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Abstract: The present work mainly probes into the existence and uniqueness of periodic solutions for a
class of second-order neutral differential equations with multiple delays. Our approach is based on using Banach
and Krasnoselskii’s fixed point theorems as well as the Green’s function method. Besides, two examples are
exhibited to validate the effectiveness of our findings which complement and extend some relevant ones in the
literature.
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1. Introduction

We frequently encounter neutral delay differential equations in the modeling of many
phenomena in various domains such as physics, biology, population dynamics, medicine, epidemi-
ology, economics, etc.

The investigation on such equations has been one of the most attracting topics in the literature.
Recently, these equations have received a considerable attention and many researchers have sought
to study them. For some related works, we refer the interested reader to some of them [1, 2, 4, 6,
8–10, 12, 13] and the references cited therein.

Stimulated by the aforementioned publications, we propose the following class of second order
neutral differential equations

d2

dt2
x (t) + p (t)

d

dt
x (t) + q (t)x (t) +

d2

dt2

[

k (t) x (t)−

n
∑

ℓ=1

cℓ (t)x (t− τℓ (t))
]

= e(t), (1.1)
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where p, q ∈ C (R, (0,∞)), k, cℓ, τℓ ∈ C2 (R, (0,∞)) , ℓ = 1, n and e ∈ C (R, [0,∞)) are T -periodic
functions.

In the current work, the authors aim is to establish sufficient conditions under which Banach
and Krasnoselskii’s fixed point theorems are guaranteed to work and hence the existence and
uniqueness of periodic solutions of the equation (1.1) are proved. The general idea of our technique
is to convert the equation (1.1) into an equivalent integral one in order to pave the way for the
application of Banach and Krasnoselskii’s fixed point theorems. Indeed, this last one with the help
of Arzelà-Ascoli theorem and some properties of the obtained Green’s kernel, is a proper means for
achieving our desired goals.

The key contributions of this work can be summarized as follows.

(i) New sufficient conditions that ensure the existence of periodic solutions of the equation (1.1)
are established.

(ii) The studied problems in [1, 3–5, 7, 9, 12] are with globally Lipschitz source terms while this
condition is not required here.

The basic frame of this paper is as follows. Section 2, provides some preliminary results and
prerequisites that will be used in the sequel. Section 3 is dedicated to the statements and the
proofs of our main results. In Section 4, we present two examples to which our main findings can
be applied. The conclusion is included in the last section.

2. Preliminaries

Let
PT =

{

x ∈ C(R,Rt), x(t+ T ) = x(t)
}

, T > 0,

endowed with the supremum norm

‖x‖ = sup
t∈R

|x (t)| = sup
t∈[0,T ]

|x (t)| ,

be a Banach space.
Throughout this paper we will assume that the following hypothesis are fulfilled.

Here p, q, k, e, cℓ and τℓ are T -periodic real-valued functions such that

p(t+ T ) = p(t), q(t+ T ) = q(t), k(t+ T ) = k(t),

e(t+ T ) = e(t), cℓ(t+ T ) = cℓ(t), τℓ (t+ T ) = τℓ(t), ℓ = 1, n,
(2.1)

and
∫ T

0
p(s)ds > 0,

∫ T

0
q(s)ds > 0, τℓ(t) ≥ τ∗ℓ > 0, ℓ = 1, n. (2.2)

Lemma 1 [10]. If (2.1) and (2.2) hold and

R1

[

exp

(
∫ T

0
p (u) du

)

− 1

]

Q1T
≥ 1, (2.3)

where

R1 = max
t∈[0,T ]

∣

∣

∣

∣

∣

∫ t+T

t

exp

(
∫ s

t
p (u) du

)

exp

(
∫ T

0
p (u) du

)

− 1

q(s)ds

∣

∣

∣

∣

∣

,
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and

Q1 =

(

1 + exp

(
∫ T

0
p (u) du

))2

R2
1,

then there are continuous and T -periodic functions a and b such that

b (t) > 0,

∫ T

0
a(u)du > 0, a (t) + b(t) = p(t),

and
d

dt
b(t) + a(t)b(t) = q(t),

for all t ∈ R. Furthermore, if φ ∈ PT then the equation

x′′(t) + p(t)x′(t) + q(t)x(t) = φ (t)

has a T -periodic solution. Moreover, the periodic solution can be expressed as

x(t) =

∫ t+T

t
G(t, s)φ(s)ds,

where

G(t, s) =

∫ s

t
exp

[
∫ u

t
b (v) dv +

∫ s

u
a (v) dv

]

du

[

exp

(
∫ T

0
a (u) du

)

− 1

] [

exp

(
∫ T

0
b (u) du

)

− 1

]

+

∫ t+T

s
exp

[
∫ u

t
b (v) dv +

∫ s+T

u
a (v) dv

]

du

[

exp

(
∫ T

0
a (u) du

)

− 1

] [

exp

(
∫ T

0
b (u) du

)

− 1

]

.

(2.4)

Corollary 1 [12]. If G is the Green’s function given by (2.4), then G satisfies

G(t, t + T ) = G(t, t), G(t+ T, s+ T ) = G(t, s),

∂

∂s
G(t, s) = a(s)G(t, s)−

exp

(
∫ s

t
b (v) dv

)

exp

(
∫ T

0
b (v) dv

)

− 1

,

∂

∂t
G(t, s) = −b(t)G(t, s) +

exp

(
∫ s

t
a (v) dv

)

exp

(
∫ T

0
b (v) dv

)

− 1

,

∂2

∂s2
G(t, s) =

(

a(s) + a′(s)
)

G(t, s)− (a(s) + b(s))

exp

(
∫ s

t
b (v) dv

)

exp

(
∫ T

0
b (v) dv

)

− 1

.
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Furthermore, by putting

A =

∫ T

0
p (u) du, B = T 2 exp

(

1

T

∫ T

0
ln (q (u)) du

)

,

M1 =
1

2

(

A−
√

A2 − 4b
)

, M2 =
1

2

(

A+
√

A2 + 4b
)

,

α1 =
T

(eM2 − 1)2
, α2 =

T exp

(
∫ T

0
p (u) du

)

(eM1 − 1)2
,

H (t, s) =

exp

(
∫ s

t
b (v) dv

)

exp

(
∫ T

0
b (v) dv

)

− 1

, β =

exp

(
∫ T

0
b (v) dv

)

exp

(
∫ T

0
b (v) dv

)

− 1

,

H∗ (t, s) =

exp

(
∫ s

t
a (v) dv

)

exp

(
∫ T

0
b (v) dv

)

− 1

, β∗ =

exp

(
∫ T

0
a (v) dv

)

exp

(
∫ T

0
b (v) dv

)

− 1

,

and if A2 ≥ 4B, then we have

0 < α1 ≤ G(t, s) ≤ α2, |H(t, s)| ≤ β, |H∗(t, s)| ≤ β∗.

3. Existence and uniqueness of periodic solutions

Lemma 2. Suppose that (2.1)–(2.3) hold. If x ∈ PT ∩ C2 (R,R), then x is a solution of (1.1)
if and only if x is a solution of the following equation

x (t) =
1

1 + k (t)

n
∑

ℓ=1

cℓ (t)x (t− τℓ (t)) +
1

1 + k (t)

∫ t+T

t
e (s)G (t, s) ds

+

∫ t+T

t

a(s) + b(s)

1 + k (t)

[

k (s)x (s)−

n
∑

ℓ=1

cℓ (s)x (s− τℓ (s))
]

H (t, s) ds

−

∫ t+T

t

a(s) + a′(s)

1 + k (t)

[

k (s)x (s)−
n
∑

ℓ=1

cℓ (s)x (s− τℓ (s))
]

G(t, s)ds.

(3.1)

P r o o f. Let x ∈ PT ∩ C2 (R,R). From Lemma 1, we get

x (t) =

∫ t+T

t

{

∂

∂s

[

k (s)x (s)−
n
∑

ℓ=1

cℓ (s)x (s− τℓ (s))
]

}

∂

∂s
G (t, s) ds+

∫ t+T

t
e (s)G (t, s) ds

=
[

k (s)x (s)−
n
∑

ℓ=1

cℓ (s)x (s− τℓ (s))
] ∂

∂s
G (t, s)

∣

∣

∣

∣

t+T

t

−

∫ t+T

t

[

k (s)x (s)−

n
∑

ℓ=1

cℓ (s)x (s− τℓ (s))
] ∂2

∂s2
G (t, s) ds+

∫ t+T

t
e (s)G (t, s) ds.
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Since

[

k (s)x (s)−
n
∑

ℓ=1

cℓ (s)x (s− τℓ (s))
] ∂

∂s
G (t, s)

∣

∣

∣

∣

t+T

t

= −k (t)x (t) +
n
∑

ℓ=1

cℓ (t) x (t− τℓ (t)) ,

and
∂2

∂s2
G(t, s) =

(

a(s) + a′(s)
)

G(t, s) − (a(s) + b(s))H (t, s) ,

then

(1 + k (t))x (t) =
n
∑

ℓ=1

cℓ (t) x (t− τℓ (t)) +

∫ t+T

t
e (s)G (t, s) ds

+

∫ t+T

t
(a(s) + b(s))

[

k (s)x (s)−

n
∑

ℓ=1

cℓ (s)x (s− τℓ (s))

]

H (t, s) ds

−

∫ t+T

t

(

a(s) + a′(s)
)

[

k (s)x (s)−

n
∑

ℓ=1

cℓ (s)x (s− τℓ (s))

]

G(t, s)ds.

Dividing both sides of the above equation by 1 + k (t), we obtain (3.1). The converse implication
can be obtained by the derivation of (3.1). �

Fore ease of exposition, we will use the following notations

λ1 = max
t∈[0,T ]

|a (t)| , λ∗

1 = max
t∈[0,T ]

∣

∣a′ (t)
∣

∣ , σ = max
t∈[0,T ]

|e (t)| ,

µ1 = max
t∈[0,T ]

|b (t)| , δℓ = max
t∈[0,T ]

|cℓ (t)| , ℓ = 1, n,

ρ0 = min
t∈[0,T ]

|k (t)| , ρ1 = max
t∈[0,T ]

|k (t)| , ρ∗1 = max
t∈[0,T ]

∣

∣k′ (t)
∣

∣ .

Furthermore, we suppose that

Γ1 =
1

1 + ρ0

n
∑

ℓ=1

δℓ < 1, (3.2)

and there exists L > 0 which satisfies the following estimate

Γ2 =
Tα2σ

1 + ρ0
+ Γ3L ≤ L, (3.3)

where

Γ3 =
1

1 + ρ0

(

T
(

ρ1 +
n
∑

ℓ=1

δℓ

)(

β (λ1 + µ1) + α2 (λ1 + λ∗

1)
)

+
n
∑

ℓ=1

δℓ

)

.

For employing Krasnoselskii’s fixed point theorem, we need to define an operator that can be
expressed as a sum of two operators, one of which is continuous and compact and the other is a
contraction.

Indeed, from Lemma 2, we can define an operator S : PT −→ PT as follows

(Sϕ) (t) = (S1ϕ) (t) + (S2ϕ) (t) ,
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where

(S1ϕ) (t) =
1

1 + k (t)

n
∑

ℓ=1

cℓ (t)ϕ (t− τℓ (t)) +
1

1 + k (t)

∫ t+T

t
e (s)G(t, s)ds,

and

(S2ϕ) (t) =

∫ t+T

t

a(s) + b(s)

1 + k (t)

[

k (s)ϕ (s)−
n
∑

ℓ=1

cℓ (s)ϕ (s− τℓ (s))

]

H (t, s) ds

−

∫ t+T

t

a(s) + a′(s)

1 + k (t)

[

k (s)ϕ (s)−

n
∑

ℓ=1

cℓ (s)ϕ (s− τℓ (s))

]

G(t, s)ds.

Clearly, (Siϕ) (t+ T ) = (Siϕ) (t) , i = 1, 2 which shows that operators Si are well defined.

To reach our target, it suffices to prove the existence of at least one fixed point of the opera-
tor S1 + S2. This is due to the fact that the sought solution of equation (1.1) is just a fixed point
of S1 + S2 and vice versa.

Theorem 1. Suppose that conditions (2.1)–(2.3), (3.2) and (3.3) hold. Then equation (1.1)
admits at least one periodic solution x ∈ PT which satisfies ‖x‖ ≤ L.

P r o o f. For establishing the existence of periodic solutions, we use Krasnoselskii’s fixed point
theorem ([11]). The proof will be made in three steps.

Step 1. We show that S1 is a contraction mapping.

Let ϕ1, ϕ2 ∈ PT , we have

|(S1ϕ1) (t)− (S1ϕ2) (t)| ≤

n
∑

ℓ=1

cℓ (t)

1 + k (t)
|ϕ1 (t− τℓ (t))− ϕ2 (t− τℓ (t))| ≤ Γ1 ‖ϕ1 − ϕ2‖ .

From (3.2), we deduce that S1 is a contraction mapping.

Step 2. We show that S2 is continuous and compact mapping.

Let ϕ1, ϕ2 ∈ PT . For ε > 0 and η = Λε, where

Λ =
1 + ρ0

T

(

ρ1 +
n
∑

ℓ=1

δℓ

)

(β (λ1 + µ1) + α2 (λ1 + λ∗

1))

,

we obtain

‖ϕ1 − ϕ2‖ ≤ η =⇒ ‖S2ϕ1 − S2ϕ2‖ < ε,

which shows the continuity of S2.

On the other hand, let ℏ > 0, K = {ϕ ∈ PT , ‖ϕ‖ ≤ ℏ} and {ϕn}n∈N be a sequence from K. We
have

‖S2ϕn‖ ≤

Tℏ

(

ρ1 +
n
∑

ℓ=1

δℓ

)

1 + ρ0
(β (λ1 + µ1) + α2 (λ1 + λ∗

1)) , (3.4)



Periodic Solutions 77

and

d

dt
(S2ϕn) (t) =

a(t) + b(t)

1 + k (t)

[

k (t)ϕn (t)−

n
∑

ℓ=1

cℓ (t)ϕn (t− τℓ (t))

]

−
b (t) (1 + k (t)) + k′ (t)

(1 + k (t))2

∫ t+T

t
(a(s) + b(s))

[

k (s)ϕn (s)−

n
∑

ℓ=1

cℓ (s)ϕn (s− τℓ (s))

]

H (t, s) ds

+
b(t) (1 + k (t)) + k′ (t)

(1 + k (t))2

∫ t+T

t

(

a(s) + a′(s)
)

[

k (s)ϕn (s)−
n
∑

ℓ=1

cℓ (s)ϕn (s− τℓ (s))

]

G(t, s)ds

−
1

1 + k (t)

∫ t+T

t

(

a(s) + a′(s)
)

[

k (s)ϕn (s)−

n
∑

ℓ=1

cℓ (s)ϕn (s− τℓ (s))

]

H∗ (t, s) ds.

Hence
∣

∣

∣

∣

d

dt
(S2ϕn) (t)

∣

∣

∣

∣

≤ Γ4, (3.5)

where

Γ4 = ℏ

(

ρ1 +

n
∑

ℓ=1

δℓ

)

(

(λ1 + µ1) + Tβ∗ (λ1 + λ∗

1)

1 + ρ0

+T
(µ1 (1 + ρ1) + ρ∗1) (β (λ1 + µ1) + α2 (λ1 + λ∗

1))

(1 + ρ0)
2

)

.

It follows from (3.4), (3.5) and the Arzelà-Ascoli theorem [14] that S2 is a compact operator.

Step 3. If L is defined as in (3.3), let

M = {ϕ ∈ PT , ‖ϕ‖ ≤ L} .

In view of (3.3), if ϕ1, ϕ2 ∈ M, then

‖S1ϕ1 + S2ϕ2‖ ≤ Γ2 ≤ L,

which proves that

S1ϕ1 + S2ϕ2 ∈ M, ∀ϕ1, ϕ2 ∈ M.

From these three steps, we conclude that the operator S2 + S2 has at least one fixed point
x ∈ PT with ‖x‖ ≤ L. Consequently, the equation (1.1) has at least one periodic solution in M. �

Theorem 2. Suppose that conditions (2.1)–(2.3) and (3.2) hold. If Γ3 < 1, then the equa-

tion (1.1) has a unique periodic solution x ∈ PT .

P r o o f. Let ϕ1, ϕ2 ∈ PT , we have

|(Sϕ1) (t)− (Sϕ2) (t)| ≤ Γ3 ‖ϕ1 − ϕ2‖ .

Since Γ3 < 1, the Banach fixed point theorem [11] guarantees that the operator S has a unique
fixed point which is the unique periodic solution of the equation (1.1). �
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4. Examples

Example 1. Let L = 3π. We consider the following equation

x′′ (t) +
5

12
x′ (t) +

1

24
x (t) +

(

1

100
x (t)−

(

1

120
sin2 2πt

)

x
(

t− π sin2 2πt
)

−

(

1

150
cos2 2πt

)

x
(

t− 2π cos4 2πt
)

)

′′

=
1

10
sin4 2πt.

(4.1)

Here

p (t) =
5

12
, p (t) =

1

24
, k (t) =

1

100
, c1 (t) =

1

120
sin2 2πt,

c2 (t) =
1

150
cos2 2πt, τ1 (t) = π sin2 2πt, τ2 (t) = 2π cos4 2πt,

e (t) =
100

1010
sin4 2πt, T = 1,

which implies

A =
5

12
, B =

1

24
, A2 =

25

144
> 4B2 =

1

6
, R1 =

1

10
,

Q1 =
1

100

(

e5/12 + 1
)2

,

R1

[

exp

(
∫ T

0
p (u) du

)

− 1

]

Q1T
≃ 22.367 > 1,

M1 =
1

6
, M2 =

1

4
, α2 ≃ 46.118, β ≃ 6.5139, Γ1 =

3

202
< 1,

Γ2 ≃ 8.0746 < L = 3π, Γ3 ≃ 0.36742 < 1.

It follows from Theorem 2 that the equation (4.1) has a unique solution x ∈ PT which satis-
fies ‖x‖ ≤ 3π.

The following example shows the usefulness of Theorem 1 when the Banach fixed point theorem
cannot be applied.

Example 2. We consider the following equation

x′′ (t) +
5

12
x′ (t) +

1

24
x (t) +

((

6

(

e1/6 − 1
)2

5e1/3 − 5e1/6 + 3e5/12
x(t)

)

−

(

2

(

e1/6 − 1
)2

5e1/3 − 5e1/6 + 3e5/12
sin2 2πt

)

x
(

t− π sin2 2πt
)

−

(

4

(

e1/6 − 1
)2

5e1/3 − 5e1/6 + 3e5/12
sin2 2πt

)

x
(

t− 2π cos4 2πt
)

)

′′

= 0.

(4.2)

Here

p (t) =
5

12
, p (t) =

1

24
, k (t) = 6

(

e1/6 − 1
)2

5e1/3 − 5e1/6 + 3e5/12
,

c1 (t) = 2

(

e1/6 − 1
)2

5e1/3 − 5e1/6 + 3e5/12
sin2 2πt, c2 (t) = 4

(

e1/6 − 1
)2

5e1/3 − 5e1/6 + 3e5/12
cos2 2πt,

τ1 (t) = π sin2 2πt, τ2 (t) = 2π cos4 2πt, e (t) = 0, T = 1,
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which implies

A =
5

12
, B =

1

24
, A2 =

25

144
> 4B2 =

1

6
, R1 =

1

10
,

Q1 =
1

100

(

e5/12 + 1
)2

,

R1

[

exp

(
∫ T

0
p (u) du

)

− 1

]

Q1T
≃ 22.367 > 1,

M1 =
1

6
, M2 =

1

4
, α2 ≃ 46.118, β ≃ 6.513 9, Γ1 = 0.03391 < 1,

Γ2 = L ≤ L, ∀L > 0, Γ3 = 1.

Since Γ3 = 1, we can not use Theorem 2, but Γ2 = L ≤ L, so we can apply Theorem 1 to prove
that the equation (4.2) has at least one periodic solution x ∈ PT which satisfies ‖x‖ ≤ L.

5. Conclusion

In this paper, by utilizing both the Banach and Krasnoselskii’s fixed point theorems and the
Green’s functions method, a class of second-order neutral differential equations with multiple delays
has been investigated. To be more precise, we have discussed the existence and uniqueness of
periodic solutions by transforming the equation (1.1) into an equivalent integral one and then by
using the Banach and Krasnoselskii’s fixed point theorems.
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