y) ∈ C(S0)∩L(S), and let f be bounded
and locally Hölder continuous in Ωρ. Then for the existence of a function U(y) ∈ Hλ(Ωρ) ∩C(S0)
such that

U(y) = f1(y),
∂U

∂n
(y) = f2(y), y ∈ S0, (4.9)

it is necessary and sufficient that the following improper integral converge (uniformly on compact
sets in Gρ) for each x ∈ Gρ:

∣

∣

∣

∣

∞
∫

1

J(σ, x)dσ

∣

∣

∣

∣

<∞, (4.10)

where J(σ, x) is defined by (4.8). If (4.10) is satisfied, then harmonic continuation is performed by
equivalent formulas (4.5) and (4.7).
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P r o o f. Necessity : Let

U(y) ∈ H(Ωρ) ∩ C1(Ωρ ∪ S0) ∩ L(S)

satisfy (4.10). Let M be a compact set in Gρ, and let ε > 0 be such that M ⊂ G
2ε
ρ ⊂ G

ε
ρ ⊂ Gρ. It

is clear that the distance from M to ∂Gε
ρ is at least ετ1 and the distance from ∂G2ε

ρ to ∂Gε
ρ is ετ1.

Now, let y ∈ R3 \ Gε
ρ (|y′| ≤ τ(y3 − ε) and y3 > ε) and x ∈ M (|x′| ≤ τ(x3 − 2ε) and x3 > 2ε).

Then argw = arg(σw) = arg(iτ
√
u2 + s+ τy3 − τx3) and

τw = iτ
√

u2 + s+ τy3 − τx3 =
√

u2 + s
(

itg
π

2ρ
+
τy3 − τx3√
u2 + s

)

, u ≥ 0, ρ > 1,

τy3 − τx3√
u2 + s

≤ |y′| − |x′| − ετ

|y′ − x′| ≤ 1− ε1, y′ 6= x′,
∣

∣

∣
arg(a± tg

π

2ρ
)
∣

∣

∣
≥ π

2ρ
; a ≤ 1.

Therefore, (2.5) is valid for argw; moreover, if y′ = x′, then Rew < 0, and this inequality
also holds. Consequently, Φσ(y − x) and Ψσ(y − x) satisfy estimates (3.2)–(3.5) from Lemma 1,
where δ ≥ ετ1. Define Sε = G

ε
ρ ∩ S; in this case, the part Sε ⊂ S together with the part Tε of the

cone surface ∂Gε
ρ form a closed piecewise smooth surface Sε ∪ Tε (with the consistent direction of

the outer normals) which is the boundary of a simply connected bounded domain. Represent the
integral on the right-hand side of (4.8) as the sum of two integrals according to the representation
S = Sε ∪ (S \ Sε). Since Ψσ(y − x) is a regular solution of the Poisson equation, by Green’s
formula, the integral over the part Sε is equal to the integral over Tε; moreover, Ψσ(y− x) satisfies
inequalities (4.7) and (4.9) for y ∈ Tε and x ∈ M , and the extended function U(y) together with
its gradient is bounded by a constant depending on ε. Therefore, the modulus of the integral over
the part Sε does not exceed the quantity

const

1 + δ2σ2
, σ ≥ 0,

with a constant depending on ρ, ε, δ, and the diameter of the domain Ωρ. Since |y| ≥ τ(y3 − ε),
y3 ≥ ε, when y ∈ S \Sε and x ∈ K and f1(y), f2(y) ∈ C(S0)∩L(S), these inequalities remain valid
for the modulus of the integral over S \Sε (of course, with other constants). Hence, we have (4.10).

Sufficiency : Under the assumptions of the theorem, define functions U(x), x ∈ Gρ \ S0, by
the right-hand side of (4.7). Consider the first term on the right-hand side of (4.7). Since Ψσ(y)
satisfies the Poisson equation in Gρ for σ ≥ 0, the function J(σ, x) satisfies the Poisson equation
with respect to x in Gρ for σ ≥ 0. Therefore, we conclude from (4.10) that the first term on the
right-hand side of (4.7) satisfies the Poisson equation in Gρ as the limit of the uniformly converging
sequence of the solutions of the Poisson equations

Un(x) =

n
∫

0

J(σ, x)dσ, n = 1, 2, . . . .

The second and third terms are the potential difference of the volume, single, and double layers
and represent one solution of the Poisson equation in Ωρ and another in Ω′

ρ = Gρ \ Ωρ. Therefore,
the right-hand side of (4.7) defines two different solutions of the Poisson equations U+(x) and
U−(x) in Ωρ and Ω′

ρ. If x
1 and x2 are two points on the normal at x ∈ S0 symmetric with respect

to x, then

lim
x1→x

[

U+(x1)− U−(x2)
]

= f1(x), lim
x1→x

[

∂U+

∂n
(x1)− ∂U−

∂n
(x2)

]

= f2(x), x ∈ S0;



118 Ermamat N. Sattorov and Zuxro E. Ermamatova

moreover, the limit relations hold uniformly in x on each compact part S0. If max y3 < x3, where
y ∈ S and x ∈ Gρ, then Rew = y3−x3 < 0 and Φσ(y−x) and its derivatives satisfy inequalities (4.6)
and (4.3). Now, from formula (4.5), which is equivalent to (4.7), we see that U−(x) = 0 and
U−(x) ≡ 0, x ∈ Ωρ, by the uniqueness theorem. It is clear that U−(x) extends smoothly to Ω′

ρ∪S0.
Then U+(x) extends smoothly as a function of the class C1(Ωρ ∪ S0) (see [29]). Consequently,

U+(x) = f1(x),
∂U+

∂n
(x) = f2(x), x ∈ S0.

Now, we set U(x) = U+(x), x ∈ Ωρ ∪ S0. Theorem 3 is proved. �
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