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Abstract: A Q-polynomial Shilla graph with b = 5 has intersection arrays {105t, 4(21t + 1), 16(t + 1);
1, 4(t+ 1), 84t}, t ∈ {3, 4, 19}. The paper proves that distance-regular graphs with these intersection arrays
do not exist. Moreover, feasible intersection arrays of Q-polynomial Shilla graphs with b = 6 are found.
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1. Introduction

We consider undirected graphs without loops or multiple edges. For a vertex a of a graph Γ,
denote by Γi(a) the ith neighborhood of a, i.e., the subgraph induced by Γ on the set of all vertices
at distance i from a. Define [a] = Γ1(a) and a⊥ = {a} ∪ [a].

Let Γ be a graph, and let a, b ∈ Γ. Denote by µ(a, b) (by λ(a, b)) the number of vertices in
[a] ∩ [b] if a and b are at distance 2 (are adjacent) in Γ. Further, the induced [a] ∩ [b] subgraph is
called µ-subgraph (λ-subgraph).

If vertices u and w are at distance i in Γ, then we denote by bi(u,w) (by ci(u,w)) the number of
vertices in the intersection of Γi+1(u) (of Γi−1(u), respectively) with [w]. A graph Γ of diameter d is
called distance-regular with intersection array {b0, b1, . . . , bd−1; c1, . . . , cd} if, for each i = 0, . . . , d,
the values bi(u,w) and ci(u,w) are independent of the choice of vertices u and w at distance i
in Γ. Define ai = k − bi − ci. Note that, for a distance regular graph, b0 is the degree of the
graph and a1 is the degree of the local subgraph (the neighborhood of the vertex). Further, for
vertices x and y at distance l in the graph Γ, denote by plij(x, y) the number of vertices in the

subgraph Γi(x) ∩ Γj(y). The numbers plij(x, y) are called the intersection numbers of Γ (see [2]).
In a distance-regular graph, they are independent of the choice of x and y.

A Shilla graph is a distance-regular graph Γ of diameter 3 with second eigenvalue θ1 equal to
a = a3. In this case, a divides k and b is defined by b = b(Γ) = k/a. Morover, a1 = a− b and Γ has
intersection array {ab, (a+1)(b− 1), b2 ; 1, c2, a(b− 1)}. Feasible intersection arrays of Shilla graphs
are found in [6] for b ∈ {2, 3}.

Feasible intersection arrays of Shilla graphs are found in [1] for b = 4 (50 arrays) and for b = 5
(82 arrays). At present, a list of feasible intersection arrays of Shilla graphs for b = 6 is unknown.
Moreover, the existence of Q-polynomial Shilla graphs with b = 5 also is unknown.

In this paper, we find feasible intersection arrays of Q-polynomial Shilla graphs with b = 6 and
prove that Q-polynomial Shilla graphs with b = 5 do not exist.
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Theorem 1. A Q-polynomial Shilla graph with b = 6 has intersection array

(1) {42t, 5(7t + 1), 3(t + 3); 1, 3(t + 3), 35t}, where t ∈ {7, 12, 17, 27, 57};

(2) {372, 315, 75; 1, 15, 310}, {744, 625, 125; 1, 25, 620} or {930, 780, 150; 1, 30, 775};

(3) {312, 265, 48; 1, 24, 260}, {624, 525, 80; 1, 40, 520}, {1794, 1500, 200; 1, 100, 1495} or

{5694, 4750, 600; 1, 300, 4745}.

In view of Theorem 2 from [1], a Q-polynomial Shilla graph with b = 5 has intersection array
{105t, 4(21t + 1), 16(t + 1); 1, 4(t + 1), 84t}, t ∈ {3, 4, 19}.

Theorem 2. Distance-regular graphs with intersection arrays {315, 256, 64; 1, 16, 252} and

{1995, 1600, 320; 1, 80, 1596} do not exist.

Theorem 3. Distance-regular graphs with intersection array {420, 340, 80; 1, 20, 336} do not

exist.

2. Proof of Theorem 1

In this section, Γ is a Q-polynomial Shilla graph with b = 6. Then (a2 − 5a− 6)2 − 4(5b2 − a2)
is the square of an integer. By [6, Lemma 8], we have

2a ≤ c2b(b+ 1) + b2 − b− 2;

therefore, a ≤ 21c2+14. It follows from the proof of Theorem 9 in [6] that either k < b3− b = 6 ·35
or v < k(2b3 − b + 1) = 428k. By [6, Corollary 17 and Theorem 20], the number b2 + c2 divides
b(b− 1)b2 and

−34 = −b2 + 2 ≤ θ3 ≤ −b2(b+ 3)/(3b + 1) ≤ −18.

Theorem 2 from [7] implies the following lemma.

Lemma 1. If b2 = c2, then Γ has an intersection arrays {42t, 5(7t+1), 3(t+3); 1, 3(t+3), 35t}
and t ∈ {7, 12, 17, 27, 57}.

To the end of this section, assume that b2 6= c2 and k > θ1 > θ2 > θ3 are eigenvalues of the
graph Γ. Then

6(6b2 + c2)/(b2 + c2) = −θ3.

On the other hand, according to [6, Lemma 10], the number c2 divides (a + 6)b2, 30a(a + 1) and
(a+ 6)b2 ≥ (a+ 1)c2.

Lemma 2. If −34 ≤ θ3 ≤ −18, then one of the following statements holds:

(1) θ3 = −31 and Γ has one of the intersection arrays {372, 315, 75; 1, 15, 310},
{744, 625, 125; 1, 25, 620}, and {930, 780, 150; 1, 30, 775};

(2) θ3 = −26 and Γ has one of the intersection arrays {312, 265, 48; 1, 24, 260},
{624, 525, 80; 1, 40, 520}, {1794, 1500, 200; 1, 100, 1495}, and {5694, 4750, 600; 1, 300, 4745};

(3) θ3 = −21 and Γ has one of the intersection arrays {42t, 5(7t+1), 3(t+3); 1, 3(t+3), 35t} for

t ∈ {7, 12, 17, 27, 57}.
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P r o o f. By [6, Lemma 10], c2 divides b(b− 1)b2 = 30b2 and, by [6, Corollary 17], the smallest
nonprinciple eigenvalue θ3 is equal to b(bb2 + c2)/(b2 + c2). Therefore, 30(θ3 + 6)/(θ3 + 36) is an
integer and θ3 ∈ {−34,−33,−32,−31,−30,−27,−26,−24,−21,−18}.

Let θ3 = −34. Then 3(6b2 + c2) = 17(b2 + c2) and b2 = 14c2. Further, θ3 is a root of the
equation x2 − (a1 + a2 − k)x+ (b− 1)b2 − a2 = 0; therefore, a = 425/28 · c2 − 34. In this case, the
multiplicity of the first nonprincipal eigenvalue is m1 = 6/5 · (2545c2 − 5544)/c2 , a contradiction
with the fact that 5 does not divide 6 · 5544.

Let θ3 = −33. Then 2(6b2 + c2) = 11(b2 + c2) and b2 = 9c2. Further, a = 275/27 · c2 − 33 and
the multiplicity of the first nonprincipal eigenvalue is equal to m1 = 6/5 · (1645c2 − 5184)/c2 , a
contradiction as above.

Let θ3 = −32. Then 3(6b2 + c2) = 16(b2 + c2) and 2b2 = 13c2. Further, a = 100/13 · c2− 32 and
the multiplicity of the first nonprincipal eigenvalue is m1 = 6/5 ·(1195c2−4836)/c2, a contradiction
as above.

Let θ3 = −31. Then 6(6b2 + c2) = 31(b2 + c2) and b2 = 5c2. Further, a = 31/5 · c2 − 31
and the multiplicity of the first nonprincipal eigenvalue is m1 = 30(37c2 − 180)/c2 = 1110 −
5400/c2. The number of vertices in the graph is 31/5 · (222c22 −2005c2 +4500)/c2 ; hence, c2 divides
900 and is a multiple of 5. By computer enumeration, we find that, only for c2 = 15, 25 and
30, we have admissible intersection arrays {372, 315, 75; 1, 15, 310}, {744, 625, 125; 1, 25, 620} and
{930, 780, 150; 1, 30, 775}.

Let θ3 = −30. Then (6b2 + c2) = 5(b2 + c2) and b2 = 4c2. Further, a = 125/24 · c2 − 30 and the
multiplicity of the first nonprincipal eigenvalue is m1 = 6/5 · (745c2 − 4176)/c2 , a contradiction as
above.

Let θ3 = −27. Then 2(6b2 + c2) = 9(b2 + c2) and 3b2 = 7c2. Further, a = 25/7 · c2 − 25 and the
multiplicity of the first nonprincipal eigenvalue is m1 = 6/5 · (445c2 − 3276)/c2 , a contradiction as
above.

Let θ3 = −26. Then 3(6b2 + c2) = 13(b2 + c2) and b2 = 2c2. Further, a = 13/4 · c2 − 26 and
the multiplicity of the first nonprincipal eigenvalue is m1 = 6(77c2 − 600)/c2 = 462 − 3600/c2.
The number of vertices in the graph is 13/8 · (231c22 − 3340c2 + 12000)/c2 ; hence, c2 divides
1200 and is a multiple of 4. By computer enumeration, we find that only for c2 = 24, 40, 100,
and 300 we have admissible intersection arrays {312, 265, 48; 1, 24, 260}, {624, 525, 80; 1, 40, 520},
{1794, 1500, 200; 1, 100, 1495}, and {5694, 4750, 600; 1, 300, 4745}.

Let θ3 = −21. Then 2(6b2 + c2) = 7(b2 + c2) and b2 = c2. Further, a = 7/3 · c2 − 21 and the
multiplicity of the first nonprincipal eigenvalue is m1 = 6(41c2 − 360)/c2 = 246 − 2160/c2. The
number of vertices in the graph is 7/3 · (82c22 − 1335c2 + 5400)/c2 ; hence, c2 divides 1080 and is a
multiple of 3. By computer enumeration, we find that, only for c2 = 18, 30, 45, 60, 90, and 180, we
have admissible intersection arrays {42t, 5(7t+1), 3(t+3); 1, 3(t+3), 35t} for t ∈ {3, 7, 12, 17, 27, 57}.
A graph with the array obtained for t = 3 does not exist by [5].

Let θ3 = −18. Then 6(6b2 + c2) = 19(b2 + c2), so 3b2 = 2c2. Further, a = 2512 · c2 − 18 and the
multiplicity of the first nonprincipal eigenvalue is m1 = 6/5 · (145c2 − 1224)/c2, a contradiction.
The lemma is proved. �

Theorem 1 follows from Lemmas 1–2.

3. Triple intersection numbers

In the proof of Theorem 3, the triple intersection numbers [3] are used.
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Let Γ be a distance-regular graph of diameter d. If u1, u2, u3 are vertices of the graph Γ, then

r1, r2, r3 are non-negative integers not greater than d. Denote by
{

u1u2u3

r1r2r3

}

the set of vertices

w ∈ Γ such that d(w, ui) = ri and by
[

u1u2u3

r1r2r3

]

the number of vertices in
{

u1u2u3

r1r2r3

}

. The numbers
[

u1u2u3

r1r2r3

]

are called the triple intersection numbers. For a fixed triple of vertices u1, u2, u3, instead

of
[

u1u2u3

r1r2r3

]

, we will write [r1r2r3]. Unfortunately, there are no general formulas for the numbers

[r1r2r3]. However, [3] outlines a method for calculating some numbers [r1r2r3].

Let u, v, w be vertices of the graph Γ, W = d(u, v), U = d(v,w), and let V = d(u,w). Since
there is exactly one vertex x = u such that d(x, u) = 0, then the number [0jh] is 0 or 1. Hence
[0jh] = δjW δhV . Similarly, [i0h] = δiW δhU and [ij0] = δiUδjV .

Another set of equations can be obtained by fixing the distance between two vertices from
{u, v, w} and counting the number of vertices located at all possible distances from the third:
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





































d
∑

l

[ljh] = pUjh − [0jh]

d
∑

l

[ilh] = pVih − [i0h]

d
∑

l

[ijl] = pWij − [ij0]

(3.1)

However, some triplets disappear. For |i − j| > W or i + j < W , we have pWij = 0; therefore,
[ijh] = 0 for all h ∈ {0, ..., d}.

We set

Sijh(u, v, w) =

d
∑

r,s,t=0

QriQsjQth

[uvw

rst

]

.

If the Krein parameter qhij = 0, then Sijh(u, v, w) = 0.

We fix vertices u, v, w of a distance-regular graph Γ of diameter 3 and set

{ijh} =

{

uvw

ijh

}

, [ijh] =

[

uvw

ijh

]

, [ijh]′ =

[

uwv

ihj

]

, [ijh]∗ =

[

vuw

jih

]

, [ijh]∼ =

[

wvu

hji

]

.

Calculating the numbers

[ijh]′ =

[

uwv

ihj

]

, [ijh]∗ =

[

vuw

jih

]

, [ijh]∼ =

[

wvu

hji

]

(symmetrization of the triple intersection numbers) can give new relations that make it possible to
prove the nonexistence of a graph.

4. Graphs with intersection arrays {315, 256, 64; 1, 16, 252} and

{1995, 1600, 320; 1, 80, 1596}

Let Γ be a distance-regular graph with intersection array {315, 256, 64; 1, 16, 252}. By [2, The-
orem 4.4.3], the eigenvalues of the local subgraph of the graph Γ are contained in the interval
[−5, 59/5). Since the Terwilliger polynomial (see [4]) is −4(5x − 59)(x + 5)(x + 1)(x − 43), then
these eigenvalues lie in [−5,−1]∪(59/5.43]. Hence, all nonprinciple eigenvalues are negative and the
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local subgraph is a union of isolated (a1 +1)-cliques, a contradiction with the fact that a1+1 = 49
does not divide k = 315.

Thus, a distance-regular graph with intersection array {315, 256, 64; 1, 16, 252} does not exist.

Let Γ be a distance-regular graph with intersection array {1995, 1600, 320; 1, 80, 1596}. Then
Γ has 1 + 1995 + 39900 + 8000 = 49896 vertices, spectrum 19951, 399495, 1523275,−2126125, and the
dual matrix of eigenvalues

Q =









1 495 23275 26125
1 99 175 −275
1 0 −56 55
1 −99/4 931/4 −209









.

The Terwilliger polynomial of the graph Γ is −20(x + 5)(x + 1)(x − 79)(x − 299); hence, the
eigenvalues of the local subgraph are contained in [−5,−1] ∪ {79} ∪ {394}.

Note that the multiplicity m1 = 495 of the eigenvalue θ1 = 399 is less than k. By the corollary
to Theorem 4.4.4 from [2] for b = b1/(θ1+1) = 4, the graph Σ = [u] has an eigenvalue −1− b = −5
of multiplicity at least k −m1 = 1500.

Let the number of eigenvalues 79 of the graph Σ be equal to y. Then the sum of eigenvalues of
the graph Σ is at most −7500 − (494 − y) + 79y + 394; therefore, y ≥ 95. Now twice the number
of edges in Σ is equal to

786030 = 1995 · 394 =
∑

i

miθ
2
i

but not less than
25 · 1500 + 399 + 95 · 792 + 3942 = 786030.

Hence, Σ has spectrum 3941.7995,−1399,−51500.
Now the number t = kΣλΣ/2 of triangles in Σ containing this vertex is equal to

∑

i miθ
3
i /(2v).

Therefore,

t =
∑

i

miθ
3
i /(2v) = (3943 + 793 · 95− 399 − 125 · 1500)/3990 = 27021

and λΣ = 54042/394 is approximately equal to 137.16, a contradiction.
Thus, a distance-regular graph with intersection array {1995, 1600, 320; 1, 80, 1596} does not

exist.
Theorem 2 is proved.

5. Graph with array {420, 340, 80; 1, 20, 336}

Let Γ be a distance-regular graph with intersection array {420, 340, 80; 1, 20, 336}. Then Γ
is a formally self-dual graph having 1 + 420 + 7140 + 1700 = 9261 vertices, spectrum
4201, 84420, 07140,−211700, and the dual matrix of eigenvalues

Q =









1 420 7140 1700
1 84 0 −85
1 0 −21 20
1 −21 84 −64









.

The Terwilliger polynomial of the graph Γ is −20(x+5)(x+1)(x−16)(x−59) and the eigenvalues
of the local subgraph are contained in [−5,−1] ∪ {16} ∪ {79}. If the nonprinciple eigenvalues of a
local subgraph are negative, then this subgraph is a union of isolated (a1+1)-cliques, a contradiction
with the fact that a1+1 = 80 does not divide k = 420. Hence, the local subgraph has eigenvalue 6.
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Lemma 3. Intersection numbers of a graph Γ satisfy the equalities

(1) p111 = 79, p121 = 340, p132 = 1360, p122 = 5440, p133 = 340,

(2) p211 = 20, p212 = 320, p213 = 80, p222 = 5519, p223 = 1300, p233 = 320;

(3) p312 = 336, p313 = 84, p322 = 5460, p323 = 1344, p333 = 271.

P r o o f. Direct calculations. �

Let u, v, and w be vertices of a graph Γ, [rst] =
[

uvw
rst

]

, Ω = Γ3(u), and let Σ = Ω2. Then Σ is a
regular graph of degree 1344 on 1700 vertices.

Lemma 4. Let d(u, v) = d(u,w) = 3 and d(v,w) = 1. Then the following equalities hold :

(1) [122] = 2r6/5− 136, [123] = [132] = −2r6/5 + 472, [133] = 2r6/5− 388;

(2) [211] = r6/10 − 38, [212] = [221] = −r6/10 + 374, [222] = −14r6/10 + 5576,
[223] = [232] = 3r6/2− 490, [233] = −3r6/2 + 1834;

(3) [311] = −r6/10 + 117, [312]=[321]=r6/10 − 34, [322] = r6, [323] = [332] = −11r6/10 + 1378,
[333] = 11r6/10 − 1107,

where r6 ∈ {1010, 1020, . . . , 1170}.

P r o o f. A simplification of formulas (3.1) taking into account the equalities
S113(u, v, w) = S131(u, v, w) = S311(u, v, w) = 0. �

By Lemma 4, we have 1010 ≤ [322] = r6 ≤ 1170.

Lemma 5. Let d(u, v) = d(u,w) = d(v,w) = 3. Then the following equalities hold :

(1) [122] = −r17 + 336, [123] = [132] = r17, [133] = −r17 + 84;

(2) [213] = [231] = r17, [212] = [221] = −r17 + 336, [222] = 39r17/4 + 3444,
[223] = [232] = −35r17/4 + 1680, [233] = 31r17/4− 336;

(3) [313] = [331] = −r17 + 84, [312] = [321] = r17, [322] = −35r17/4 + 1680,
[323] = [332] = 31r17/4− 336, [333] = −27r17/4 + 522,

where r17 ∈ {44, 48, . . . , 76}.

P r o o f. A simplification of formulas (3.1) taking into account the equalities
S113(u, v, w) = S131(u, v, w) = S311(u, v, w) = 0. �

By Lemma 5, we have 1015 ≤ [322] = −35r17/4 + 1680 ≤ 1295.

The number d of edges between Σ(w) and Σ− ({w} ∪ Λ(w)) satisfies the inequalities

359905 = 84 · 1010 + 271 · 1015 ≤ d ≤ 84 · 1170 + 271 · 1295 = 449225,

267.786 ≤ 1343 − λ ≤ 334.245,

1008.755 ≤ λ ≤ 1075.214,

where λ is the mean value of the parameter λ(Σ).
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Lemma 6. Let d(u, v) = d(u,w) = 3 and d(v,w) = 2. Then the following equalities hold :

(1) [122] = (−64r15 + 4r16 + 7364)/27, [123] = [132] = (64r15 − 4r16 + 1708)/27,
[133] = (−64r15 + 4r16 + 560)/27;

(2) [211] = −r15+20, [212] = [221] = (71r15+4r16+6392)/27, [222] = (−17r15−13r16+38311)/9,
[223] = [232] = (−20r15 + 35r16 + 26095)/27, [233] = (64r15 − 31r16 + 8053)/27;

(3) [311] = r15, [312] = [321] = (−71r15 − 4r16 + 2248)/27, [313] = (44r15 + 4r16 + 20)/27,
[322] = (115r15 +35r16 +26716)/27, [323] = [332] = (−44r15 − 31r16+7297)/27, [333] = r16,

where −10r15 + 4r16 + 20 is a multiple of 27, r15 ∈ {0, 1, . . . , 20}, and r16 ∈ {0, 1, . . . , 235}.

P r o o f. A simplification of formulas (3.1) taking into account the equalities
S113(u, v, w) = S131(u, v, w) = S311(u, v, w) = 0. �

By Lemma 6, we have

998 ≤ [322] = (115r15 + 35r16 + 26716)/27 ≤ 1294.

Let us count the number h of pairs of vertices y and z at distance 3 in the graph Ω, where

y ∈
{uv

31

}

, z ∈
{uv

32

}

.

On the one hand, by Lemma 4, we have [323] = −11r6/10+1378, where r6 ∈ {1010, 1020, ..., 1170},
therefore

7644 = 8491 ≤ h ≤ 84267 = 22428.

On the other hand, by Lemma 6, we have [313] = (44r15 +4r16 +20)/27, where r15 ∈ {0, 1, ..., 20},
r16 ∈ {0, 1, ..., 235}, therefore

7644 ≤
∑

i

(44ri15 + 4ri16) + 995.55 ≤ 22428,

6648.44 ≤
∑

i

(44ri15 + 4ri16) ≤ 21432.45,

4.946 ≤
∑

i

(11ri15 + ri16)/1344 ≤ 15.947.

If r15 = 0, then r16 + 5 is a multiple of 27 and r16 = 22.49, ....
If r15 = 1, then 2r16 + 5 is a multiple of 27 and r16 = 11.38, ....
In any case,

∑

i

(11ri15 + ri16)/1344 ≥ 22,

a contradiction.
Theorem 3 is proved. �

Conclusion

The following are the main steps in creating a theory of Shilla graphs:
(1) finding a list of feasible intersection arrays of Shilla graphs with b = 6;
(2) classification of Q-polynomial Shilla graphs with b2 = c2.
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