DOI: 10.15826/umj.2021.2.004

SHILLA GRAPHS WITH b = 5 AND $b = 6^{1}$

Alexander A. Makhnev^{\dagger}, Ivan N. Belousov^{\dagger †}

Krasovskii Institute of Mathematics and Mechanics,Ural Branch of the Russian Academy of Sciences,16 S. Kovalevskaya Str., Ekaterinburg, 620990, Russia

Ural Federal University, 19 Mira str., Ekaterinburg, 620002, Russia

[†]makhnev@imm.uran.ru, ^{††}i_belousov@mail.ru

Abstract: A *Q*-polynomial Shilla graph with b = 5 has intersection arrays $\{105t, 4(21t + 1), 16(t + 1); 1, 4(t + 1), 84t\}, t \in \{3, 4, 19\}$. The paper proves that distance-regular graphs with these intersection arrays do not exist. Moreover, feasible intersection arrays of *Q*-polynomial Shilla graphs with b = 6 are found.

Keywords: Shilla graph, Distance-regular graph, Q-polynomial graph.

1. Introduction

We consider undirected graphs without loops or multiple edges. For a vertex a of a graph Γ , denote by $\Gamma_i(a)$ the *i*th neighborhood of a, i.e., the subgraph induced by Γ on the set of all vertices at distance *i* from a. Define $[a] = \Gamma_1(a)$ and $a^{\perp} = \{a\} \cup [a]$.

Let Γ be a graph, and let $a, b \in \Gamma$. Denote by $\mu(a, b)$ (by $\lambda(a, b)$) the number of vertices in $[a] \cap [b]$ if a and b are at distance 2 (are adjacent) in Γ . Further, the induced $[a] \cap [b]$ subgraph is called μ -subgraph (λ -subgraph).

If vertices u and w are at distance i in Γ , then we denote by $b_i(u, w)$ (by $c_i(u, w)$) the number of vertices in the intersection of $\Gamma_{i+1}(u)$ (of $\Gamma_{i-1}(u)$, respectively) with [w]. A graph Γ of diameter d is called *distance-regular with intersection array* $\{b_0, b_1, \ldots, b_{d-1}; c_1, \ldots, c_d\}$ if, for each $i = 0, \ldots, d$, the values $b_i(u, w)$ and $c_i(u, w)$ are independent of the choice of vertices u and w at distance iin Γ . Define $a_i = k - b_i - c_i$. Note that, for a distance regular graph, b_0 is the degree of the graph and a_1 is the degree of the local subgraph (the neighborhood of the vertex). Further, for vertices x and y at distance l in the graph Γ , denote by $p_{ij}^l(x, y)$ the number of vertices in the subgraph $\Gamma_i(x) \cap \Gamma_j(y)$. The numbers $p_{ij}^l(x, y)$ are called the intersection numbers of Γ (see [2]). In a distance-regular graph, they are independent of the choice of x and y.

A Shilla graph is a distance-regular graph Γ of diameter 3 with second eigenvalue θ_1 equal to $a = a_3$. In this case, a divides k and b is defined by $b = b(\Gamma) = k/a$. Moreover, $a_1 = a - b$ and Γ has intersection array $\{ab, (a+1)(b-1), b_2; 1, c_2, a(b-1)\}$. Feasible intersection arrays of Shilla graphs are found in [6] for $b \in \{2, 3\}$.

Feasible intersection arrays of Shilla graphs are found in [1] for b = 4 (50 arrays) and for b = 5 (82 arrays). At present, a list of feasible intersection arrays of Shilla graphs for b = 6 is unknown. Moreover, the existence of Q-polynomial Shilla graphs with b = 5 also is unknown.

In this paper, we find feasible intersection arrays of Q-polynomial Shilla graphs with b = 6 and prove that Q-polynomial Shilla graphs with b = 5 do not exist.

¹This work was supported by RFBR and NSFC (project № 20-51-53013).

Theorem 1. A Q-polynomial Shilla graph with b = 6 has intersection array

- (1) $\{42t, 5(7t+1), 3(t+3); 1, 3(t+3), 35t\}, where t \in \{7, 12, 17, 27, 57\};$
- (2) {372, 315, 75; 1, 15, 310}, {744, 625, 125; 1, 25, 620} or {930, 780, 150; 1, 30, 775};

In view of Theorem 2 from [1], a Q-polynomial Shilla graph with b = 5 has intersection array $\{105t, 4(21t+1), 16(t+1); 1, 4(t+1), 84t\}, t \in \{3, 4, 19\}.$

Theorem 2. Distance-regular graphs with intersection arrays $\{315, 256, 64; 1, 16, 252\}$ and $\{1995, 1600, 320; 1, 80, 1596\}$ do not exist.

Theorem 3. Distance-regular graphs with intersection array $\{420, 340, 80; 1, 20, 336\}$ do not exist.

2. Proof of Theorem 1

In this section, Γ is a *Q*-polynomial Shilla graph with b = 6. Then $(a_2 - 5a - 6)^2 - 4(5b_2 - a_2)$ is the square of an integer. By [6, Lemma 8], we have

$$2a \le c_2 b(b+1) + b^2 - b - 2;$$

therefore, $a \leq 21c_2 + 14$. It follows from the proof of Theorem 9 in [6] that either $k < b^3 - b = 6 \cdot 35$ or $v < k(2b^3 - b + 1) = 428k$. By [6, Corollary 17 and Theorem 20], the number $b_2 + c_2$ divides $b(b-1)b_2$ and

$$-34 = -b^2 + 2 \le \theta_3 \le -b^2(b+3)/(3b+1) \le -18.$$

Theorem 2 from [7] implies the following lemma.

Lemma 1. If $b_2 = c_2$, then Γ has an intersection arrays $\{42t, 5(7t+1), 3(t+3); 1, 3(t+3), 35t\}$ and $t \in \{7, 12, 17, 27, 57\}$.

To the end of this section, assume that $b_2 \neq c_2$ and $k > \theta_1 > \theta_2 > \theta_3$ are eigenvalues of the graph Γ . Then

$$6(6b_2 + c_2)/(b_2 + c_2) = -\theta_3.$$

On the other hand, according to [6, Lemma 10], the number c_2 divides $(a + 6)b_2$, 30a(a + 1) and $(a + 6)b_2 \ge (a + 1)c_2$.

Lemma 2. If $-34 \le \theta_3 \le -18$, then one of the following statements holds:

- (1) $\theta_3 = -31$ and Γ has one of the intersection arrays {372, 315, 75; 1, 15, 310}, {744, 625, 125; 1, 25, 620}, and {930, 780, 150; 1, 30, 775};
- (2) $\theta_3 = -26$ and Γ has one of the intersection arrays {312, 265, 48; 1, 24, 260}, {624, 525, 80; 1, 40, 520}, {1794, 1500, 200; 1, 100, 1495}, and {5694, 4750, 600; 1, 300, 4745};
- (3) $\theta_3 = -21$ and Γ has one of the intersection arrays $\{42t, 5(7t+1), 3(t+3); 1, 3(t+3), 35t\}$ for $t \in \{7, 12, 17, 27, 57\}$.

P r o o f. By [6, Lemma 10], c_2 divides $b(b-1)b_2 = 30b_2$ and, by [6, Corollary 17], the smallest nonprinciple eigenvalue θ_3 is equal to $b(bb_2 + c_2)/(b_2 + c_2)$. Therefore, $30(\theta_3 + 6)/(\theta_3 + 36)$ is an integer and $\theta_3 \in \{-34, -33, -32, -31, -30, -27, -26, -24, -21, -18\}$.

Let $\theta_3 = -34$. Then $3(6b_2 + c_2) = 17(b_2 + c_2)$ and $b_2 = 14c_2$. Further, θ_3 is a root of the equation $x^2 - (a_1 + a_2 - k)x + (b - 1)b_2 - a_2 = 0$; therefore, $a = 425/28 \cdot c_2 - 34$. In this case, the multiplicity of the first nonprincipal eigenvalue is $m_1 = 6/5 \cdot (2545c_2 - 5544)/c_2$, a contradiction with the fact that 5 does not divide $6 \cdot 5544$.

Let $\theta_3 = -33$. Then $2(6b_2 + c_2) = 11(b_2 + c_2)$ and $b_2 = 9c_2$. Further, $a = 275/27 \cdot c_2 - 33$ and the multiplicity of the first nonprincipal eigenvalue is equal to $m_1 = 6/5 \cdot (1645c_2 - 5184)/c_2$, a contradiction as above.

Let $\theta_3 = -32$. Then $3(6b_2 + c_2) = 16(b_2 + c_2)$ and $2b_2 = 13c_2$. Further, $a = 100/13 \cdot c_2 - 32$ and the multiplicity of the first nonprincipal eigenvalue is $m_1 = 6/5 \cdot (1195c_2 - 4836)/c_2$, a contradiction as above.

Let $\theta_3 = -31$. Then $6(6b_2 + c_2) = 31(b_2 + c_2)$ and $b_2 = 5c_2$. Further, $a = 31/5 \cdot c_2 - 31$ and the multiplicity of the first nonprincipal eigenvalue is $m_1 = 30(37c_2 - 180)/c_2 = 1110 - 5400/c_2$. The number of vertices in the graph is $31/5 \cdot (222c_2^2 - 2005c_2 + 4500)/c_2$; hence, c_2 divides 900 and is a multiple of 5. By computer enumeration, we find that, only for $c_2 = 15, 25$ and 30, we have admissible intersection arrays $\{372, 315, 75; 1, 15, 310\}$, $\{744, 625, 125; 1, 25, 620\}$ and $\{930, 780, 150; 1, 30, 775\}$.

Let $\theta_3 = -30$. Then $(6b_2 + c_2) = 5(b_2 + c_2)$ and $b_2 = 4c_2$. Further, $a = 125/24 \cdot c_2 - 30$ and the multiplicity of the first nonprincipal eigenvalue is $m_1 = 6/5 \cdot (745c_2 - 4176)/c_2$, a contradiction as above.

Let $\theta_3 = -27$. Then $2(6b_2 + c_2) = 9(b_2 + c_2)$ and $3b_2 = 7c_2$. Further, $a = 25/7 \cdot c_2 - 25$ and the multiplicity of the first nonprincipal eigenvalue is $m_1 = 6/5 \cdot (445c_2 - 3276)/c_2$, a contradiction as above.

Let $\theta_3 = -26$. Then $3(6b_2 + c_2) = 13(b_2 + c_2)$ and $b_2 = 2c_2$. Further, $a = 13/4 \cdot c_2 - 26$ and the multiplicity of the first nonprincipal eigenvalue is $m_1 = 6(77c_2 - 600)/c_2 = 462 - 3600/c_2$. The number of vertices in the graph is $13/8 \cdot (231c_2^2 - 3340c_2 + 12000)/c_2$; hence, c_2 divides 1200 and is a multiple of 4. By computer enumeration, we find that only for $c_2 = 24, 40, 100$, and 300 we have admissible intersection arrays $\{312, 265, 48; 1, 24, 260\}$, $\{624, 525, 80; 1, 40, 520\}$, $\{1794, 1500, 200; 1, 100, 1495\}$, and $\{5694, 4750, 600; 1, 300, 4745\}$.

Let $\theta_3 = -21$. Then $2(6b_2 + c_2) = 7(b_2 + c_2)$ and $b_2 = c_2$. Further, $a = 7/3 \cdot c_2 - 21$ and the multiplicity of the first nonprincipal eigenvalue is $m_1 = 6(41c_2 - 360)/c_2 = 246 - 2160/c_2$. The number of vertices in the graph is $7/3 \cdot (82c_2^2 - 1335c_2 + 5400)/c_2$; hence, c_2 divides 1080 and is a multiple of 3. By computer enumeration, we find that, only for $c_2 = 18, 30, 45, 60, 90$, and 180, we have admissible intersection arrays $\{42t, 5(7t+1), 3(t+3); 1, 3(t+3), 35t\}$ for $t \in \{3, 7, 12, 17, 27, 57\}$. A graph with the array obtained for t = 3 does not exist by [5].

Let $\theta_3 = -18$. Then $6(6b_2 + c_2) = 19(b_2 + c_2)$, so $3b_2 = 2c_2$. Further, $a = 2512 \cdot c_2 - 18$ and the multiplicity of the first nonprincipal eigenvalue is $m_1 = 6/5 \cdot (145c_2 - 1224)/c_2$, a contradiction. The lemma is proved.

Theorem 1 follows from Lemmas 1-2.

3. Triple intersection numbers

In the proof of Theorem 3, the triple intersection numbers [3] are used.

Let Γ be a distance-regular graph of diameter d. If u_1, u_2, u_3 are vertices of the graph Γ , then r_1, r_2, r_3 are non-negative integers not greater than d. Denote by $\begin{cases} u_1 u_2 u_3 \\ r_1 r_2 r_3 \end{cases}$ the set of vertices $w \in \Gamma$ such that $d(w, u_i) = r_i$ and by $\begin{bmatrix} u_1 u_2 u_3 \\ r_1 r_2 r_3 \end{bmatrix}$ the number of vertices in $\begin{cases} u_1 u_2 u_3 \\ r_1 r_2 r_3 \end{cases}$. The numbers $\begin{bmatrix} u_1 u_2 u_3 \\ r_1 r_2 r_3 \end{bmatrix}$ are called the triple intersection numbers. For a fixed triple of vertices u_1, u_2, u_3 , instead of $\begin{bmatrix} u_1 u_2 u_3 \\ r_1 r_2 r_3 \end{bmatrix}$, we will write $[r_1 r_2 r_3]$. Unfortunately, there are no general formulas for the numbers $[r_1 r_2 r_3]$. However, [3] outlines a method for calculating some numbers $[r_1 r_2 r_3]$.

Let u, v, w be vertices of the graph Γ , W = d(u, v), U = d(v, w), and let V = d(u, w). Since there is exactly one vertex x = u such that d(x, u) = 0, then the number [0jh] is 0 or 1. Hence $[0jh] = \delta_{jW} \delta_{hV}$. Similarly, $[i0h] = \delta_{iW} \delta_{hU}$ and $[ij0] = \delta_{iU} \delta_{jV}$.

Another set of equations can be obtained by fixing the distance between two vertices from $\{u, v, w\}$ and counting the number of vertices located at all possible distances from the third:

$$\begin{cases} \sum_{l}^{d} [ljh] = p_{jh}^{U} - [0jh] \\ \sum_{l}^{d} [ilh] = p_{ih}^{V} - [i0h] \\ \sum_{l}^{d} [ijl] = p_{ij}^{W} - [ij0] \end{cases}$$
(3.1)

However, some triplets disappear. For |i - j| > W or i + j < W, we have $p_{ij}^W = 0$; therefore, [ijh] = 0 for all $h \in \{0, ..., d\}$.

We set

$$S_{ijh}(u,v,w) = \sum_{r,s,t=0}^{d} Q_{ri}Q_{sj}Q_{th} \begin{bmatrix} uvw\\ rst \end{bmatrix}.$$

If the Krein parameter $q_{ij}^h = 0$, then $S_{ijh}(u, v, w) = 0$.

We fix vertices u, v, w of a distance-regular graph Γ of diameter 3 and set

$$\{ijh\} = \left\{ \begin{matrix} uvw\\ ijh \end{matrix} \right\}, \quad [ijh] = \begin{bmatrix} uvw\\ ijh \end{bmatrix}, \quad [ijh]' = \begin{bmatrix} uwv\\ ihj \end{bmatrix}, \quad [ijh]^* = \begin{bmatrix} vuw\\ jih \end{bmatrix}, \quad [ijh]^\sim = \begin{bmatrix} wvu\\ hji \end{bmatrix}.$$

Calculating the numbers

$$[ijh]' = \begin{bmatrix} uwv\\ ihj \end{bmatrix}, \quad [ijh]^* = \begin{bmatrix} vuw\\ jih \end{bmatrix}, \quad [ijh]^\sim = \begin{bmatrix} wvu\\ hji \end{bmatrix}$$

(symmetrization of the triple intersection numbers) can give new relations that make it possible to prove the nonexistence of a graph.

4. Graphs with intersection arrays $\{315, 256, 64; 1, 16, 252\}$ and $\{1995, 1600, 320; 1, 80, 1596\}$

Let Γ be a distance-regular graph with intersection array $\{315, 256, 64; 1, 16, 252\}$. By [2, Theorem 4.4.3], the eigenvalues of the local subgraph of the graph Γ are contained in the interval [-5, 59/5). Since the Terwilliger polynomial (see [4]) is -4(5x - 59)(x + 5)(x + 1)(x - 43), then these eigenvalues lie in $[-5, -1] \cup (59/5.43]$. Hence, all nonprinciple eigenvalues are negative and the local subgraph is a union of isolated $(a_1 + 1)$ -cliques, a contradiction with the fact that $a_1 + 1 = 49$ does not divide k = 315.

Thus, a distance-regular graph with intersection array $\{315, 256, 64; 1, 16, 252\}$ does not exist.

Let Γ be a distance-regular graph with intersection array {1995, 1600, 320; 1, 80, 1596}. Then Γ has 1 + 1995 + 39900 + 8000 = 49896 vertices, spectrum $1995^1, 399^{495}, 15^{23275}, -21^{26125}$, and the dual matrix of eigenvalues

$$Q = \begin{pmatrix} 1 & 495 & 23275 & 26125 \\ 1 & 99 & 175 & -275 \\ 1 & 0 & -56 & 55 \\ 1 & -99/4 & 931/4 & -209 \end{pmatrix}$$

The Terwilliger polynomial of the graph Γ is -20(x+5)(x+1)(x-79)(x-299); hence, the eigenvalues of the local subgraph are contained in $[-5, -1] \cup \{79\} \cup \{394\}$.

Note that the multiplicity $m_1 = 495$ of the eigenvalue $\theta_1 = 399$ is less than k. By the corollary to Theorem 4.4.4 from [2] for $b = b_1/(\theta_1 + 1) = 4$, the graph $\Sigma = [u]$ has an eigenvalue -1 - b = -5 of multiplicity at least $k - m_1 = 1500$.

Let the number of eigenvalues 79 of the graph Σ be equal to y. Then the sum of eigenvalues of the graph Σ is at most -7500 - (494 - y) + 79y + 394; therefore, $y \ge 95$. Now twice the number of edges in Σ is equal to

$$786030 = 1995 \cdot 394 = \sum_{i} m_i \theta_i^2$$

but not less than

 $25 \cdot 1500 + 399 + 95 \cdot 79^2 + 394^2 = 786030.$

Hence, Σ has spectrum $394^{1}.79^{95}, -1^{399}, -5^{1500}$.

Now the number $t = k_{\Sigma}\lambda_{\Sigma}/2$ of triangles in Σ containing this vertex is equal to $\sum_{i} m_{i}\theta_{i}^{3}/(2v)$. Therefore,

$$t = \sum_{i} m_i \theta_i^3 / (2v) = (394^3 + 79^3 \cdot 95 - 399 - 125 \cdot 1500) / 3990 = 27021$$

and $\lambda_{\Sigma} = 54042/394$ is approximately equal to 137.16, a contradiction.

Thus, a distance-regular graph with intersection array $\{1995, 1600, 320; 1, 80, 1596\}$ does not exist.

Theorem 2 is proved.

5. Graph with array $\{420, 340, 80; 1, 20, 336\}$

Let Γ be a distance-regular graph with intersection array {420, 340, 80; 1, 20, 336}. Then Γ is a formally self-dual graph having 1 + 420 + 7140 + 1700 = 9261 vertices, spectrum $420^{1}, 84^{420}, 0^{7140}, -21^{1700}$, and the dual matrix of eigenvalues

$$Q = \begin{pmatrix} 1 & 420 & 7140 & 1700 \\ 1 & 84 & 0 & -85 \\ 1 & 0 & -21 & 20 \\ 1 & -21 & 84 & -64 \end{pmatrix}.$$

The Terwilliger polynomial of the graph Γ is -20(x+5)(x+1)(x-16)(x-59) and the eigenvalues of the local subgraph are contained in $[-5, -1] \cup \{16\} \cup \{79\}$. If the nonprinciple eigenvalues of a local subgraph are negative, then this subgraph is a union of isolated (a_1+1) -cliques, a contradiction with the fact that $a_1 + 1 = 80$ does not divide k = 420. Hence, the local subgraph has eigenvalue 6. **Lemma 3.** Intersection numbers of a graph Γ satisfy the equalities

- (1) $p_{11}^1 = 79, \ p_{21}^1 = 340, \ p_{32}^1 = 1360, \ p_{22}^1 = 5440, \ p_{33}^1 = 340,$
- (2) $p_{11}^2 = 20, p_{12}^2 = 320, p_{13}^2 = 80, p_{22}^2 = 5519, p_{23}^2 = 1300, p_{33}^2 = 320;$
- (3) $p_{12}^3 = 336$, $p_{13}^3 = 84$, $p_{22}^3 = 5460$, $p_{23}^3 = 1344$, $p_{33}^3 = 271$.

Proof. Direct calculations.

Let u, v, and w be vertices of a graph Γ , $[rst] = \begin{bmatrix} uvw \\ rst \end{bmatrix}$, $\Omega = \Gamma_3(u)$, and let $\Sigma = \Omega_2$. Then Σ is a regular graph of degree 1344 on 1700 vertices.

Lemma 4. Let d(u, v) = d(u, w) = 3 and d(v, w) = 1. Then the following equalities hold:

- (1) $[122] = 2r_6/5 136$, $[123] = [132] = -2r_6/5 + 472$, $[133] = 2r_6/5 388$;
- (2) $[211] = r_6/10 38$, $[212] = [221] = -r_6/10 + 374$, $[222] = -14r_6/10 + 5576$, $[223] = [232] = 3r_6/2 490$, $[233] = -3r_6/2 + 1834$;
- (3) $[311] = -r_6/10 + 117$, $[312] = [321] = r_6/10 34$, $[322] = r_6$, $[323] = [332] = -11r_6/10 + 1378$, $[333] = 11r_6/10 1107$,

where $r_6 \in \{1010, 1020, \dots, 1170\}$.

Proof. A simplification of formulas (3.1) taking into account the equalities $S_{113}(u, v, w) = S_{131}(u, v, w) = S_{311}(u, v, w) = 0.$

By Lemma 4, we have $1010 \le [322] = r_6 \le 1170$.

Lemma 5. Let d(u, v) = d(u, w) = d(v, w) = 3. Then the following equalities hold:

- (1) $[122] = -r_{17} + 336$, $[123] = [132] = r_{17}$, $[133] = -r_{17} + 84$;
- (2) $[213] = [231] = r_{17}$, $[212] = [221] = -r_{17} + 336$, $[222] = 39r_{17}/4 + 3444$, $[223] = [232] = -35r_{17}/4 + 1680$, $[233] = 31r_{17}/4 336$;
- (3) $[313] = [331] = -r_{17} + 84$, $[312] = [321] = r_{17}$, $[322] = -35r_{17}/4 + 1680$, $[323] = [332] = 31r_{17}/4 336$, $[333] = -27r_{17}/4 + 522$,

where $r_{17} \in \{44, 48, \dots, 76\}$.

Proof. A simplification of formulas (3.1) taking into account the equalities $S_{113}(u, v, w) = S_{131}(u, v, w) = S_{311}(u, v, w) = 0.$

By Lemma 5, we have $1015 \leq [322] = -35r_{17}/4 + 1680 \leq 1295$. The number d of edges between $\Sigma(w)$ and $\Sigma - (\{w\} \cup \Lambda(w))$ satisfies the inequalities

$$\begin{aligned} 359905 &= 84 \cdot 1010 + 271 \cdot 1015 \leq d \leq 84 \cdot 1170 + 271 \cdot 1295 = 449225, \\ 267.786 \leq 1343 - \lambda \leq 334.245, \\ 1008.755 \leq \lambda \leq 1075.214, \end{aligned}$$

where λ is the mean value of the parameter $\lambda(\Sigma)$.

Lemma 6. Let d(u, v) = d(u, w) = 3 and d(v, w) = 2. Then the following equalities hold:

- (1) $[122] = (-64r_{15} + 4r_{16} + 7364)/27$, $[123] = [132] = (64r_{15} 4r_{16} + 1708)/27$, $[133] = (-64r_{15} + 4r_{16} + 560)/27$;
- (2) $[211] = -r_{15} + 20, [212] = [221] = (71r_{15} + 4r_{16} + 6392)/27, [222] = (-17r_{15} 13r_{16} + 38311)/9, [223] = [232] = (-20r_{15} + 35r_{16} + 26095)/27, [233] = (64r_{15} 31r_{16} + 8053)/27;$
- (3) $[311] = r_{15}, [312] = [321] = (-71r_{15} 4r_{16} + 2248)/27, [313] = (44r_{15} + 4r_{16} + 20)/27, [322] = (115r_{15} + 35r_{16} + 26716)/27, [323] = [332] = (-44r_{15} 31r_{16} + 7297)/27, [333] = r_{16},$

where $-10r_{15} + 4r_{16} + 20$ is a multiple of 27, $r_{15} \in \{0, 1, \dots, 20\}$, and $r_{16} \in \{0, 1, \dots, 235\}$.

P r o o f. A simplification of formulas (3.1) taking into account the equalities $S_{113}(u, v, w) = S_{131}(u, v, w) = S_{311}(u, v, w) = 0.$

By Lemma 6, we have

$$998 \le [322] = (115r_{15} + 35r_{16} + 26716)/27 \le 1294$$

Let us count the number h of pairs of vertices y and z at distance 3 in the graph Ω , where

$$y \in \left\{ \begin{array}{c} uv\\ 31 \end{array} \right\}, \quad z \in \left\{ \begin{array}{c} uv\\ 32 \end{array} \right\}.$$

On the one hand, by Lemma 4, we have $[323] = -11r_6/10 + 1378$, where $r_6 \in \{1010, 1020, ..., 1170\}$, therefore

 $7644 = 8491 \le h \le 84267 = 22428.$

On the other hand, by Lemma 6, we have $[313] = (44r_{15} + 4r_{16} + 20)/27$, where $r_{15} \in \{0, 1, ..., 20\}$, $r_{16} \in \{0, 1, ..., 235\}$, therefore

$$\begin{aligned} &7644 \leq \sum_{i} (44r_{15}^{i} + 4r_{16}^{i}) + 995.55 \leq 22428, \\ &6648.44 \leq \sum_{i} (44r_{15}^{i} + 4r_{16}^{i}) \leq 21432.45, \\ &4.946 \leq \sum_{i} (11r_{15}^{i} + r_{16}^{i})/1344 \leq 15.947. \end{aligned}$$

If $r_{15} = 0$, then $r_{16} + 5$ is a multiple of 27 and $r_{16} = 22.49, \dots$ If $r_{15} = 1$, then $2r_{16} + 5$ is a multiple of 27 and $r_{16} = 11.38, \dots$ In any case,

$$\sum_{i} (11r_{15}^i + r_{16}^i)/1344 \ge 22,$$

a contradiction.

Theorem 3 is proved.

Conclusion

The following are the main steps in creating a theory of Shilla graphs:

- (1) finding a list of feasible intersection arrays of Shilla graphs with b = 6;
- (2) classification of Q-polynomial Shilla graphs with $b_2 = c_2$.

REFERENCES

- 1. Belousov I. N. Shilla distance-regular graphs with $b_2 = sc_2$. Trudy Inst. Mat. i Mekh. UrO RAN, 2018. Vol. 24, No. 3. P. 16–26. (in Russian) DOI: 10.21538/0134-4889-2018-24-3-16-26
- Brouwer A. E., Cohen A. M., Neumaier A. Distance-Regular Graphs. Berlin, Heidelberg: Springer-Verlag, 1989. 495 p. DOI: 10.1007/978-3-642-74341-2
- Coolsaet K., Jurišić A. Using equality in the Krein conditions to prove nonexistence of certain distance-regular graphs. J. Combin. Theory Ser. A, 2008. Vol. 115, No. 6. P. 1086–1095. DOI: 10.1016/j.jcta.2007.12.001
- Gavrilyuk A. L., Koolen J. H. A characterization of the graphs of bilinear d × d-forms over F₂. Combinatorica, 2019. Vol. 39, No. 2. P. 289–321. DOI: 10.1007/s00493-017-3573-4
- Jurišić A., Vidali J. Extremal 1-codes in distance-regular graphs of diameter 3. Des. Codes Cryptogr., 2012. Vol. 65, No. 1. P. 29–47. DOI: 10.1007/s10623-012-9651-0
- Koolen J. H., Park J. Shilla distance-regular graphs. European J. Combin., 2010. Vol. 31, No. 8. P. 2064–2073. DOI: 10.1016/j.ejc.2010.05.012
- 7. Makhnev A. A., Belousov I. N. To the theory of Shilla graphs with $b_2 = c_2$. Sib. Electr. Math. Reports, 2017. Vol. 14. P. 1135–1146. (in Russian) DOI: 10.17377/semi.2017.14.097