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Abstract: This work is concerned with the existence of positive weighted pseudo S-asymptotically periodic
solution in Stepanov-like sense for some systems of nonlinear delay integral equations. In this context, we will
first be interested in establishing a suitable composition theorem, and then some existing results concerning the
S-asymptotic periodicity in the scalar case are developed here for the vector case. We point out that, in this
paper, we adopt some changes in the definitions, which, although slight, are necessary to accomplish the work.
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1. Introduction

The concept of S-asymptotically periodic functions was introduced in the literature by
Henŕıquez et al. [10] in 2008. The concept turns out to generalize that of asymptotically peri-
odic functions. For additional details on this topic, we refer the reader to [1, 5, 7, 8, 10, 11, 18] and
the references therein. Since then, S-asymptotically periodic functions are widely investigated and
used in the study of differential and integral equations.

However, the notion of weighted Sp-pseudo S-asymptotic periodicity, which was introduced
by Xia [17] in 2015, is more general than that of asymptotic periodicity and all its various ex-
tensions, namely S-asymptotic periodicity, pseudo S-asymptotic periodicity and weighted pseudo
S-asymptotic periodicity.

Motivated by the works on various kinds of systems of nonlinear delay integral equations (see,
e.g., [13–16]), on S-asymptotically periodic functions and by the works [9, 17] on weighted Stepanov-
like pseudo S-asymptotically periodic functions, we investigate the existence of positive weighted
Sp-pseudo S-asymptotically ω-periodic solution (ω > 0) for systems of nonlinear delay integral
equations with superlinear perturbations of the following type:

x(s) = α1(s)x
η(s− l) +

∫ τ1(s)

0
f
(

s, σ, x(s− σ − l), y(s− σ − l)
)

dσ,

y(s) = α2(s)y
ν(s− l) +

∫ τ2(s)

0
g
(

s, σ, x(s − σ − l), y(s − σ − l)
)

dσ.

(1.1)

Let η, ν ≥ 1 and l ≥ 0 be fixed numbers, and let f, g : R×R
+ ×R

+ ×R
+ → R

+, α1, α2 : R → R
+,

and τ1, τ2 : R → R
+ be suitable functions satisfying some appropriate conditions mentioned later

in the assumptions.
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First of all, it is interesting to highlight the biological context of our model. Note that, consid-
ering the equation

x(s) = α(s)xη(s− l) +

∫ τ(s)

0
f(s, σ, x(s− σ − l))dσ,

we have the scalar case of system (1.1), which generalizes the model studied in 2016 by Zhao et
al. [18], if one changes the variable s− σ = u and takes l = 0:

x(s) = α(s)xη(s− l) +

∫ s

s−τ(s)
f(σ, x(σ))dσ,

which in turn generalizes the model

x(s) =

∫ s

s−τ
f(σ, x(σ))dσ

published in 1976 by Cooke and Kaplan [4] to explain the spread of some infectious diseases or the
population growth of single species.

The work consists of four sections and a conclusion. In the next section, we introduce some
basic concepts, definitions, and notation required in what follows. Section 3 is devoted to proving
several lemmas and a composition theorem needed to prove our existence result. In Section 4,
we give sufficient conditions that ensure the existence and uniqueness of a weighted Sp-pseudo
S-asymptotically ω-periodic solution to system (1.1).

2. Some definitions and preliminaries

Throughout the paper, we use the following notation. Let N be the set of all positive integers,
R = (−∞,+∞), R∗ = (−∞, 0) ∪ (0,+∞), R+ = [0,+∞), Rn

+ = R+ × · · · × R+ (n times), and let,
for x = (x1, . . . , xn) ∈ R

n,

‖x‖ =
n
∑

i=1

|xi|.

Let BC (R,Rn) (resp. BC(R × R+ × R
n
+,R

n)) be the space of continuous bounded functions
f : R → R

n (resp. f : R× R+ × R
n
+ → R

n). Then, endowed with the sup norm

‖f‖∞ = sup
t∈R

‖f(t)‖,

BC (R,Rn) is a Banach space. For 1 ≤ p ≤ +∞, Lp (R,Rn) denotes the Lebesgue space and
Lp
Loc (R,R

n) denotes the space of all equivalence classes of measurable functions f : R −→ R
n such

that the restriction of f to every bounded subinterval of R is in Lp (R,Rn). Let Lp,1
Loc (R× R+,R

n)
denote the space of all equivalence classes of measurable functions f : R × R+ −→ R

n,
(s, σ) −→ f(s, σ) such that the restriction of f to every bounded subset of R × R+ is in
Lp,1 (R× R+,R

n) = Lp
(

R, L1 (R+,R
n)
)

.
Furthermore, in the general case when x = (x1, . . . , xn) : R −→ R

n
+, τ = (τ1, . . . , τn) : R −→ R

n
+,

and f = (f1, . . . , fn) : R× R+ × R
n
+ −→ R

n
+ are appropriate functions, we use the notation

∫ τ(s)

0
f(s, σ, x(s− σ − l))dσ

for the vector of Rn whose components are
∫ τi(s)

0
fi(s, σ, x1(s− σ − l), . . . , xn(s− σ − l))dσ, i = 1, 2, . . . , n.
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Definition 1 [18]. A function f ∈ BC (R,Rn) is said to be S-asymptotically ω-periodic if there

exists ω > 0 such that limt→∞ ‖f(t+ ω)− f(t)‖ = 0. In this case, we say that ω is an asymptotic

period of f . We denote by SAPω (R,Rn) the set of all such functions.

Lemma 1 [18]. Let f, g ∈ SAPω (R,Rn). Then the following assertions hold :

(i) the function t→ f(t+ s) lies in SAPω (R,Rn) for every s ∈ R;

(ii) the product f · g lies in SAPω (R,Rn) ;

(iii) equipped with the sup norm

‖f‖∞ = sup
s∈R

‖f(s)‖,

SAPω (R,Rn) turns out to be a Banach space.

Let U denote the collection of all functions (weights) ρ : R∗ −→ (0,+∞) locally integrable over
(−∞, 0) and (0,+∞) such that ρ(t) > 0 for almost all t ∈ R

∗. For ρ ∈ U and r > 0, we set

m−(r, ρ) =

∫ 0

−r
ρ(s)ds and m+(r, ρ) =

∫ r

0
ρ(s)ds.

Throughout this paper, the set of weights U∞ stands for

U∞ =
{

ρ ∈ U : lim
r→+∞

m−(r, ρ) = +∞ and lim
r→+∞

m+(r, ρ) = +∞
}

.

Obviously, U∞ ⊂ U , with strict inclusions.

Definition 2. Let ρ ∈ U∞ and f ∈ BC (R,Rn). If

lim
r→+∞

1

m−(r, ρ)

∫ 0

−r
‖f(s− ω)− f(s)‖ ρ(s)ds = 0,

lim
r→+∞

1

m+(r, ρ)

∫ r

0
‖f(s+ ω)− f(s)‖ ρ(s)ds = 0,

for some ω > 0, then we call f weighted pseudo S-asymptotically ω-periodic. The collection of such

functions is denoted by PSAPω (R,Rn, ρ). In particular, we use the notation PSAPω (R,Rn) when
ρ ≡ 1. Equipped with the sup norm

‖f‖∞ = sup
s∈R

‖f(s)‖,

PSAPω (R,Rn, ρ) turns out to be a Banach space.

Definition 3 [6]. The Bochner transform f b(t, s), t ∈ R, s ∈ [0, 1], of a function f : R −→ R
n,

is defined as

f b(t, s) := f(t+ s).

Remark 1. Note that a function ϕ(t, s), t ∈ R, s ∈ [0, 1], is the Bochner transform of a certain
function f(t),

ϕ(t, s) = f b(t, s),

if and only if ϕ(t+ τ, s− τ) = ϕ(s, t) for all t ∈ R, s ∈ [0, 1], and τ ∈ [s − 1, s].
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Definition 4 [6]. The Bochner transform f b(t, s, σ, u), t ∈ R, s ∈ [0, 1], (σ, u) ∈ R × R
n, of a

function f : R× R× R
n −→ R

n, is defined as

f b(t, s, σ, u) := f(t+ s, σ, u).

Definition 5 [12]. Let p ∈ [1,+∞).

(i) The space BSp (R,Rn) of all Stepanov bounded functions, with the exponent p, consists of all
measurable functions f on R with values in R

n such that f b ∈ L∞
(

R, Lp ([0, 1],Rn)
)

. This

is a Banach space with the norm

‖f‖Sp = ‖f b‖L∞(R,Lp) = sup
t∈R

(
∫ t+1

t
‖f(s)‖pds

)1/p

.

(ii) The space BSp
(

R × R+ × R
n
+,R

n
)

of all Stepanov bounded functions, with the exponent p,
consists of all measurable functions f : R× R+ × R

n
+ −→ R

n such that

f b(·, ·, σ, u) ∈ L∞ (R, Lp ([0, 1],Rn)) , t→ f b(t, ·, σ, u) ∈ Lp ([0, 1],Rn) ,

for every t ∈ R and every (σ, u) ∈ R+ × R
n
+.

One can see that, for every f ∈ Lp
Loc (R,R

n), the function f b is continuous (by construction). Then,
the space BSp (R,Rn) may also be written as

BSp (R,Rn) =
{

f ∈ Lp
Loc (R,R

n) : f b ∈ BC(R), Lp ([0, 1],Rn)
}

.

In fact, for p ≥ 1, we have

(BC (R,Rn) , ‖ · ‖BC) is continuously embeded in (BSp (R,Rn) , ‖ · ‖Sp) .

Also, it is well known that Lp (R,Rn) ⊂ BSp (R,Rn) ⊂ Lp
Loc (R,R

n) andBSp (R,Rn) ⊂ BSq (R,Rn)
for p ≥ q ≥ 1.

Definition 6. Let ρ ∈ U∞ and f ∈ BSp (R,Rn). If

lim
r→+∞

1

m−(r, ρ)

∫ 0

−r
ρ(t)

(
∫ t

t−1
‖f(s− ω)− f(s)‖p ds

)1/p

dt = 0,

lim
r→+∞

1

m+(r, ρ)

∫ r

0
ρ(t)

(
∫ t+1

t
‖f(s+ ω)− f(s)‖p ds

)1/p

dt = 0

for some ω > 0, then we call f weighted Sp-pseudo S-asymptotically ω-periodic. Such function

space is denoted by PSAP p
ω (R,Rn, ρ). In particular, we use the notation PSAP p

ω (R,Rn) when

ρ ≡ 1.

Remark 2. The above definition has a slight difference from [17, Definition 3.1], where a
weighted Sp-pseudo S-asymptotically ω-periodic function is defined on R+.

Similarly to [9], we give an example illustrating that PSAP p
ω (R,Rn) 6= PSAP p

ω (R,Rn, ρ).

Example 1. Define a function f : R → R as follows:

f(t) =











−n5(t− n3 − 1/n)2 + n3, t ∈ [n3, n3 + 2/n], n ∈ N,

−n5(t+ n3 + 1/n)2 + n3, t ∈ [−n3 − 2/n,−n3], n ∈ N,

0, otherwise.
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Then, for all ω > 0, there exists integer n0 such that f(s + ω) = 0 (resp. f(s − ω) = 0) for all
n ≥ n0 and s ∈ [n3, n3 + 2/n] (resp. for all n ≥ n0 and s ∈ [−n3 − 2/n,−n3]). Let p = 1, let r > 0
be a sufficiently large number, and let k be the largest integer satisfying the inequality

n30 +
2

n0
≤ k3 +

2

k
≤ r.

If the function (weight) ρ ≡ 1, then, by the same calculation as in [9, Example 2.2], we obtain

1

r

∫ 0

−r

(
∫ t

t−1
‖f(s− ω)− f(s)‖ds

)

dt =
1

r

∫ 0

−r

(
∫ 0

−1
‖f(t+ s− ω)− f(t+ s)‖ds

)

dt

=

∫ 0

−1

(

1

r

∫ 0

−r
‖f(t+ s− ω)− f(t+ s)‖dt

)

ds

≥
∫ 0

−1

1

(k + 1)3 + 2/(k + 1)

( k
∑

n=n0

∫ −n3

−n3−2/n

[

− n5
(

t+ n3 +
1

n

)2

+ n3
]

dt

)

ds

=
1

(k + 1)3 + 2/(k + 1)

k
∑

n=n0

4n2

3
→ 4

9
(k → +∞)

and

1

r

∫ r

0

(
∫ t+1

t
‖f(s+ ω)− f(s)‖ds

)

dt

≥
∫ 1

0

1

(k + 1)3 + 2/(k + 1)

( k
∑

n=n0

∫ n3+2/n

n3

[

− n5
(

t− n3 − 1

n

)2

+ n3
]

dt

)

ds

=
1

(k + 1)3 + 2/(k + 1)

k
∑

n=n0

4n2

3
→ 4

9
(k → +∞).

This implies that f /∈ PSAP p
ω (R,R).

Now, take ρ(t) = 1/t4 and t 6= 0. Again, by the same calculation as in [9, Example 2.2], we
obtain f ∈ PSAP p

ω (R,R, ρ).

Theorem 1 [9]. PSAP p
ω (R,Rn, ρ), where ρ ∈ U∞, with the norm ‖.‖Sp is a Banach space.

P r o o f. The proof is similar to that of [9, Theorem 3.2], where weighted Sp-pseudo S-
asymptotically periodic function is defined on R+, so it is omitted here. �

Definition 7. Let ρ ∈ U∞. A function f : R × R+ × R
n
+ → R is called weighted Sp-pseudo

S-asymptotically ω-periodic in s ∈ R for all (σ, x) ∈ R+ × R
n
+ if f(·, σ, x) ∈ BSp (R,Rn) and

lim
r→+∞

1

m+(r, ρ)

∫ r

0
ρ(t)

(
∫ t+1

t
‖f(s+ ω, σ, x) − f(s, σ, x)‖p ds

)1/p

dt = 0,

lim
r→+∞

1

m−(r, ρ)

∫ 0

−r
ρ(t)

(
∫ t

t−1
‖f(s− ω, σ, x)− f(s, σ, x)‖p ds

)1/p

dt = 0

for all (σ, x) ∈ R+ ×R
n
+. Denote by PSAP p

ω

(

R× R+ × R
n
+,R, ρ

)

the set of all such functions.
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3. Composition theorem

To study the existence of solutions to system (1.1), we reduce the problem to a fixed point
problem of a nonlinear operator. For this, we must prove a composition theorem adapted to our
case.

Let BPSAP p
ω (R,Rn, ρ) be the subset of PSAP p

ω (R,Rn, ρ) consisting of all bounded functions x,
that is,

‖x‖∞ = sup
s∈R

‖x(s)‖ <∞.

It is clear that BPSAP p
ω (R,Rn, ρ) is a Banach space with respect to the norm ‖ · ‖Sp .

Let PSAP p,1
ω

(

R× R+× R
n
+, R

n, ρ
)

be the subset of the space PSAP p
ω

(

R× R+× R
n
+, R

n, ρ
)

consisting of all functions f such that f(·, ·, u) ∈ Lp,1
Loc(R×R+, R

n) for all u ∈ R
n
+. For ρ ∈ U∞, we

further assume that (see [2])

(Hρ) for all σ ∈ R, lim sup
|s|−→+∞

ρ(s+ σ)

ρ(s)
< +∞.

Note that hypothesis (Hρ) implies that, for all σ ∈ R+,

lim sup
r−→+∞

m+(r + σ, ρ)

m+(r, ρ)
< +∞ and lim sup

r−→+∞

m−(r + σ, ρ)

m−(r, ρ)
< +∞.

Lemma 2. Let ρ ∈ U∞ satisfy hypothesis (Hρ). If f ∈ PSAP p
ω (R,Rn, ρ) , then

f−σ ∈ PSAP p
ω (R,Rn, ρ) for all σ ∈ R+, where f−σ(s) = f(s− σ).

P r o o f. Fix σ ∈ R+. From assumption (Hρ), there exist constants k, s0 > 0 such that, for
|s| ≥ s0,

ρ(s − σ)

ρ(s)
≤ k,

ρ(s+ σ)

ρ(s)
≤ k,

m−(r + σ, ρ)

m−(r, ρ)
≤ k, and

m+(r + σ, ρ)

m+(r, ρ)
≤ k.

Thus, for r > s0 + σ,

1

m−(r, ρ)

∫ −σ

−r
ρ(t)

(
∫ t

t−1
‖f−σ(s− ω)− f−σ(s)‖p ds

)1/p

dt

=
1

m−(r, ρ)

∫ −s0−σ

−r
ρ(t)

(
∫ t

t−1
‖f−σ(s− ω)− f−σ(s)‖p ds

)1/p

dt

+
1

m−(r, ρ)

∫ −σ

−s0−σ
ρ(t)

(
∫ t

t−1
‖f−σ(s− ω)− f−σ(s)‖p ds

)1/p

dt.

It is clear that the following integral is defined:

∫ −σ

−s0−σ
ρ(t)

(
∫ t

t−1
‖f−σ(s− ω)− f−σ(s)‖p ds

)1/p

dt.

Therefore, since

lim
r→+∞

m−(r, ρ) = +∞,

lim
r→+∞

1

m−(r, ρ)

∫ −σ

−s0−σ
ρ(t)

(
∫ t

t−1
‖f−σ(s− ω)− f−σ(s)‖p ds

)1/p

dt = 0.
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Also, we have

1

m−(r, ρ)

∫ −s0−σ

−r
ρ(t)

(
∫ t

t−1
‖f−σ(s− ω)− f−σ(s)‖p ds

)1/p

dt

=
m−(r + σ, ρ)

m−(r, ρ)

1

m−(r + σ, ρ)

∫ −s0−2σ

−r−σ

ρ(t+ σ)

ρ(t)
ρ(t)

(
∫ t

t−1
‖f(s− ω)− f(s)‖p ds

)1/p

dt

≤ k2

m−(r + σ, ρ)

∫ 0

−(r+σ)
ρ(t)

(
∫ t

t−1
‖f(s− ω)− f(s)‖p ds

)1/p

dt.

Since f ∈ PSAP p
ω (R,Rn, ρ), we have

lim
r→+∞

k2

m−(r + σ, ρ)

∫ 0

−(r+σ)
ρ(t)

(
∫ t

t−1
‖f(s− ω)− f(s)‖p ds

)1/p

dt = 0.

Thus,

lim
r→+∞

1

m−(r, ρ)

∫ 0

−r
ρ(t)

(
∫ t

t−1
‖f−σ(s − ω)− f−σ(s)‖p ds

)1/p

dt = 0.

Similarly, we obtain

lim
r→+∞

1

m+(r, ρ)

∫ r

0
ρ(t)

(
∫ t+1

t
‖f(s+ ω)− f(s)‖p ds

)1/p

dt = 0.

We deduce that f−σ ∈ PSAP p
ω (R,Rn, ρ) for all σ ∈ R+ (see [9, Theorem 3.1] for more details). �

Now, let us put forward the following hypothesis, which will be helpful throughout the rest of
this paper.

(H0) For every compact subset K ⊂ R
n
+ \ {0}, there exist constants LK ,MK > 0 such that

(i) for all x, u ∈ K and all (s, σ) ∈ R× R+,

‖f(s, σ, x)− f(s, σ, u)‖ ≤ LK‖x− u‖;

(ii) for all x ∈ K and all (s, σ) ∈ R× R+,

‖f(s, σ, x)‖ ≤MK‖x‖.

Lemma 3. Let ρ ∈ U∞. Assume that f ∈ PSAP p,1
ω

(

R×R+ × R
n
+,R

n, ρ
)

satisfies (H0), and
K1 and K2 are compact subsets of Rn

+ \ {0}. Then

lim
r→+∞

1

m+(r, ρ)

∫ r

0
ρ(t)

[
∫ t+1

t

(

sup
(τ,x)∈K

∥

∥

∥

∫ τ

0
[f(s+ ω, σ, x) − f(s, σ, x)]dσ

∥

∥

∥

)p

ds

]1/p

dt = 0,

lim
r→+∞

1

m−(r, ρ)

∫ 0

−r
ρ(t)

[
∫ t

t−1

(

sup
(τ,x)∈K

∥

∥

∥

∫ τ

0
[f(s− ω, σ, x) − f(s, σ, x)]dσ

∥

∥

∥

)p

ds

]1/p

dt = 0,

where K = K1 ×K2 is a compact subset of Rn
+ × R

n
+.
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P r o o f. Fix ε > 0. Then, there exist (τ1, x1), ..., (τm, xm) ∈ K = K1 ×K2 such that

K ⊂
m
⋃

i=1

B
(

(τi, xi),
ε

|K|
)

,

where

|K| = sup
(τ,x)∈K

{‖τ‖ + ‖x‖}.

For the above ε > 0, there exists r0 > 0 such that

1

m+(r, ρ)

∫ r

0
ρ(t)

(
∫ t+1

t
‖f(s+ ω, σ, xi)− f(s, σ, xi)‖p ds

)1/p

dt <
ε

m
(3.1)

for r > r0, σ ≥ 0, and i ∈ {1, 2, . . . ,m}.
Now, let (τ, x) ∈ K. Then there exists i0 ∈ {1, 2, . . . ,m} such that

‖τ − τi0‖ <
ε

|K| and ‖x− xi0‖ <
ε

|K| .

Using (H0), for all r > r0, we have

∥

∥

∥

∥

∫ τ

0
[f(s+ ω, σ, x)− f(s, σ, x)]dσ

∥

∥

∥

∥

≤
∥

∥

∥

∥

∫ τ

0
f(s+ ω, σ, x)dσ −

∫ τi0

0
f(s+ ω, σ, xi0)dσ

∥

∥

∥

∥

+

∥

∥

∥

∥

∫ τi0

0
[f(s+ ω, σ, xi0)− f(s, σ, xi0)]dσ

∥

∥

∥

∥

+

∥

∥

∥

∥

∫ τi0

0
f(s, σ, xi0)dσ −

∫ τ

0
f(s, σ, x)dσ

∥

∥

∥

∥

≤
∥

∥

∥

∥

∫ τi0

0
[f(s+ ω, σ, x)− f(s+ ω, σ, xi0)]dσ

∥

∥

∥

∥

+

∫ ‖τi0‖

0

∥

∥f(s+ ω, σ, xi0)− f(s, σ, xi0)
∥

∥

+

∥

∥

∥

∥

∫ τ

0
[f(s, σ, xi0)− f(s, σ, x)]dσ

∥

∥

∥

∥

+

∥

∥

∥

∥

∫ τ

τi0

f(s+ ω, σ, x)dσ

∥

∥

∥

∥

+

∥

∥

∥

∥

∫ τi0

τ
f(s, σ, xi0)dσ

∥

∥

∥

∥

≤
∫ ‖τi0‖

0
‖f(s+ ω, σ, xi0)− f(s, σ, xi0)‖+ 2(LK2 +MK2)ε.

Minkowski’s inequality, Hölder’s inequality (see, for instance, [3, Theorem 4.6 and Theorem 4.7]),
and (3.1) imply that, for all r > r0,

1

m+(r, ρ)

∫ r

0
ρ(t)

[
∫ t+1

t

(

sup
(τ,x)∈K

∥

∥

∥

∥

∫ τ

0
[f(s+ ω, σ, x) − f(s, σ, x)]dσ

∥

∥

∥

∥

)p

ds

]1/p

dt

≤
m
∑

i=1

‖τi‖(p−1)/p 1

m+(r, ρ)

∫ r

0
ρ(t)

[
∫ ‖τi‖

0

∫ t+1

t
‖f(s+ ω, σ, xi)− f(s, σ, xi)‖pdsdσ

]1/p

dt

+2(LK2 +MK2)ε

<

m
∑

i=1

‖τi‖(p−1)/p‖τi‖1/p
ε

m
+ 2(LK2 +MK2)ε ≤

[

|K|+ 2(LK2 +MK2)
]

ε.

This proves the former limit. By the same considerations, we prove the latter limit. �
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Theorem 2. Let ρ ∈ U∞ satisfy (Hρ). Assume that τ, x ∈ BPSAP p
ω

(

R,Rn
+, ρ

)

,

infs∈R x(s) > 0, and f ∈ PSAP p,1
ω

(

R× R+ × R
n
+,R

n, ρ
)

satisfy (H0). Then, the function

Tx : R → R
n defined as

Tx(s) =

∫ τ(s)

0
f(s, σ, x(s − σ − l))dσ, l ≥ 0,

belongs to BPSAP p
ω

(

R,Rn
+, ρ

)

.

P r o o f. Since τ, x ∈ BPSAP p
ω

(

R,Rn
+, ρ

)

, using (H0) (ii), one can easily show that
Tx(·) ∈ BSp (R,Rn). In addition,

(
∫ t+1

t

∥

∥Tx(s+ ω)− Tx(s)
∥

∥

p
ds

)1/p

=

(
∫ t+1

t

∥

∥

∥

∥

∫ τ(s+ω)

0
f(s+ ω, σ, x(s + ω − σ − l))dσ −

∫ τ(s)

0
f(s, σ, x(s− σ − l))dσ

∥

∥

∥

∥

p

ds

)1/p

≤
(
∫ t+1

t

∥

∥

∥

∥

∫ τ(s+ω)

0

[

f(s+ ω, σ, x(s + ω − σ − l))− f(s, σ, x(s+ ω − σ − l))
]

dσ

∥

∥

∥

∥

p

ds

)1/p

+

(
∫ t+1

t

∥

∥

∥

∥

∫ τ(s)

0

[

f(s, σ, x(s + ω − σ − l))− f(s, σ, x(s − σ − l))
]

dσ

∥

∥

∥

∥

p

ds

)1/p

+

(
∫ t+1

t

∥

∥

∥

∥

∫ τ(s+ω)

τ(s)
f(s, σ, x(s+ ω − σ − l))dσ

∥

∥

∥

∥

p

ds

)1/p

.

Let
K1 = {τ(s) : s ∈ R}, K2 = {x(s) : s ∈ R},

and K = K1 ×K2. Then, we have

∫ r

0
ρ(t)

(
∫ t+1

t

∥

∥

∥

∥

Tx(s+ ω)− Tx(s)

∥

∥

∥

∥

p

ds

)1/p

dt

≤
∫ r

0
ρ(t)

[
∫ t+1

t

(

sup
(τ,x)∈K

∥

∥

∥

∥

∫ τ

0
[f(s+ ω, σ, x)− f(s, σ, x)]dσ

∥

∥

∥

∥

)p

ds

]1/p

dt

+‖τ‖(p−1)/p
∞

∫ r

0
ρ(t)

[
∫ t+1

t

∫ ‖τ‖∞

0
‖f(s, σ, x(s+ ω − σ − l))− f(s, σ, x(s − σ − l))‖pdσds

]1/p

dt

+M‖x‖∞
∫ r

0
ρ(t)

(
∫ t+1

t

∥

∥

∥

∥

τ(s+ ω)− τ(s)

∥

∥

∥

∥

p

ds

)1/p

dt.

From (H0), Lemma 2, and Lemma 3, we obtain

lim
r→+∞

1

m+(r, ρ)

∫ r

0
ρ(t)

[
∫ t+1

t
‖Tx(s+ ω)− Tx(s)‖p ds

)1/p

dt = 0.

Similarly, we get

lim
r→+∞

1

m−(r, ρ)

∫ 0

−r
ρ(t)

[
∫ t

t−1
‖Tx(s− ω)− Tx(s)‖p ds

)1/p

dt = 0.

�

We close this section with the following lemma, which, together with Lemma 2 and Theorem 2,
are necessary for the sequel.
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Lemma 4. Let ρ ∈ U∞. Assume that f, g ∈ BPSAP p
ω (R,R, ρ), then the product f · g belongs

to BPSAP p
ω (R,R, ρ).

P r o o f. Since f, g ∈ PSAP p
ω (R,R, ρ) are bounded, we have

1

m+(r, ρ)

∫ r

0
ρ(t)

(
∫ t+1

t
|f(s+ ω)g(s + ω)− f(s)g(s)|pds

)1/p

dt

≤ 1

m+(r, ρ)

∫ r

0
ρ(t)

(
∫ t+1

t
|f(s+ ω)g(s + ω)− f(s+ ω)g(s)|pds

)1/p

dt

+
1

m+(r, ρ)

∫ r

0
ρ(t)

(
∫ t+1

t
|f(s+ ω)g(s) − f(s)g(s)|pds

)1/p

dt

≤ ‖f‖∞
m+(r, ρ)

∫ r

0
ρ(t)

(
∫ t+1

t
|g(s + ω)− g(s)|pds

)1/p

dt

+
‖g‖∞

m+(r, ρ)

∫ r

0
ρ(t)

(
∫ t+1

t
|f(s+ ω)− f(s)|pds

)1/p

dt.

Thus,

lim
r→+∞

1

m+(r, ρ)

∫ r

0
ρ(t)

(
∫ t+1

t
|f(s+ ω)g(s + ω)− f(s)g(s)|pds

)1/p

dt = 0,

and similarly we get

lim
r→+∞

1

m−(r, ρ)

∫ 0

−r
ρ(t)

(
∫ t

t−1
|f(s− ω)g(s − ω)− f(s)g(s)|pds

)1/p

dt = 0.

�

4. Existence theorem

In this section, we give sufficient conditions for system (1.1) to have a solution in the Banach
space BPSAP p

ω (R,R, ρ)×BPSAP p
ω (R,R, ρ). Suppose that ρ ∈ U∞ satisfies assumption (Hρ). We

put forward the following hypotheses on the components of system (1.1), which are essential in the
proof of our existence result.

(H1) τi, αi ∈ BPSAP p
ω (R,R, ρ) (i = 1, 2) are nonnegative functions.

(H2) F = (f, g) ∈ PSAP p,1
ω

(

R× R+ × R
2
+,R

2
+, ρ

)

is such that, for every (s, σ, x, y) ∈ R × R+ ×
R+ × R+, f(s, σ, ·, y) and g(s, σ, x, ·) are nondecreasing, and f(s, σ, x, ·) and g(s, σ, ·, y) are
nonincreasing.

(H3) There exist positive-valued functions ξ on (0, 1) and ϕi on (0, 1) × R+ × R+ (i = 1, 2) such
that

(i) ξ : (0, 1) → (0, 1) is a surjection;

(ii) for all x, y ∈ (0,+∞), all (s, σ) ∈ R× R+, and all γ ∈ (0, 1),

f

(

s, σ, ξ(γ)x,
1

ξ(γ)
y

)

≥ ϕ1(γ, x, y)f(s, σ, x, y),

g

(

s, σ,
1

ξ(γ)
x, ξ(γ)y

)

≥ ϕ2(γ, x, y)g(s, σ, x, y).
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(H4) There exist constants M > ε > 0 and N > δ > 0 such that, for all s ∈ R,

ε ≤ α1(s)ε
η +

∫ τ1(s)

0
f(s, σ, ε,N)dσ ≤ α1(s)M

η +

∫ τ1(s)

0
f(s, σ,M, δ)dσ ≤M

and

δ ≤ α2(s)δ
ν +

∫ τ2(s)

0
g(s, σ,M, δ)dσ ≤ α2(s)N

ν +

∫ τ2(s)

0
g(s, σ, ε,N)dσ ≤ N.

(H5) For every γ ∈ (0, 1),

ϕ1(γ) = inf
x∈[ε2/M,M ],
y∈[δ2/N,N]

ϕ1(γ, x, y) > ξ(γ) + r1 [ξ(γ)− (ξ(γ))η ] ,

ϕ2(γ) = inf
x∈[ε2/M,M ],
y∈[δ2/N,N]

ϕ2(γ, x, y) > ξ(γ) + r2 [ξ(γ)− (ξ(γ))ν ] ,

where

r1 =
α1M

η

inf
s∈R

∫ τ1(s)
0 f(s, σ, ε2/M,N)dσ

< +∞, r2 =
α2N

ν

inf
s∈R

∫ τ2(s)
0 g(s, σ,M, δ2/N)dσ

< +∞,

and αi = sup
s∈R

αi(s), i = 1, 2.

Theorem 3. Let F = (f, g) ∈ PSAP p,1
ω

(

R× R+ × R
2
+,R

2
+, ρ

)

be a function satisfy-

ing (H0). Assume that (H1)–(H5) hold. Then system (1.1) has a bounded positive weighted

Sp-pseudo S-asymptotically periodic solution (x∗, y∗), that is, x∗, y∗ ∈ BPSAP p
ω (R,R, ρ) are such

that infs∈R x
∗(s) > 0 and infs∈R y

∗(s) > 0.

P r o o f. Consider the following set in the Banach space PSAP p
ω (R;R, ρ):

K = {x ∈ PSAP p
ω (R;R, ρ) : inf

s∈R
x(s) > 0}.

Consider nonlinear operators B = (B1, B2) and C = (C1, C2) defined as

B1(x, y)(s) =

∫ τ1(s)

0
f(s, σ, x(s− σ − l), y(s− σ − l))dσ,

B2(x, y)(s) =

∫ τ2(s)

0
g(s, σ, x(s − σ − l), y(s − σ − l))dσ,

C1(x)(s) = α1(s)x
η(s− l) and C2(y)(s) = α2(s)y

ν(s− l),

for all (x, y) ∈ K ×K and all s ∈ R. Let

A1(x, y)(s) = B1(x, y)(s) + C1(x)(s),

A2(x, y)(s) = B2(x, y)(s) +C2(y)(s),

and

A(x, y)(s) = (A1(x, y)(s), A2(x, y)(s))

for all x, y ∈ K and all s ∈ R.
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Now, for (x, y) ∈ K ×K such that

ε2

M
≤ x(s) ≤M and

δ2

N
≤ y(s) ≤ N

for all s ∈ R, we have

C1(x)(s) ≤ α1M
η = r1 inf

s∈R

∫ τ1(s)

0
f

(

s, σ,
ε2

M
,N

)

dσ ≤ r1B1(x, y)(s), s ∈ R,

and

C2(y)(s) ≤ α2N
ν = r2 inf

s∈R

∫ τ2(s)

0
g

(

s, σ,M,
δ2

N

)

dσ ≤ r2B2(x, y)(s), s ∈ R.

It follows that, for all (x, y) ∈ K ×K such that

ε2

M
≤ x(s) ≤M,

δ2

N
≤ y(s) ≤ N, s ∈ R,

and all γ ∈ (0, 1),

A1

(

ξ(γ)x,
1

ξ(γ)
y

)

(s) = B1

(

ξ(γ)x,
1

ξ(γ)
y

)

(s) + C1 (ξ(γ)x) (s)

≥ ϕ1(γ)B1(x, y)(s) + (ξ(γ))η C1(x)(s)

= ξ(γ)A1(x, y)(s) + ϕ1(γ)B1(x, y)(s) + (ξ(γ))η C1(x)(s)− ξ(γ)A1(x, y)(s)

≥ ξ(γ)A1(x, y)(s) +
[

ϕ1(γ)− ξ(γ)
]

B1(x, y)(s) − [ξ(γ)− (ξ(γ))η] r1B1(x, y)(s)

≥
[

ξ(γ) +
ϕ1(γ)− ξ(γ)− [ξ(γ)− (ξ(γ))η] r1

1 + r1

]

A1(x, y)(s) = ψ1(γ)A1(x, y)(s).

Similarly, we obtain

A2

(

1

ξ(γ)
x, ξ(γ)y

)

(s) ≥ ψ2(γ)A2(x, y)(s),

where

ψ1(γ) = ξ(γ) +
ϕ1(γ)− ξ(γ)− [ξ(γ)− (ξ(γ))η] r1

1 + r1
> ξ(γ),

ψ2(γ) = ξ(γ) +
ϕ2(γ)− ξ(γ)− [ξ(γ)− (ξ(γ))ν ] r2

1 + r2
> ξ(γ)

for all γ ∈ (0, 1) by (H5). Take
x0(s) = ε, u0(s) =M,

y0(s) = δ, v0(s) = N

and consider the sequences

xk(s) = A1(xk−1, vk−1)(s), uk(s) = A1(uk−1, yk−1)(s),

yk(s) = A2(uk−1, yk−1)(s), vk(s) = A2(xk−1, vk−1)(s).

From (H4) and the monotony of the functions f and g assumed in (H2), it is easy to show by
induction that, for all s ∈ R,

ε ≤ x1(s) ≤ x2(s) ≤ · · · ≤ xk(s) ≤ · · · ≤ uk(s) ≤ · · · ≤ u2(s) ≤ u1(s) ≤M,

δ ≤ y1(s) ≤ y2(s) ≤ · · · ≤ yk(s) ≤ · · · ≤ vk(s) ≤ · · · ≤ v2(s) ≤ v1(s) ≤ N.
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Now, let

µk = sup
{

µ > 0 : xk(s) ≥ µuk(s) and yk(s) ≥ µvk(s), s ∈ R
}

.

Then xk(s) ≥ µkuk(s) and yk(s) ≥ µkvk(s) for all k ≥ 0.

It follows that

xk+1(s) ≥ xk(s) ≥ µkuk(s) ≥ µkuk+1(s),

yk+1(s) ≥ yk(s) ≥ µkvk(s) ≥ µkvk+1(s)

for all s ∈ R, which implies that µk+1 ≥ µk and

max

(

ε

M
,
δ

N

)

≤ µk ≤ 1, k ≥ 0.

Therefore, (µk)k is a convergent sequence. Let us set µ∗ = limk→+∞ µk and prove that µ∗ = 1.
Indeed, if we suppose to the contrary that µ∗ < 1, then by (H3) (i), there exist γ∗ ∈ (0, 1) such
that µ∗ = ξ(γ∗). We distinguish two cases.

Case 1. There exists integer k0 such that µk0 = µ∗. Then, µk = µ∗ for all k ≥ k0. Hence, for
all k ≥ k0 and all s ∈ R,

xk+1 = A1(xk, vk)(s) ≥ A1

(

µkuk,
1

µk
yk

)

(s) = A1

(

ξ(γ∗)uk,
1

ξ(γ∗)
yk

)

(s) ≥ ψ1(γ
∗)uk+1(s).

We also conclude that yk+1(s) ≥ ψ2(γ
∗)vk+1(s) for all s ∈ R.

Thus,

µk+1 = µ∗ ≥ max{ψ1(γ
∗), ψ2(γ

∗)} > ξ(γ∗) = µ∗.

This is a contradiction.

Case 2. For all integer k, µk < µ∗. Again, by (H3) (i), there exist γk ∈ (0, 1) such that

ξ(γk) =
µk
µ∗

∈ (0, 1).

Then, for all s ∈ R, we have

xk+1(s) = A1(xk, vk)(s) ≥ A1

(

µkuk,
1

µk
yk

)

(s) = A1

(

µk
µ∗
µ∗uk,

µ∗

µk
1

µ∗
yk

)

(s)

= A1

(

ξ(γk)µ
∗uk,

1

ξ(νk)

1

µ∗
yk

)

(s) ≥ ψ1(γk)ψ1(γ
∗)uk+1(s).

Similarly, we obtain

yk+1(s) ≥ ψ2(γk)ψ2(γ
∗)vk+1(s).

Thus, by the definition of µk, we have

µk+1 ≥ max
{

ψ1(γk)ψ1(γ
∗), ψ2(γk)ψ2(γ

∗)
}

≥ max

{

µk
µ∗
ψ1(γ

∗),
µk
µ∗
ψ2(γ

∗)

}

.

Let k → +∞, then

µ∗ ≥ max{ψ1(γ
∗), ψ2(γ

∗)} > ξ(γ∗) = µ∗.

This is also a contradiction.



Weighted Sp-Pseudo S-Asymptotically Periodic Solutions 91

On the other hand, using hypotheses (H1) and (H2) combined with Lemma 2, Theorem 2, and
Lemma 4, one can show that xk, uk, yk, vk ∈ BPSAP p

ω (R;R, ρ) for all integer k.
In addition, for integer i and j such that i > j and for all s ∈ R, we have

0 ≤ xi(s)− xj(s) ≤ ui(s)− xj(s) ≤ uj(s)− xj(s) ≤ (1 − µj)uj(s) ≤ (1− µj)M,

0 ≤ yi(s)− yj(s) ≤ vi(s)− yj(s) ≤ vj(s)− yj(s) ≤ (1− µj)vj(s) ≤ (1− µj)N.

It follows that

‖xi − xj‖Sp ≤ (1− µj)M → 0, ‖yi − yj‖Sp ≤ (1− µj)N → 0 (as j → +∞).

This means that (xk)k and (yk)k are Cauchy sequences in BPSAP p
ω (R;R, ρ), and thus, there exist

x∗, y∗ ∈ BPSAP p
ω (R;R, ρ) such that xk → x∗ and yk → y∗ in BPSAP p

ω (R;R, ρ) as k → +∞.
Also, one can easily see that uk → x∗ and vk → y∗ in BPSAP p

ω (R;R, ρ) as k → +∞. Moreover,
for all integer k and all s ∈ R,

xk(s) ≤ x∗(s) ≤ uk(s) and yk(s) ≤ y∗(s) ≤ vk(s).

Finaly, we have

xk+1(s) = A1(xk, vk)(s) ≤ A1(x
∗, y∗)(s) ≤ A1(uk, yk)(s) = uk+1(s),

yk+1(s) = A2(uk, yk)(s) ≤ A2(x
∗, y∗)(s) ≤ A2(xk, vk)(s) = vk+1(s).

If k → +∞, we get
A(x∗, y∗) = (A1(x

∗, y∗), A2(x
∗, y∗)) = (x∗, y∗).

That is, (x∗, y∗) is a positive solution of system (1.1) in BPSAP p
ω (R;R, ρ) × BPSAP p

ω (R;R, ρ).
The proof is complete. �

Example 2. Let us choose

η =
3

2
, ν =

4

3
, α1 :=

1

10
, α2 :=

1

6
, τ1 = τ2 := 1.

Consider functions a, b ∈ PSAP p,1
ω (R,R, ρ) such that

9

10

√

12

19
≤ inf

s∈R
a(s) ≤ sup

s∈R
a(s) ≤ 8

5

√

9

11
,

5

6

(5

2

)1/5
≤ inf

s∈R
b(s) ≤ sup

s∈R
b(s) ≤ 4

3

(2

3

)1/5

and take

f(s, σ, x, y) = a(s− σ)

√

x+
1

4
+

1

y + 1
, g(s, σ, x, y) = b(s− σ) 5

√

y + 1

x2 + 1
.

Then, using the Mean value Theorem, one easily verifies that f and g satisfy (H0)(i), furthermore
(H0)(ii) is obvious. Also, (H1) and (H2) are easy to check.

Hypothesis (H3) is satisfied for

ξ(λ) := λ, ϕ1(λ, x, y) :=
√
λ, and ϕ2(λ, x, y) :=

5
√
λ3,

whenever λ ∈ (0, 1) and x, y ∈ (0,+∞).
Finally, (H4) and (H5) are satisfied for ε = δ = 1, M = N = 2,

r1 =
23/2

10 infs∈R
∫ 1
0 f(s, σ, 1/2, 2)dσ

≤ 1, and r2 =
24/3

6 infs∈R
∫ 1
0 g(s, σ, 2, 1/2)dσ

≤ 1.

Thus, all the assumptions of Theorem 3 hold. Therefore, system (1.1) with the above data has the
desired solution.
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5. Conclusion

We have extended for the first time the study of a nonlinear integral equation in certain spaces to
multidimensional systems in the space of weighted Sp-pseudo S-asymptotically ω-periodic functions.
Moreover, we have made a change to the definition of this type of function, especially in the domain
of definition, which we considered as R instead of R+. Our perspective in the future is to extend
such a study to the abstract case where the dimension is infinite.
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