SHILLA GRAPHS WITH $b=5$ AND $b=6^{1}$

Alexander A. Makhnev ${ }^{\dagger}$, Ivan N. Belousov ${ }^{\dagger \dagger}$
Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, 16 S. Kovalevskaya Str., Ekaterinburg, 620990, Russia
Ural Federal University, 19 Mira str., Ekaterinburg, 620002, Russia
${ }^{\dagger}$ makhnev@imm.uran.ru, $\quad \dagger \dagger$ i_belousov@mail.ru

Abstract

A Q-polynomial Shilla graph with $b=5$ has intersection arrays $\{105 t, 4(21 t+1), 16(t+1)$; $1,4(t+1), 84 t\}, t \in\{3,4,19\}$. The paper proves that distance-regular graphs with these intersection arrays do not exist. Moreover, feasible intersection arrays of Q-polynomial Shilla graphs with $b=6$ are found.

Keywords: Shilla graph, Distance-regular graph, Q-polynomial graph.

1. Introduction

We consider undirected graphs without loops or multiple edges. For a vertex a of a graph Γ, denote by $\Gamma_{i}(a)$ the i th neighborhood of a, i.e., the subgraph induced by Γ on the set of all vertices at distance i from a. Define $[a]=\Gamma_{1}(a)$ and $a^{\perp}=\{a\} \cup[a]$.

Let Γ be a graph, and let $a, b \in \Gamma$. Denote by $\mu(a, b)$ (by $\lambda(a, b)$) the number of vertices in $[a] \cap[b]$ if a and b are at distance 2 (are adjacent) in Γ. Further, the induced $[a] \cap[b]$ subgraph is called μ-subgraph (λ-subgraph).

If vertices u and w are at distance i in Γ, then we denote by $b_{i}(u, w)$ (by $c_{i}(u, w)$) the number of vertices in the intersection of $\Gamma_{i+1}(u)$ (of $\Gamma_{i-1}(u)$, respectively) with $[w]$. A graph Γ of diameter d is called distance-regular with intersection array $\left\{b_{0}, b_{1}, \ldots, b_{d-1} ; c_{1}, \ldots, c_{d}\right\}$ if, for each $i=0, \ldots, d$, the values $b_{i}(u, w)$ and $c_{i}(u, w)$ are independent of the choice of vertices u and w at distance i in Γ. Define $a_{i}=k-b_{i}-c_{i}$. Note that, for a distance regular graph, b_{0} is the degree of the graph and a_{1} is the degree of the local subgraph (the neighborhood of the vertex). Further, for vertices x and y at distance l in the graph Γ, denote by $p_{i j}^{l}(x, y)$ the number of vertices in the subgraph $\Gamma_{i}(x) \cap \Gamma_{j}(y)$. The numbers $p_{i j}^{l}(x, y)$ are called the intersection numbers of Γ (see [2]). In a distance-regular graph, they are independent of the choice of x and y.

A Shilla graph is a distance-regular graph Γ of diameter 3 with second eigenvalue θ_{1} equal to $a=a_{3}$. In this case, a divides k and b is defined by $b=b(\Gamma)=k / a$. Morover, $a_{1}=a-b$ and Γ has intersection array $\left\{a b,(a+1)(b-1), b_{2} ; 1, c_{2}, a(b-1)\right\}$. Feasible intersection arrays of Shilla graphs are found in [6] for $b \in\{2,3\}$.

Feasible intersection arrays of Shilla graphs are found in [1] for $b=4$ (50 arrays) and for $b=5$ (82 arrays). At present, a list of feasible intersection arrays of Shilla graphs for $b=6$ is unknown. Moreover, the existence of Q-polynomial Shilla graphs with $b=5$ also is unknown.

In this paper, we find feasible intersection arrays of Q-polynomial Shilla graphs with $b=6$ and prove that Q-polynomial Shilla graphs with $b=5$ do not exist.

[^0]Theorem 1. A Q-polynomial Shilla graph with $b=6$ has intersection array
(1) $\{42 t, 5(7 t+1), 3(t+3) ; 1,3(t+3), 35 t\}$, where $t \in\{7,12,17,27,57\}$;
(2) $\{372,315,75 ; 1,15,310\},\{744,625,125 ; 1,25,620\}$ or $\{930,780,150 ; 1,30,775\}$;
(3) $\{312,265,48 ; 1,24,260\}, \quad\{624,525,80 ; 1,40,520\}, \quad\{1794,1500,200 ; 1,100,1495\} \quad$ or $\{5694,4750,600 ; 1,300,4745\}$.

In view of Theorem 2 from [1], a Q-polynomial Shilla graph with $b=5$ has intersection array $\{105 t, 4(21 t+1), 16(t+1) ; 1,4(t+1), 84 t\}, t \in\{3,4,19\}$.

Theorem 2. Distance-regular graphs with intersection arrays $\{315,256,64 ; 1,16,252\}$ and $\{1995,1600,320 ; 1,80,1596\}$ do not exist.

Theorem 3. Distance-regular graphs with intersection array $\{420,340,80 ; 1,20,336\}$ do not exist.

2. Proof of Theorem 1

In this section, Γ is a Q-polynomial Shilla graph with $b=6$. Then $\left(a_{2}-5 a-6\right)^{2}-4\left(5 b_{2}-a_{2}\right)$ is the square of an integer. By [6, Lemma 8], we have

$$
2 a \leq c_{2} b(b+1)+b^{2}-b-2
$$

therefore, $a \leq 21 c_{2}+14$. It follows from the proof of Theorem 9 in [6] that either $k<b^{3}-b=6 \cdot 35$ or $v<k\left(2 b^{3}-b+1\right)=428 k$. By [6, Corollary 17 and Theorem 20], the number $b_{2}+c_{2}$ divides $b(b-1) b_{2}$ and

$$
-34=-b^{2}+2 \leq \theta_{3} \leq-b^{2}(b+3) /(3 b+1) \leq-18
$$

Theorem 2 from [7] implies the following lemma.
Lemma 1. If $b_{2}=c_{2}$, then Γ has an intersection arrays $\{42 t, 5(7 t+1), 3(t+3) ; 1,3(t+3), 35 t\}$ and $t \in\{7,12,17,27,57\}$.

To the end of this section, assume that $b_{2} \neq c_{2}$ and $k>\theta_{1}>\theta_{2}>\theta_{3}$ are eigenvalues of the graph Γ. Then

$$
6\left(6 b_{2}+c_{2}\right) /\left(b_{2}+c_{2}\right)=-\theta_{3}
$$

On the other hand, according to [6, Lemma 10], the number c_{2} divides $(a+6) b_{2}, 30 a(a+1)$ and $(a+6) b_{2} \geq(a+1) c_{2}$.

Lemma 2. If $-34 \leq \theta_{3} \leq-18$, then one of the following statements holds:
(1) $\theta_{3}=-31$ and Γ has one of the intersection arrays $\{372,315,75 ; 1,15,310\}$, $\{744,625,125 ; 1,25,620\}$, and $\{930,780,150 ; 1,30,775\}$;
(2) $\theta_{3}=-26$ and Γ has one of the intersection arrays $\{312,265,48 ; 1,24,260\}$, $\{624,525,80 ; 1,40,520\},\{1794,1500,200 ; 1,100,1495\}$, and $\{5694,4750,600 ; 1,300,4745\}$;
(3) $\theta_{3}=-21$ and Γ has one of the intersection arrays $\{42 t, 5(7 t+1), 3(t+3) ; 1,3(t+3), 35 t\}$ for $t \in\{7,12,17,27,57\}$.

Proof. By [6, Lemma 10], c_{2} divides $b(b-1) b_{2}=30 b_{2}$ and, by [6, Corollary 17], the smallest nonprinciple eigenvalue θ_{3} is equal to $b\left(b b_{2}+c_{2}\right) /\left(b_{2}+c_{2}\right)$. Therefore, $30\left(\theta_{3}+6\right) /\left(\theta_{3}+36\right)$ is an integer and $\theta_{3} \in\{-34,-33,-32,-31,-30,-27,-26,-24,-21,-18\}$.

Let $\theta_{3}=-34$. Then $3\left(6 b_{2}+c_{2}\right)=17\left(b_{2}+c_{2}\right)$ and $b_{2}=14 c_{2}$. Further, θ_{3} is a root of the equation $x^{2}-\left(a_{1}+a_{2}-k\right) x+(b-1) b_{2}-a_{2}=0$; therefore, $a=425 / 28 \cdot c_{2}-34$. In this case, the multiplicity of the first nonprincipal eigenvalue is $m_{1}=6 / 5 \cdot\left(2545 c_{2}-5544\right) / c_{2}$, a contradiction with the fact that 5 does not divide $6 \cdot 5544$.

Let $\theta_{3}=-33$. Then $2\left(6 b_{2}+c_{2}\right)=11\left(b_{2}+c_{2}\right)$ and $b_{2}=9 c_{2}$. Further, $a=275 / 27 \cdot c_{2}-33$ and the multiplicity of the first nonprincipal eigenvalue is equal to $m_{1}=6 / 5 \cdot\left(1645 c_{2}-5184\right) / c_{2}$, a contradiction as above.

Let $\theta_{3}=-32$. Then $3\left(6 b_{2}+c_{2}\right)=16\left(b_{2}+c_{2}\right)$ and $2 b_{2}=13 c_{2}$. Further, $a=100 / 13 \cdot c_{2}-32$ and the multiplicity of the first nonprincipal eigenvalue is $m_{1}=6 / 5 \cdot\left(1195 c_{2}-4836\right) / c_{2}$, a contradiction as above.

Let $\theta_{3}=-31$. Then $6\left(6 b_{2}+c_{2}\right)=31\left(b_{2}+c_{2}\right)$ and $b_{2}=5 c_{2}$. Further, $a=31 / 5 \cdot c_{2}-31$ and the multiplicity of the first nonprincipal eigenvalue is $m_{1}=30\left(37 c_{2}-180\right) / c_{2}=1110-$ $5400 / c_{2}$. The number of vertices in the graph is $31 / 5 \cdot\left(222 c_{2}^{2}-2005 c_{2}+4500\right) / c_{2}$; hence, c_{2} divides 900 and is a multiple of 5 . By computer enumeration, we find that, only for $c_{2}=15,25$ and 30 , we have admissible intersection arrays $\{372,315,75 ; 1,15,310\},\{744,625,125 ; 1,25,620\}$ and $\{930,780,150 ; 1,30,775\}$.

Let $\theta_{3}=-30$. Then $\left(6 b_{2}+c_{2}\right)=5\left(b_{2}+c_{2}\right)$ and $b_{2}=4 c_{2}$. Further, $a=125 / 24 \cdot c_{2}-30$ and the multiplicity of the first nonprincipal eigenvalue is $m_{1}=6 / 5 \cdot\left(745 c_{2}-4176\right) / c_{2}$, a contradiction as above.

Let $\theta_{3}=-27$. Then $2\left(6 b_{2}+c_{2}\right)=9\left(b_{2}+c_{2}\right)$ and $3 b_{2}=7 c_{2}$. Further, $a=25 / 7 \cdot c_{2}-25$ and the multiplicity of the first nonprincipal eigenvalue is $m_{1}=6 / 5 \cdot\left(445 c_{2}-3276\right) / c_{2}$, a contradiction as above.

Let $\theta_{3}=-26$. Then $3\left(6 b_{2}+c_{2}\right)=13\left(b_{2}+c_{2}\right)$ and $b_{2}=2 c_{2}$. Further, $a=13 / 4 \cdot c_{2}-26$ and the multiplicity of the first nonprincipal eigenvalue is $m_{1}=6\left(77 c_{2}-600\right) / c_{2}=462-3600 / c_{2}$. The number of vertices in the graph is $13 / 8 \cdot\left(231 c_{2}^{2}-3340 c_{2}+12000\right) / c_{2}$; hence, c_{2} divides 1200 and is a multiple of 4 . By computer enumeration, we find that only for $c_{2}=24,40,100$, and 300 we have admissible intersection arrays $\{312,265,48 ; 1,24,260\},\{624,525,80 ; 1,40,520\}$, $\{1794,1500,200 ; 1,100,1495\}$, and $\{5694,4750,600 ; 1,300,4745\}$.

Let $\theta_{3}=-21$. Then $2\left(6 b_{2}+c_{2}\right)=7\left(b_{2}+c_{2}\right)$ and $b_{2}=c_{2}$. Further, $a=7 / 3 \cdot c_{2}-21$ and the multiplicity of the first nonprincipal eigenvalue is $m_{1}=6\left(41 c_{2}-360\right) / c_{2}=246-2160 / c_{2}$. The number of vertices in the graph is $7 / 3 \cdot\left(82 c_{2}^{2}-1335 c_{2}+5400\right) / c_{2}$; hence, c_{2} divides 1080 and is a multiple of 3 . By computer enumeration, we find that, only for $c_{2}=18,30,45,60,90$, and 180 , we have admissible intersection arrays $\{42 t, 5(7 t+1), 3(t+3) ; 1,3(t+3), 35 t\}$ for $t \in\{3,7,12,17,27,57\}$. A graph with the array obtained for $t=3$ does not exist by [5].

Let $\theta_{3}=-18$. Then $6\left(6 b_{2}+c_{2}\right)=19\left(b_{2}+c_{2}\right)$, so $3 b_{2}=2 c_{2}$. Further, $a=2512 \cdot c_{2}-18$ and the multiplicity of the first nonprincipal eigenvalue is $m_{1}=6 / 5 \cdot\left(145 c_{2}-1224\right) / c_{2}$, a contradiction. The lemma is proved.

Theorem 1 follows from Lemmas 1-2.

3. Triple intersection numbers

In the proof of Theorem 3, the triple intersection numbers [3] are used.

Let Γ be a distance-regular graph of diameter d. If u_{1}, u_{2}, u_{3} are vertices of the graph Γ, then r_{1}, r_{2}, r_{3} are non-negative integers not greater than d. Denote by $\left\{\begin{array}{l}u_{1} u_{2} u_{3} \\ r_{1} r_{2} r_{3}\end{array}\right\}$ the set of vertices $w \in \Gamma$ such that $d\left(w, u_{i}\right)=r_{i}$ and by $\left[\begin{array}{c}u_{1} u_{2} u_{3} \\ r_{1} r_{2} r_{3}\end{array}\right]$ the number of vertices in $\left\{\begin{array}{l}u_{1} u_{2} u_{3} \\ r_{1} r_{2} r_{3}\end{array}\right\}$. The numbers $\left[\begin{array}{l}u_{1} u_{2} u_{3} \\ r_{1} r_{2} r_{3}\end{array}\right]$ are called the triple intersection numbers. For a fixed triple of vertices u_{1}, u_{2}, u_{3}, instead of $\left[\begin{array}{l}u_{1} u_{2} u_{3} \\ r_{1} r_{2} r_{3}\end{array}\right]$, we will write $\left[r_{1} r_{2} r_{3}\right]$. Unfortunately, there are no general formulas for the numbers [$r_{1} r_{2} r_{3}$]. However, [3] outlines a method for calculating some numbers [$r_{1} r_{2} r_{3}$].

Let u, v, w be vertices of the graph $\Gamma, W=d(u, v), U=d(v, w)$, and let $V=d(u, w)$. Since there is exactly one vertex $x=u$ such that $d(x, u)=0$, then the number $[0 j h]$ is 0 or 1 . Hence $[0 j h]=\delta_{j W} \delta_{h V}$. Similarly, $[i 0 h]=\delta_{i W} \delta_{h U}$ and $[i j 0]=\delta_{i U} \delta_{j V}$.

Another set of equations can be obtained by fixing the distance between two vertices from $\{u, v, w\}$ and counting the number of vertices located at all possible distances from the third:

$$
\left\{\begin{array}{l}
\sum_{l}^{d}[l j h]=p_{j h}^{U}-[0 j h] \tag{3.1}\\
\sum_{l}^{d}[i l h]=p_{i h}^{V}-[i 0 h] \\
\sum_{l}^{d}[i j l]=p_{i j}^{W}-[i j 0]
\end{array}\right.
$$

However, some triplets disappear. For $|i-j|>W$ or $i+j<W$, we have $p_{i j}^{W}=0$; therefore, $[i j h]=0$ for all $h \in\{0, \ldots, d\}$.

We set

$$
S_{i j h}(u, v, w)=\sum_{r, s, t=0}^{d} Q_{r i} Q_{s j} Q_{t h}\left[\begin{array}{c}
u v w \\
r s t
\end{array}\right] .
$$

If the Krein parameter $q_{i j}^{h}=0$, then $S_{i j h}(u, v, w)=0$.
We fix vertices u, v, w of a distance-regular graph Γ of diameter 3 and set

$$
\{i j h\}=\left\{\begin{array}{c}
u v w \\
i j h
\end{array}\right\}, \quad[i j h]=\left[\begin{array}{c}
u v w \\
i j h
\end{array}\right], \quad[i j h]^{\prime}=\left[\begin{array}{c}
u w v \\
i h j
\end{array}\right], \quad[i j h]^{*}=\left[\begin{array}{c}
v u w \\
j i h
\end{array}\right], \quad[i j h]^{\sim}=\left[\begin{array}{c}
w v u \\
h j i
\end{array}\right] .
$$

Calculating the numbers

$$
[i j h]^{\prime}=\left[\begin{array}{c}
u w v \\
i h j
\end{array}\right], \quad[i j h]^{*}=\left[\begin{array}{c}
v u w \\
j i h
\end{array}\right], \quad[i j h]^{\sim}=\left[\begin{array}{c}
w v u \\
h j i
\end{array}\right]
$$

(symmetrization of the triple intersection numbers) can give new relations that make it possible to prove the nonexistence of a graph.
4. Graphs with intersection arrays $\{315,256,64 ; 1,16,252\}$ and $\{1995,1600,320 ; 1,80,1596\}$

Let Γ be a distance-regular graph with intersection array $\{315,256,64 ; 1,16,252\}$. By $[2$, Theorem 4.4.3], the eigenvalues of the local subgraph of the graph Γ are contained in the interval $[-5,59 / 5)$. Since the Terwilliger polynomial (see [4]) is $-4(5 x-59)(x+5)(x+1)(x-43)$, then these eigenvalues lie in $[-5,-1] \cup(59 / 5.43]$. Hence, all nonprinciple eigenvalues are negative and the
local subgraph is a union of isolated $\left(a_{1}+1\right)$-cliques, a contradiction with the fact that $a_{1}+1=49$ does not divide $k=315$.

Thus, a distance-regular graph with intersection array $\{315,256,64 ; 1,16,252\}$ does not exist.
Let Γ be a distance-regular graph with intersection array $\{1995,1600,320 ; 1,80,1596\}$. Then Γ has $1+1995+39900+8000=49896$ vertices, spectrum $1995^{1}, 399^{495}, 15^{23275},-21^{26125}$, and the dual matrix of eigenvalues

$$
Q=\left(\begin{array}{cccc}
1 & 495 & 23275 & 26125 \\
1 & 99 & 175 & -275 \\
1 & 0 & -56 & 55 \\
1 & -99 / 4 & 931 / 4 & -209
\end{array}\right)
$$

The Terwilliger polynomial of the graph Γ is $-20(x+5)(x+1)(x-79)(x-299)$; hence, the eigenvalues of the local subgraph are contained in $[-5,-1] \cup\{79\} \cup\{394\}$.

Note that the multiplicity $m_{1}=495$ of the eigenvalue $\theta_{1}=399$ is less than k. By the corollary to Theorem 4.4.4 from [2] for $b=b_{1} /\left(\theta_{1}+1\right)=4$, the graph $\Sigma=[u]$ has an eigenvalue $-1-b=-5$ of multiplicity at least $k-m_{1}=1500$.

Let the number of eigenvalues 79 of the graph Σ be equal to y. Then the sum of eigenvalues of the graph Σ is at most $-7500-(494-y)+79 y+394$; therefore, $y \geq 95$. Now twice the number of edges in Σ is equal to

$$
786030=1995 \cdot 394=\sum_{i} m_{i} \theta_{i}^{2}
$$

but not less than

$$
25 \cdot 1500+399+95 \cdot 79^{2}+394^{2}=786030
$$

Hence, Σ has spectrum $394^{1} .79^{95},-1^{399},-5^{1500}$.
Now the number $t=k_{\Sigma} \lambda_{\Sigma} / 2$ of triangles in Σ containing this vertex is equal to $\sum_{i} m_{i} \theta_{i}^{3} /(2 v)$. Therefore,

$$
t=\sum_{i} m_{i} \theta_{i}^{3} /(2 v)=\left(394^{3}+79^{3} \cdot 95-399-125 \cdot 1500\right) / 3990=27021
$$

and $\lambda_{\Sigma}=54042 / 394$ is approximately equal to 137.16, a contradiction.
Thus, a distance-regular graph with intersection array $\{1995,1600,320 ; 1,80,1596\}$ does not exist.

Theorem 2 is proved.

5. Graph with array $\{420,340,80 ; 1,20,336\}$

Let Γ be a distance-regular graph with intersection array $\{420,340,80 ; 1,20,336\}$. Then Γ is a formally self-dual graph having $1+420+7140+1700=9261$ vertices, spectrum $420^{1}, 84^{420}, 0^{7140},-21^{1700}$, and the dual matrix of eigenvalues

$$
Q=\left(\begin{array}{cccc}
1 & 420 & 7140 & 1700 \\
1 & 84 & 0 & -85 \\
1 & 0 & -21 & 20 \\
1 & -21 & 84 & -64
\end{array}\right)
$$

The Terwilliger polynomial of the graph Γ is $-20(x+5)(x+1)(x-16)(x-59)$ and the eigenvalues of the local subgraph are contained in $[-5,-1] \cup\{16\} \cup\{79\}$. If the nonprinciple eigenvalues of a local subgraph are negative, then this subgraph is a union of isolated ($a_{1}+1$)-cliques, a contradiction with the fact that $a_{1}+1=80$ does not divide $k=420$. Hence, the local subgraph has eigenvalue 6 .

Lemma 3. Intersection numbers of a graph Γ satisfy the equalities
(1) $p_{11}^{1}=79, p_{21}^{1}=340, p_{32}^{1}=1360, p_{22}^{1}=5440, p_{33}^{1}=340$,
(2) $p_{11}^{2}=20, p_{12}^{2}=320, p_{13}^{2}=80, p_{22}^{2}=5519, p_{23}^{2}=1300, p_{33}^{2}=320$;
(3) $p_{12}^{3}=336, p_{13}^{3}=84, p_{22}^{3}=5460, p_{23}^{3}=1344, p_{33}^{3}=271$.

Proof. Direct calculations.
Let u, v, and w be vertices of a graph $\Gamma,[r s t]=\left[\begin{array}{c}u v w \\ r s t\end{array}\right], \Omega=\Gamma_{3}(u)$, and let $\Sigma=\Omega_{2}$. Then Σ is a regular graph of degree 1344 on 1700 vertices.

Lemma 4. Let $d(u, v)=d(u, w)=3$ and $d(v, w)=1$. Then the following equalities hold:
(1) $[122]=2 r_{6} / 5-136,[123]=[132]=-2 r_{6} / 5+472,[133]=2 r_{6} / 5-388$;
(2) $[211]=r_{6} / 10-38, \quad[212]=[221]=-r_{6} / 10+374, \quad[222]=-14 r_{6} / 10+5576$, $[223]=[232]=3 r_{6} / 2-490,[233]=-3 r_{6} / 2+1834$;
(3) $[311]=-r_{6} / 10+117,[312]=[321]=r_{6} / 10-34,[322]=r_{6},[323]=[332]=-11 r_{6} / 10+1378$, $[333]=11 r_{6} / 10-1107$,
where $r_{6} \in\{1010,1020, \ldots, 1170\}$.
Proof. A simplification of formulas (3.1) taking into account the equalities $S_{113}(u, v, w)=S_{131}(u, v, w)=S_{311}(u, v, w)=0$ 。

By Lemma 4, we have $1010 \leq[322]=r_{6} \leq 1170$.
Lemma 5. Let $d(u, v)=d(u, w)=d(v, w)=3$. Then the following equalities hold:
(1) $[122]=-r_{17}+336,[123]=[132]=r_{17},[133]=-r_{17}+84$;
(2) $[213]=[231]=r_{17},[212]=[221]=-r_{17}+336,[222]=39 r_{17} / 4+3444$, $[223]=[232]=-35 r_{17} / 4+1680,[233]=31 r_{17} / 4-336$;
(3) $[313]=[331]=-r_{17}+84,[312]=[321]=r_{17},[322]=-35 r_{17} / 4+1680$, $[323]=[332]=31 r_{17} / 4-336,[333]=-27 r_{17} / 4+522$,
where $r_{17} \in\{44,48, \ldots, 76\}$.
Proof. A simplification of formulas (3.1) taking into account the equalities $S_{113}(u, v, w)=S_{131}(u, v, w)=S_{311}(u, v, w)=0$ 。

By Lemma 5, we have $1015 \leq[322]=-35 r_{17} / 4+1680 \leq 1295$.
The number d of edges between $\Sigma(w)$ and $\Sigma-(\{w\} \cup \Lambda(w))$ satisfies the inequalities

$$
\begin{gathered}
359905=84 \cdot 1010+271 \cdot 1015 \leq d \leq 84 \cdot 1170+271 \cdot 1295=449225 \\
267.786 \leq 1343-\lambda \leq 334.245 \\
1008.755 \leq \lambda \leq 1075.214
\end{gathered}
$$

where λ is the mean value of the parameter $\lambda(\Sigma)$.

Lemma 6. Let $d(u, v)=d(u, w)=3$ and $d(v, w)=2$. Then the following equalities hold:
(1) $[122]=\left(-64 r_{15}+4 r_{16}+7364\right) / 27, \quad[123]=[132]=\left(64 r_{15}-4 r_{16}+1708\right) / 27$, $[133]=\left(-64 r_{15}+4 r_{16}+560\right) / 27 ;$
(2) $[211]=-r_{15}+20,[212]=[221]=\left(71 r_{15}+4 r_{16}+6392\right) / 27,[222]=\left(-17 r_{15}-13 r_{16}+38311\right) / 9$, $[223]=[232]=\left(-20 r_{15}+35 r_{16}+26095\right) / 27,[233]=\left(64 r_{15}-31 r_{16}+8053\right) / 27 ;$
(3) $[311]=r_{15},[312]=[321]=\left(-71 r_{15}-4 r_{16}+2248\right) / 27,[313]=\left(44 r_{15}+4 r_{16}+20\right) / 27$, $[322]=\left(115 r_{15}+35 r_{16}+26716\right) / 27,[323]=[332]=\left(-44 r_{15}-31 r_{16}+7297\right) / 27,[333]=r_{16}$, where $-10 r_{15}+4 r_{16}+20$ is a multiple of $27, r_{15} \in\{0,1, \ldots, 20\}$, and $r_{16} \in\{0,1, \ldots, 235\}$.

Proof. A simplification of formulas (3.1) taking into account the equalities $S_{113}(u, v, w)=S_{131}(u, v, w)=S_{311}(u, v, w)=0$.

By Lemma 6, we have

$$
998 \leq[322]=\left(115 r_{15}+35 r_{16}+26716\right) / 27 \leq 1294 .
$$

Let us count the number h of pairs of vertices y and z at distance 3 in the graph Ω, where

$$
y \in\left\{\begin{array}{l}
u v \\
31
\end{array}\right\}, \quad z \in\left\{\begin{array}{l}
u v \\
32
\end{array}\right\} .
$$

On the one hand, by Lemma 4, we have $[323]=-11 r_{6} / 10+1378$, where $r_{6} \in\{1010,1020, \ldots, 1170\}$, therefore

$$
7644=8491 \leq h \leq 84267=22428
$$

On the other hand, by Lemma 6 , we have $[313]=\left(44 r_{15}+4 r_{16}+20\right) / 27$, where $r_{15} \in\{0,1, \ldots, 20\}$, $r_{16} \in\{0,1, \ldots, 235\}$, therefore

$$
\begin{gathered}
7644 \leq \sum_{i}\left(44 r_{15}^{i}+4 r_{16}^{i}\right)+995.55 \leq 22428 \\
6648.44 \leq \sum_{i}\left(44 r_{15}^{i}+4 r_{16}^{i}\right) \leq 21432.45 \\
4.946 \leq \sum_{i}\left(11 r_{15}^{i}+r_{16}^{i}\right) / 1344 \leq 15.947
\end{gathered}
$$

If $r_{15}=0$, then $r_{16}+5$ is a multiple of 27 and $r_{16}=22.49, \ldots$.
If $r_{15}=1$, then $2 r_{16}+5$ is a multiple of 27 and $r_{16}=11.38, \ldots$.
In any case,

$$
\sum_{i}\left(11 r_{15}^{i}+r_{16}^{i}\right) / 1344 \geq 22,
$$

a contradiction.
Theorem 3 is proved.

Conclusion

The following are the main steps in creating a theory of Shilla graphs:
(1) finding a list of feasible intersection arrays of Shilla graphs with $b=6$;
(2) classification of Q-polynomial Shilla graphs with $b_{2}=c_{2}$.

REFERENCES

1. Belousov I. N. Shilla distance-regular graphs with $b_{2}=s c_{2}$. Trudy Inst. Mat. i Mekh. UrO RAN, 2018. Vol. 24, No. 3. P. 16-26. (in Russian) DOI: 10.21538/0134-4889-2018-24-3-16-26
2. Brouwer A. E., Cohen A. M., Neumaier A. Distance-Regular Graphs. Berlin, Heidelberg: Springer-Verlag, 1989. 495 p. DOI: 10.1007/978-3-642-74341-2
3. Coolsaet K., Jurišić A. Using equality in the Krein conditions to prove nonexistence of certain distance-regular graphs. J. Combin. Theory Ser. A, 2008. Vol. 115, No. 6. P. 1086-1095. DOI: 10.1016/j.jcta.2007.12.001
4. Gavrilyuk A. L., Koolen J. H. A characterization of the graphs of bilinear $d \times d$-forms over \mathbb{F}_{2}. Combinatorica, 2019. Vol. 39, No. 2. P. 289-321. DOI: 10.1007/s00493-017-3573-4
5. Jurišić A., Vidali J. Extremal 1-codes in distance-regular graphs of diameter 3. Des. Codes Cryptogr., 2012. Vol. 65, No. 1. P. 29-47. DOI: 10.1007/s10623-012-9651-0
6. Koolen J. H., Park J. Shilla distance-regular graphs. European J. Combin., 2010. Vol. 31, No. 8. P. 20642073. DOI: 10.1016/j.ejc.2010.05.012
7. Makhnev A. A., Belousov I. N. To the theory of Shilla graphs with $b_{2}=c_{2}$. Sib. Electr. Math. Reports, 2017. Vol. 14. P. 1135-1146. (in Russian) DOI: 10.17377/semi.2017.14.097

[^0]: ${ }^{1}$ This work was supported by RFBR and NSFC (project № 20-51-53013).

