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Abstract: The induced nK2 decomposition of infinite square grids and hexagonal grids are described here.
We use the multi-level distance edge labeling as an effective technique in the decomposition of square grids. If
the edges are adjacent, then their color difference is at least 2 and if they are separated by exactly a single edge,
then their colors must be distinct. Only non-negative integers are used for labeling. The proposed partitioning
technique per the edge labels to get the induced nK2 decomposition of the ladder graph is the square grid and
the hexagonal grid.
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1. Introduction

Decomposition of graphs has been an intriguing area of study in Graph Theory. Many of the
decomposition problems could be addressed by even a beginner in graph theory. However, it needs
a crafty and involved work to achieve certain types of decompositions of graphs. Given a graph with
vertices and edges, the task in decomposition is to find subgraphs with a particular property. The
disjoint union of these subgraphs is the given graph itself. For a perfect decomposition, there should
not be any edges left over apart from the decomposed subgraphs. In an optimal decomposition if
there are some edges left over, the collection of such edges is known as leave. In case, with the
compromise of some overlapping edges, if we can find subgraphs whose union is the given graph,
the set of repeated (overlapping) edges is known as padding.

The problem of decomposition of graphs dates back to some real-life problems. The famous
Kirkman’s schoolgirl problem and the 9-prisoner’s problem are some of them. For many years,
decomposition was identified as G-design. This has its origin from the design of experiments. If we
have n samples to be compared optimally, we can use decomposition as tool. Steiner triple system
also needs decomposition techniques.

In this paper, we go for some techniques of a particular type of decomposition known as induced
decomposition. We consider only simple connected graphs. We use the definitions and notations
mostly from [2] unless otherwise defined here. Two adjacent vertices are referred to as neighbors of
each other. The set of neighbors of a vertex v is called the open neighborhood of v and is denoted
by NG(v) or N(v). The set N [v] = N(v) ∪ {v} is called the closed neighborhood of v. Similarly,
we can consider the set of neighbors of an edge as well.

An edge-induced subgraph is a subset of the edges of a graph G together with any vertices that
are their end vertices. As seen in [1], if G is a connected graph, and e1 = (u1, v1) and e2 = (u2, v2)
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are two edges of G, then the distance between edges or edge distance of e1 and e2 is defined as

ed(e1, e2) = min{d(u1, u2), d(u1, v2), d(v1, u2), d(v1, v2)}.

If ed(e1, e2) = 0, then these edges are called neighbor edges or adjacent edges. For the induced
decomposition, we use the colouring technique known as the L′(2, 1)–edge coloring of a graph G

which is defined as in [7] and used in [4]. For non-negative integers i and j, an L′(i, j)–edge
coloring of a graph G is an assignment of non-negative integers to the edges e1 and e2 of G such
that |c(e1) − c(e2)| ≥ i if ed(e1, e2) = 0 and |c(e1) − c(e2)| ≥ j if ed(e1, e2) = 1. No condition is
placed on colors assigned to the edges e1 and e2 if ed(e1, e2) ≥ 2.

In this paper we study the case where i = 2 and j = 1. For an L′(i, j)–edge coloring c of a
graph G, the c-span of G is the maximum value of |c(e1)− c(e2)| over all pairs of edges e1 and e2
of E(G). It is denoted by λ′

i,j(c). That is,

λ′

i,j(c) = max
{

|c(e1)− c(e2)| : e1, e2 ∈ E(G)
}

.

In particular, for i = 2 and j = 1, from [7], we have the c-span of G with respect to the
L′(2, 1)–edge coloring as

λ′

2,1(c) = max{|c(e1)− c(e2)| : e1, e2 ∈ E(G)}.

We use Stiebitz et al. [6] for the terminologies of χ′–critical graph and χ′–critical edge.

2. Rectangular grids

We use the rectangular grid graph (RGG) concept from [3, 5]. Given a RGG, we apply L′(2, 1)–
edge coloring technique and thereby obtain the L′(2, 1)–edge coloring number of infinite rectangular
grids. For convenience we denote RGG as Gm,n, an m × n rectangular grid graph. A particular
case is the Ladder graph denoted as P2 × Pm. The L′(2, 1)–edge coloring number of ladder graph
is obtained as follows.

Theorem 1 [4, Theorem 4].

λ′(P2 × Pm) =











4 if m = 2,

6 if m = 3,

7 if m ≥ 4.

Theorem 2 [3, Theorem 2]. The L′(2, 1)–edge coloring number of the rectangular grid G3,4

is 8. That is, λ′(G3,4) = 8.

By the following theorem, we obtain the smallest positive integer or the smallest maximum
color used among the different L′(2, 1)–edge coloring of the infinite rectangular grids.

Theorem 3 [3, Theorem 3]. The L′(2, 1)–edge coloring number of Gm,n is at most 9. That is,

λ′(Gm,n) ≤ 9, for any positive integers m and n.

See Fig. 1 for a sample coloring [3].
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Figure 1. An optimal L′(2, 1)–labeling of a fragment of rectangular grid.

2.1. The nK2 decomposition of the Ladder graph P2 × Pm

In this section, we find the nK2 decomposition of the ladder graph. By the symbol Pn(K2)(G)
we denote the graph G that has the property Pn(K2), i.e., induced nK2. We use the edge coloring
as a tool used in [4], see Fig. 2.

Theorem 4. A ladder graph P2 × Pm can have Pn(K2) if and only if

(i) n|q is such that 2 ≤ n ≤
⌊q

6

⌋

, where q is the size of the ladder graph, and

(ii) diam (P2 × Pm) ≥ 6.

P r o o f. We see that the edge partition number of the ladder graph is

πν
′(P2 × Pm) = d(u) + d(w) = 6,

where u is the vertex of maximum degree lying on the cycle C4 and w is such that d(w) is maximum;
w ∈ N(u). Hence, the bound for n in Pn(K2) becomes

2 ≤ n ≤
⌊q

6

⌋

,

where q is the size of the ladder graph and q = 3m− 2.
By the diameter condition, ladder graph has Pn(K2) only if the diameter is at least six. Hence,

consider the ladder graph P2 × P6 which is of diameter 6 and size, q = 16. The bound for n in
Pn(K2) is calculated as

2 ≤ n ≤
⌊16

6

⌋

= 2.
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That is, there is every possibility that the graph P2 × P6 can have P2(K2). We now verify the
existence of P2(K2) in P2 × P6 by the L′(2, 1)–edge coloring technique given in [4].

e1 e2

3

e3

5

e4

7

e5

4 6

e11

e16

7

e15

5

e14

3

e13

6

e12

4

e6 e7 e8 e9 e10
0 1 0 1 0 1

Figure 2. Optimal L′(2, 1)–coloring of P2 × P6.

Partition the edge set E(P2×P6) into independent sets E1, E2, . . . such that the set Ej consists
of edges which receives color j. Note that the edges of P2×P6 are labeled e1, e2, . . . consecutively
and selected under each Ej such that the suffixes of the edge labels are in ascending order.

Consider the following partitioning of E(P2 × P6)

E0 = {e6, e8, e10}, E1 = {e7, e9, e11}, E2 = ∅,

E3 = {e1, e14}, E4 = {e4, e12}, E5 = {e2, e15},
E6 = {e5, e13}, E7 = {e3, e16}.

As we aim at 2K2 decomposition, select two edges from E0 and E1 respectively such that the
remaining two edges having different colors are at edge distance at least two

E0
′ = {e6, e10}, E1

′ = {e7, e9}, E2
′ = ∅, E3

′ = E3, E4
′ = E4,

E5
′ = E5, E6

′ = E6, E7
′ = E7, E8

′ = {e8, e11}.

As E2
′ is empty, we see that the distinct Ej

′ for j 6= 2, forms the eight subsets with respect to
P2(K2)(P2 × P6) (see Fig. 3).

e1 e2 e3 e4 e5

e11

e16e15e14e13e12

e6 e7 e8 e9 e10

Figure 3. P2(K2)(P2 × P6).

Note that the edges designed in the similar manner come under the same subset of decomposi-
tion.

As the size of P2 × P7 is 19, it cannot have P2(K2) for any n. So consider the ladder graph
P2 × P8, whose size is 22. As seen earlier, the bound for n in Pn(K2) is calculated as,

2 ≤ n ≤
⌊22

6

⌋

,
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which implies that n takes up values 2 and 3. However, we see that the ladder graph P2×P8 is bound
to have only P2(K2). We now verify the existence of P2(K2) in P2 × P8 by the L′(2, 1)–coloring
technique and partitioning of the edge set of P2 × P8 as follows

E0 = {e8, e10, e12, e14}, E1 = {e9, e11, e13, e15},
E2 = ∅, E3 = {e1, e6, e18},
E4 = {e4, e16, e21}, E5 = {e2, e7, e19},
E6 = {e5, e17, e22}, E7 = {e3, e20}.

As we aim at 2K2 decomposition, rearrange it to form a new partition as done earlier

E0
′ = {e8, e10}, E1

′ = {e9, e11}, E2
′ = E2 = φ,

E3
′ = {e1, e6}, E4

′ = {e4, e16}, E5
′ = {e2, e7},

E6
′ = {e5, e17}, E7

′ = {e3, e20}, E8
′ = {e12, e14},

E9
′ = {e13, e15}, E10

′ = {e18, e21}, E11
′ = {e19, e22}.

They form the eleven subsets with respect to P2(K2)(P2 × P8), see Fig. 4 and Fig. 5. The
optimal coloring, labeling and induced 2K2 decomposition of the ladder graph P2 × P8 are given
below.
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Figure 4. Optimal L′(2, 1)–coloring in (P2 × P8).
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Figure 5. P2(K2)(P2 × P8).

In this manner, we can have Pn(K2) for any ladder graph of diameter at least six. Hence, we
conclude that a ladder graph P2 × Pm can have Pn(K2) if and only if

(i) n|q such that 2 ≤ n ≤
⌊q

6

⌋

; where q is the size of the ladder graph and

(ii) diam (P2 × Pm) ≥ 6.

�
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2.2. Rectangular grid and Pn(K2)

We now give a process of the induced nK2 decomposition of rectangular grid.
We first find Pn(K2)(P3×Pm) or the induced nK2 decomposition in the rectangular grid graph,

(P3×Pm) using the optimal edge coloring discussed earlier as a tool. We see that the edge partition
number of the rectangular grid graph is πν

′(Pn × Pm) = d(u) + d(w) = 8, where u is the vertex
of maximum degree which lying on the cycle C4 and w is such that d(w) is maximum; w ∈ N(u).
Hence, the bound for n in Pn(K2) becomes

2 ≤ n ≤
⌊q

8

⌋

,

where q is the size of the rectangular grid graph. While considering the grid graph (P3×P6), whose
size is 27, we see that the bound for n in Pn(K2) is

2 ≤ n ≤
⌊27

8

⌋

= 3

and as n must divide q, we have that n = 3. That is, (P3×P6) can have P3(K2) and the verification
of its existence is done by the optimal L′(2, 1)–edge coloring technique as follows.

Partition the edge set E(P3 × P6) into independent sets E1, E2, . . . such that the set Ej

consists of edges with color j. Note that the edges of P3 × P6 are labeled e1, e2, . . . consecutively
and selected under each Ej such that the suffixes of the edge labels are in ascending order, as done
in ladder graph. Consider the following partitioning of E(P3 × P6) (see Fig. 7)

E0 = {e6, e11, e20}, E1 = {e7, e21}, E2 = {e8, e17, e22},
E3 = {e9, e18}, E4 = {e10, e19}, E5 = {e3, e12, e26},
E6 = {e5, e14, e23}, E7 = {e2, e16, e25}, E8 = {e4, e13, e27},
E9 = {e1, e15, e24}.

As we aim at induced 3K2 decomposition, we will diffuse one of the subsets to have exactly
three edges under each set. We also interchange the edge e22 in E2 for the same. Hence, the new
partition can be considered as follows. Consider the following partitioning of E(P3×P6) (see Fig. 7)

E1
′ = {e7, e22, e20} E2

′ = {e8, e17, e21} E3
′ = {e9, e11, e18}

E4
′ = {e6, e10, e19} E5

′ = E5 = {e3, e12, e26} E6
′ = E6 = {e5, e14, e23}

E7
′ = E7 = {e2, e16, e25} E8

′ = E8 = {e4, e13, e27} E9
′ = E9 = {e1, e15, e24}.

This is the required P3(K2) of the grid graph P3 × P6 (see Fig. 6 and Fig. 7).
We partition the edge set E(P3 × P11) according to their edge labels as follows

E0 = {e11, e16, e21, e35, e40}, E1 = {e12, e17, e36, e41},
E2 = {e13, e18, e32, e37, e42}, E3 = {e14, e19, e33, e38},
E4 = {e15, e20, e34, e39}, E5 = {e3, e8, e22, e27, e46, e51},
E6 = {e5, e10, e24, e29, e43, e48}, E7 = {e2, e7, e26, e31, e45, e50},
E8 = {e4, e9, e23, e28, e47, e52}, E9 = {e1, e6, e25, e30, e44, e49}.

In a similar manner, P4 × P6 will have only P2(K2) as its size is 38 and due to the divisibility
criteria. We can find Pn(K2) for any grid Pm × P6 using the similar conditions as that of a ladder
graph mentioned in the earlier section. Now consider the rectangular grid graph, P3 × P11, whose
size is 52 and the bound for n in P2(K2) is obtained to be

2 ≤ n ≤
⌊q

8

⌋

.

By applying the divisibility conditions, we see that n takes up the values 2 and 4. That is, the
graph P3 × P11 can have only P2(K2) and P4(K2) (see Fig. 8).
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Figure 6. Optimal L′(2, 1)–edge coloring of P3 × P6.
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Figure 7. P3(K2)(P3 × P6).

As we aim at 2K2 decomposition, further partitioning is required to have induced 2K2 in each
subset. As the sets E0 and E2 have five edges, we eliminate one from each to form a new subset
with two edges at distance at least two. Also eliminate two edges from each subset, with four and
six elements, to form new subsets with only two edges in each. The resulting 26 subsets containing
two elements each are the required P2(K2) in E(P3 × P11) (see Fig. 9)

E0
′ = {e11, e16}, E1

′ = {e12, e17}, E2
′ = {e13, e18},

E3
′ = {e14, e19}, E4

′ = {e15, e20}, E5
′ = {e3, e8},

E6
′ = {e5, e10}, E7

′ = {e2, e7}, E8
′ = {e4, e9},

E9
′ = {e1, e6}, E10

′ = {e40, e42}, E11
′ = {e21, e35},

E12
′ = {e36, e41}, E13

′ = {e32, e37}, E14
′ = {e33, e38},

E15
′ = {e34, e39}, E16

′ = {e22, e27}, E17
′ = {e46, e51},

E18
′ = {e24, e29}, E19

′ = {e43, e48}, E20
′ = {e26, e31},

E21
′ = {e45, e50}, E22

′ = {e23, e28}, E23
′ = {e47, e52},

E24
′ = {e25, e30}, E25

′ = {e44, e49}.
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Figure 8. Optimal L′(2, 1)–labeling of P3 × P11.
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Figure 9. P2(K2)(P3 × P11).

In a similar manner we can have P4(K2)(P3 × P11) with the following partition (see Fig. 10)

E0
′′ = {e11, e16, e21, e35}, E1

′′ = {e12, e17, e36, e41},
E2

′′ = {e13, e18, e32, e37}, E3
′′ = {e14, e19, e33, e38},

E4
′′ = {e15, e20, e34, e39}, E5

′′ = {e22, e27, e46, e51},
E6

′′ = {e5, e10, e24, e29}, E7
′′ = {e26, e31, e45, e50},

E8
′′ = {e4, e9, e23, e28}, E9

′′ = {e1, e6, e25, e30},
E10

′′ = {e40, e42, e43, e48}, E11
′′ = {e3, e8, e44, e49},

E12
′′ = {e2, e7, e47, e52}.

Similarly, we can form Pn(K2) for any rectangular grid Pm × Pr, where r = 5x + 1 for x ≥ 1
by following the conditions mentioned under the ladder graph and the above pattern. The same
partitioning technique can be applied to study the existence of Pn(K2) in hexagonal grid as well.

3. Hexagonal Grids and Pn(K2)

The hexagonal grid or honeycomb topology has wide range of application in Network-on-chip
(NoC) which is an effective architecture in chip designing. It is evident that the hexagonal grid or
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Figure 11. Hexagonal grids.

honeycomb structure denoted byHm,n is a spanning subgraph of a rectangular grid with V (Hm,n) =
V (Gm,n) and E(Hm,n) ⊂ E(Gm,n) implying that the value of ∆ decreases and hence λ′(Hm,n) < 9.
However, it is proved in [3] that λ′(Hm,n) = 7.

Consider the hexagonal gridH6,5 whose size is 37 (Fig. 11 (a)). Then by the condition of Pn(K2)
we have that there exists no Pn(K2) as the size of this grid is prime. Consider the hexagonal
grid H6,6 whose size is 45. Clearly, nine copies of P5(K2) and five copies of P9(K2) exist in
H6,6 (Fig. 11 (b)). As λ′(H6,6) is 7, the edges of H6,6, can be partitioned into independent sets
E0, E1, E3, E4, E5, E6, E7 such that the set Ej consists of edges which receive color j.
Here, |E0| = 9, |E1| = 6, |E3| = 6, |E4| = 6, |E5| = 6, |E6| = 6, |E7| = 6.

For P5(K2), as we aim at induced 5K2 in each subset, further partitioning is required as the
cardinality of each subset is greater than 5. Let the new partitioning be |E0|

′ = 5, |E1|
′ = 5,

|E3|
′ = 5, |E4|

′ = 5, |E5|
′ = 5, |E6|

′ = 5, |E7|
′ = 5. Remaining four edges from |E0| and one

edge each from other subsets of the first partition can be put under two newly formed subsets of
cardinality 5. This results in nine copies of P5(K2) as required. For P9(K2), the twelve edges of
|E6| = 6, |E7| can be distributed equally among the other independent sets of cardinality 6, which
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Figure 13. Hexagonal grid H6,8.

gives P9(K2) of H6,6.
Similarly, H6,7 (Fig. 12) is of size 54 and by the condition of Pn(K2) we have that there exist

twenty seven copies of P2(K2), eighteen copies of P3(K2), nine copies of P6(K2), six copies of
P9(K2) and three copies of P18(K2). However, as the size of H6,8 (Fig. 13) is 62, it has thirty one
copies of P2(K2) only.
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