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Abstract: Nonlinear control systems presented as differential inclusions with positional impulse controls
are investigated. By such a control we mean some abstract operator with the Dirac function concentrated at
each time. Such a control (“running impulse”), as a generalized function, has no meaning and is formalized
as a sequence of correcting impulse actions on the system corresponding to a directed set of partitions of the
control interval. The system responds to such control by discontinuous trajectories, which form a network of
so-called “Euler’s broken lines.” If, as a result of each such correction, the phase point of the object under
study is on some given manifold (hypersurface), then a slip-type effect is introduced into the motion of the
system, and then the network of “Euler’s broken lines” is called an impulse-sliding mode. The paper deals with
the problem of approximating impulse-sliding modes using sequences of continuous delta-like functions. The
research is based on Yosida’s approximation of set-valued mappings and some well-known facts for ordinary
differential equations with impulses.
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1. Introduction

We consider a dynamic system of the form

ẋ(t) ∈ F (t, x(t)) +B(t, x(t))u, x(t0) = x0, (1.1)

where F : R1×R
n → R

n is a set-valued function whose values are convex compact sets in the space
R
n with the Euclidean norm ‖ · ‖, the matrix function B(t, x) of dimension n×m is continuous in

a set of variables, the column vector u = (u1, . . . , um) is some function that describes the control
action on the system.

We make the following assumptions about F (t, x):

(B1) The set-valued mapping F (t, x) is upper semicontinuous at each point (t, x). This means
that, for an arbitrary ǫ > 0, there exists δ = δ(t, x, ǫ) > 0 such that F (t′, x′) ⊂ F ǫ(t, x) for
all (t′, x′) ∈ Wδ(t, x), where F

ǫ(t, x) is an ǫ-neighborhood of the set F (t, x) and W δ(t, x) is a
δ-neighborhood of the point (t, x).
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(B2) The set-valued mapping F (t, x) satisfies the condition of sublinear growth: the inequality
‖w‖ ≤ L(t)(1 + ‖x‖) with some continuous function L(t) holds for any (t, x) ∈ R

n+1 and
w ∈ F (t, x).

Conditions (B1) and (B2) ensure the existence of a solution to the differential inclusion

ẋ ∈ F (t, x), (1.2)

on any segment I = [t0, ϑ] (see, for example, [3]).

It is assumed that the matrix B(t, x) satisfies the Frobenius condition

n
∑

ν=1

∂bij(t, x)

∂xν
bνl(t, x) =

n
∑

ν=1

∂bil(t, x)

∂xν
bνj(t, x).

This condition will ensure the uniqueness of the reaction of system (1.1) for impulse control u
[13, 14].

By a positional impulse control, we mean some abstract operator (t, x) −→ U(t, x) that maps
the space of variables (t, x) into the space m of vector distributions [14] according to the rule:
U(t, x) = r(t, x) δt, where r(t, x) is a vector function with values in R

m and δt is the Dirac impulse
function concentrated at the point t. The expression r(t, x) δt (“running impulse”) has no meaning
as a generalized function and means only the fact that the system has impulse control, which
implies a discrete implementation of the “running impulse” in the form of a sequence of correcting
impulses concentrated at points of some partition h : t0 < t1 < . . . < tN = ϑ of the segment I. The
result of such a sequential correction is a discontinuous curve xh(·), here called “Euler’s broken
line.”

According to [14], we define a network of “Euler’s broken lines” xh(·) corresponding to the set
of partitions h : t0 < t1 < ... < tp = ϑ of the segment I. To do this, we first define a jump function
by the equations

S(t, x, r(t, x)) = z(1) − z(0), ż(ξ) = B(t, z(ξ))r(t, x), z(0) = x. (1.3)

Here we take into account that there are dependencies S = S(t, x, r) and z = z(ξ, t, x, r). Note also
that the jump function is a vector function S = (S1, . . . , Sn).

The jumps of the “Euler broken lines” at the points of the partitions h of the segment I are
determined by the equations

S(ti, x
h(ti), r(ti, x

h(ti))) = z(1) − z(0), ż(ξ) = B(tti , z(ξ))r(ti, x
h(ti)),

with the initial conditions z(0) = xh(ti).

On each interval (ti, ti+1], “Euler’s broken line” xh(t) is constructed as a function that coincides
with the solution of the differential inclusion (1.2) with the initial conditions

x(ti) = xh(ti) + S(ti, x
h(ti), r(ti, x

h(ti)), xh(t0) = x0, i = 0, . . . , p− 1.

In this case, the following relations are valid:

xh(ti + 0) = xh(ti) + S(ti, x
h(ti), r(ti, x

h(ti))), S = 0 ⇔ r = 0.

We assume that the following condition holds for all (t, x):

r(t, x+ S(t, x, r(t, x))) = 0. (1.4)
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This means that, after an impulsive action on the system at time t, the phase point x(t) turns out
to be on the manifold

Φ = {(t, x) : r(t, x) = 0}.
In this case, the “Euler broken line” is called the impulse-sliding mode. We also assume that the
functions S(t, x, r) and r(t, x) are continuously differentiable.

Under some assumptions, one can consider a subsequence of the sequence of Euler broken lines
convergent as d(h) = max(tk+1 − tk) → 0, whose limit is on the surface Φ. This is called the
ideal impulse-sliding mode. The purpose of the impulse control is to keep the phase point on the
manifold Φ.

In [10], a differential inclusion of an ideal impulse-sliding mode was obtained in the form

ẋ ∈ ∂S(t, x, r(t, x))

∂t
+

∂S(t, x, r(t, x))

∂r

∂r(t, x)

∂t
+

+

(

E +
∂S(t, x, r(t, x))

∂x
+

∂S(t, x, r(t, x))

∂r

∂r(t, x)

∂x

)

F (t, x),

x(t0 + 0) = x(t0) + S(t0, x(t0), r(t0, x(t0))).

(1.5)

In [11], a differential inclusion with discontinuous positional controls under constraints on con-
trol resources was constructed, for which the ideal impulse-sliding mode of inclusion (1.5) is an
ordinary sliding mode in the sense of the theory of discontinuous systems. This makes it possible
to use combinations of positional impulse and conventional discontinuous controls for controlled
systems in situations without enough control resources for the latter. Note that the sliding mode
of controlled systems with discontinuous feedback is the primary mode of operation and allows
solving such problems as stabilization, complete controllability, and tracking (movement along a
predetermined trajectory). Many studies were devoted to these issues.

Here we continue our research from the papers mentioned above and consider the approximation
of Euler broken lines for system (1.1) with positional impulse control.

There are various ways to describe discontinuous trajectories (generalized solutions) of dynam-
ical systems. One of them is to establish rules by which the trajectory jumps (see, for example,
[4, 9]). If the jump function is somehow defined, then to describe the solution of the differential
equation

ẋ = f(t, x) + g(t, x)δ(t) (1.6)

with the δ-function δ(t) concentrated at a point (for convenience, at zero), one can justify the
passage to the limit on the solutions of this equation after the replacement of the ideal momentum
δ(t) in it by a sequence of its smooth or continuous approximations. The precise definitions are
given below. For convenience, we will call them δ-shaped functions.

Note that different approaches also give different concepts of a generalized solution. Even within
the framework of the approximation approach, which goes back to the study of Kurzweil [12], the
concept of a solution is not uniquely defined and depends on the nature of the passage to the limit
(see, for example, [5, pp. 34–37]).

In this paper, we construct the approximation of “Euler broken lines” for the differential inclu-
sion (1.1) using δ-shaped functions and the jump function (1.3). The research method is based on
Yosida’s approximations of set-valued mappings from [7, 8] and theorems from [5] on differential
equations (1.6) with δ-functions in the coefficients.

2. Yosida’s approximations

We consider Yosida’s approximations for the set-valued mapping F (t, x) under the following
assumption.
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Condition A. For any points (t, x, y), the inequality

(x− y)TA(t, x)(u− v) ≤ l‖x− y‖2 (2.1)

holds for any u ∈ F (t, x) and v ∈ F (t, y), where l > 0 is a constant and A(t, x) = [aij(t, x)]
n
i,j=1 is

a symmetrical, positive definite, and continuously differentiable matrix whose eigenvalues are from

a segment [c, d], 0 < c ≤ d < +∞. (In (2.1), we understand vectors as columns, and T means
transpose.)

Denote by z = Jλ(t, x) the solution of the inclusion z ∈ x + λF (t, z). Let Fλ(t, x) =
(Jλ(t, x)− x)/λ. Note that Jλ(t, x) and Fλ(t, x) are the resolvent and the Yosida approximation,
respectively, for the set-valued mapping x → −F (t, x) (see [1]) for every fixed t. Therefore, here we
also call the function Fλ(t, x) Yosida’s approximation for the set-valued mapping (t, x) → F (t, x).

Remark 1. Provided that A(t, x) ≡ E, inequality (2.1) is called the condition of right Lipschitz
property and is used to study the property of right uniqueness of solutions to differential equa-
tions [5, p. 8]. In particular, it follows from the usual Lipschitz condition, which no longer gives
the right uniqueness of solutions for set-valued mappings. Provided that the right-hand side of
inequality (2.1) is equal to zero and the mapping F does not depend on the variable t, Condition A
turns into a condition of monotonicity type for set-valued mappings, which ensures the existence
and some properties of the Yosida approximants [1]. Inequality (2.1) is more general than the right
Lipschitz condition and the monotonicity condition. The use of the matrix A(t, x) in it is conve-
nient for studying differential equations with a matrix at the derivatives, for example, in Lagrange
equations of the second kind when describing mechanical systems with discontinuous nonlinearities
(dry friction and discontinuous feedbacks).

In what follows, we suppose that assumptions (B1) and (B2) and condition A are satisfied.
The following Assertions 1–3 follow from Lemma 1 and Theorems 1 and 3 from [8].

Assertion 1. For any segment I = [a, b] and any bounded region Ω ⊂ R
n, there is a number

λ′ > 0 such that, for all λ ∈ [0, λ′] and (t, x) ∈ Ω, the Yosida approximation Fλ(t, x) with the

following properties is uniquely defined :

(1) the mapping (λ, t, x) → Fλ(t, x) is continuous in (λ, t, x) and Lipschitz in x. The latter means

that, for each fixed λ ∈ (0, λ′], there exists a constant  Lλ such that

‖Fλ(t, x)− Fλ(t, y)‖ ≤ Lλ‖x− y‖

holds for any (t, x), (t, y) ∈ I × Ω;

(2) there are constants l1 > 0 and L > 0 such that the following inequality holds for any

(t, x), (t, y) ∈ I ×Ω and λ ∈ (0, λ′]:

(x− y)TA(t, x)
(

Fλ(t, x)− w
)

≤ l1‖x− y‖2 + λL; (2.2)

(3) for every fixed point (t, x), Fλ(t, x) → m(F (t, x)) as λ → +0, where m(F (t, x)) ∈ F (t, x) is

the minimum point of the quadratic form zTA(t, x)z on the set F (t, x).

We define a mapping Fλ(t, x) for λ = 0, setting F0(t, x) = m(F (t, x)) for any (t, x) ∈ Ω and
consider a one-parameter family of equations

ẋ = Fλ(t, x). (2.3)

Assertion 2. The following statements are valid :
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(1) for any initial state (t0, x0), equation (2.3) has a unique solution xλ(t) for all sufficiently

small values λ > 0;

(2) for λ = 0, a solution x0(t) of equation (2.3) exists and is the right-unique solution to the

differential inclusion (1.2), i.e., any two solutions can merge but cannot fork as t increases.

(Such solutions are called slow in [1]);

(3) for solutions xλ(t) of equations (2.3) with the same initial conditions, xλ(t) → x0(t) uniformly

on any segment [t0, t1] on which these solutions exist ; more precisely,

‖xλ(t)− x0(t)‖2 = O(λ) for all t ∈ [t0, t1].

Assertion 3. Let the mapping F on the right-hand side of the inclusion (1.2) and the matrix A
in inequality (2.1) do not depend on the variable t. Then

(1) for any solution x(t) of the differential inclusion (1.2) defined in an interval, the function

t → m(F (x(t)) is right-continuous;

(2) any solution x(t) to the inclusion (1.2) for λ = 0 is right-handed. This means that, for all

t from the domain of this solution, D+x(t) = m(F (x(t)), where D+x(t) is the right-hand

derivative of the function x(t).

Assertions 1–3 used below define some qualitative properties of Euler broken lines and can be
useful in developing algorithms for numerical calculations.

Consider the differential inclusion

ẋ ∈ F (t, x) + δ∗(t)g(t, x(t − τ)) (2.4)

and the equation
ẋ = Fλ(t, x) + δ∗(t)g(t, x(t − τ)

)

, (2.5)

where Fλ(t, x) is Yosida’s approximation of the mapping F (t, x) and τ > 0 is a positive parameter.

Lemma 1. Let g(t, x) be a continuous vector function satisfying the Lipschitz condition in x
with constant Lp, and let δ∗(t) be a continuous scalar function.

Then there are positive constants K1, K2, K3, and λ′ such that, for any solutions xλ(t) and

x(t) to equations (2.4) and the inclusion (2.5), respectively, defined on the segment [t0 − τ, t0 + T ]
with the initial functions xλ(t) = xλ(t0) and x(t) = x(t0) on the segment [t0 − τ, t0], the following

inequality holds for all t ∈ [t0, t0 + T ] and λ ∈ (0, λ′]:

‖xλ(t)− x(t)‖2 ≤ (K1λ+K2‖xλ(t0)− x(t0)‖)e
∫ t0+T

t0
K3|δ∗(s)|ds. (2.6)

P r o o f. According to Assertion 1, there are numbers λ′ > 0, L > 0, and l1 > 0 such that, for
all λ ∈ (0, λ′], a mapping Fλ(t, x) is defined, which is continuous and Lipschitz in x. Define

Γλ(t, x, x
′) = Fλ(t, x) + δ∗(t)g(t, x

′)

and take an arbitrary w(t, y, y′) ∈ F (t, y) + δ∗(t)g(t, y
′). Then there is u(t, y) ∈ F (t, y) such that

w(t, y, y′) = u(t, y) + δ∗(t)g(y
′). From inequality (2.2), we get

(x− y)TA(t, x)
(

Γλ(t, x, x
′)− w(t, y, y′)

)

=

= (x− y)TA(t, x)
(

Fλ(t, x)− u(t, y) + δ∗(t)
(

p(t, x′)− p(t, y′)
)

)

=

= (x− y)TA(t, x)
(

Fλ(t, x)− u(t, y)
)

+ δ∗(t)(x− y)TA(t, x)
(

p(t, x′)− p(t, y′)
)

≤
≤ l1‖x− y‖2 + Lλ+ |δ∗(t)|Lp‖A(t, x)‖‖x − y‖‖x′ − y′‖.

(2.7)
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Let y(t) = x(t)− xλ(t) and

ξ(t) =
1

2

(

y(t)
)T

A
(

t, x(t)
)

y(t).

Then

ξ̇(t) =
(

y(t)
)T

A
(

t, x(t)
)

ẏ(t) +
1

2

(

y(t)
)T

Ȧ
(

t, x(t)
)

y(t)

for almost all t ∈ [t0, t0 + T ].
In our proof, we will use some quite obvious estimates and Lipschitz conditions for functions

and matrices that assumed or follow from the continuous differentiability of the matrix A(t, x), as
well as some well-known inequalities related to the properties and norms of matrices. In particular,
we will use the following property of quadratic forms with symmetric positive definite matrices
(see, for example, [2, p. 13]):

c‖x− y‖2 ≤ (x− y)TA(t, x)(x− y) ≤ d‖x− y‖2, (2.8)

where the segment [c, d] contains all eigenvalues of the matrix A(t, x) for all (t, x).
Setting

x = x(t), y = xλ(t), x′ = x(t− τ), y′ = xλ(t− τ)

in inequalities (2.7) and (2.8), we obtain

ξ̇(t) ≤ l2ξ(t) + Lλ+ l3‖δ∗(t)‖
√

ξ(t)ξ(t− τ) (2.9)

with some positive constants l2 and l3.
Let

η(t) = max {ξ(s) : t0 ≤ s ≤ t}.
Then ξ(s) ≤ η(t) for all s ∈ [t0 − τ, t], ξ(t′) = η(t) for some t′ ∈ [t0, t], and (2.9) implies

ξ̇(t) ≤ (l4 + l5|δ∗(t)|)η(t) + Lλ (2.10)

with some positive constants l4 and l5. Integrating (2.10), we get

η(t) = ξ(t′) = η(t0) +

t′
∫

t0

(

(l4 + l5|δ∗(s)|
)

η(s) + Lλ) ds ≤ η(t0) +

t
∫

t0

(

(l4 + l5|δ∗(s)|)η(s) + Lλ
)

ds.

Now Granwall’s lemma (see, for example, [3, p. 122]) implies

η(t) ≤ (η(t0) + TLλ)el4T e
∫ t0+T

t0
l5|δ∗(t)| dt.

Since ξ(t) ≤ η(t) and η(t0) = ξ(t0), using this inequality and inequalities (2.8) for quadratic forms,
it is easy to find constants K1, K2, and K3 such that inequality (2.6) holds.

The lemma is proved. �

3. Differential inclusions with delay and delta functions involved in coefficients

Consider a problem written in the form

{

ẋ(t) ∈ F
(

t, x(t)
)

+ δ(t)g
(

t, x(t− 0)
)

,
x(t0) = x0,

(3.1)



Approximation of Positional Impulse Controls 49

where δ(t) is the Dirac δ-function concentrated at the point t = 0, and the sequence of problems

{

ẋ(t) ∈ F
(

t, x(t)
)

+ δi(t)g
(

t, x(t− τi)
)

, i = 1, 2, . . . ,
x(t0) = xi0

(3.2)

where xi0 → x0 and δi(t) form a sequence of continuous (δ-shaped) functions satisfying the condi-
tions

(D1) δi(t) = 0 (t ≤ αi, t ≥ βi), δi(t) ≥ 0 (αi < t < βi), where αi → 0, βi → 0, and βi−αi ≤ τi → 0
as i → +∞;

(D2)
∫ βi

αi
δi(t)dt → 1 as i → +∞.

Let us introduce auxiliary problems:

u̇ ∈ F (t, u), u(t0) = x0, t ∈ [t0, 0]; (3.3)

ż ∈ F (t, z), z(0) = u(0) + g
(

t, u(0)
)

, t ∈ [0, t0 + T ]. (3.4)

Theorem 1. Let g(t, x) be a function continuous and Lipschitz in x, and let the functions δi(t)
satisfy conditions (D1)–(D2). Then, for any sequence of solutions xi(t) of problems (3.2), the

following holds as i → +∞:
xi(t) → u(t), t0 ≤ t < 0;
xi(t) → z(t), 0 < t ≤ t0 + T,

where u(t) and z(t) are the solutions of the inclusions (3.3) and (3.4), respectively.

P r o o f. First, we consider the sequence of ordinary differential equations
{

ẋi = Fλ(t, xi(t)) + δi(t)g
(

t, xi(t− τi)
)

,
xi(t0) = xi0

(3.5)

and related auxiliary problems
{

u̇λ = Fλ(t, u
λ),

uλ(t0) = x0, t0 ≤ t ≤ 0;
(3.6)

{

żλ = Fλ(t, z
λ),

zλ(0) = uλ(0) + g
(

t, uλ(0)
)

, 0 ≤ t ≤ t0 + T.
(3.7)

Here Fλ(t, x) is a continuous and Lipschitz in x approximation of the Yosida set-valued mapping
F (t, x). Therefore, we can use the well-known results for ordinary differential equations with δ-
functions in the coefficients. Note that, by Assertion 1 and 2, problems (3.2)–(3.4) have right-unique
solutions, and problems (3.5)–(3.7) have unique solutions for their initial data.

Let xλi (t), i = 1, 2, . . ., be solutions of equations (3.5). From Theorem 4 [5, pp. 36–37] and
remarks to it there, we obtain the following for any fixed 0 < λ < λ′ as i → +∞:

xλi (t) → uλ(t), t0 ≤ t < 0,
xλi (t) → zλ(t), 0 < t ≤ t0 + T,

(3.8)

where uλ(t) and zλ(t) are solutions to equations (3.6) and (3.7), respectively.
By Lemma 1, for arbitrary ǫ > 0, there exist a number η and an index N1 such that, for all

t ∈ [t0, t0 + T ], 0 < λ < η, and i ≥ N1, we have

‖xi(t)− xλi (t)‖ ≤ K
√
λ, ∀i = 1, 2, . . . (3.9)
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where xi(t) are the solutions to problems (3.2), and

‖uλ(t)− u(t)‖ ≤ K
√
λ (3.10)

for all t ∈ [t0, 0], where u(t) is the solution of the differential inclusion (3.6). The first line of (3.8)
implies that, for any t ∈ [t0, 0) and the same value λ, there exists a number N2 ≥ N1 such that

‖xλi (t)− uλ(t)‖ <
ε

3
(3.11)

for all i ≥ N2.
Let

√
λ < ε/3. Then, from (3.9)–(3.11), we get ‖xi(t)−u(t)‖ < ε for any fixed t ∈ [t0, 0) for all

i ≥ N2.
Therefore, it is established that xi(t) → u(t) as i → +∞ for any fixed t ∈ [t0, 0).
It follows from inequality (2.6) that, for the solutions zλ(t) of equations (3.7) and solution w(t)

of the inclusion (3.4), there exists 0 < η < λ′ such that

‖zλ(t) → z(t)‖ ≤ ε

3

for all 0 < λ < η and t ∈ [0, t0 + T ]. The second line of (3.8) implies that, for any fixed 0 < λ < λ′

and t ∈ (0, t0 + T ], there exists a number N3 such that

‖xλi (t)− wλ(t)‖ <
ε

3

for all i ≥ N3. Now, in view of (3.9), similarly to the above, for any ε > 0, there exists a positive
integer N4 ≥ N3 such that

‖xi(t)− w(t)‖ ≤ ‖w(t) − wλ(t)‖+ ‖wλ(t)− xλi (t)‖+ ‖xλi (t)− xi(t)‖ < ε

for any fixed t ∈ (0, t0 + T ] for all i ≥ N4.
Hence, xi(t) → z(t) as i → +∞ for any fixed t ∈ (0, t0 + T ]. �

Definition 1. By a generalized solution of inclusion (3.1) we mean a function x(t) satisfying

the differential inclusion (3.3) on the segment [t0, 0] and the differential inclusion (3.4) on (0, t0+T ]
with the initial condition x(+0) = x(0) + p

(

t, x(0)
)

.

By this definition, Theorem 1 ensures the existence and structure of generalized solutions of
the inclusion (3.1). A convenient convention for us is to extend the generalized solution x(t) at the
discontinuity point t = 0 by a limit on the left (which obviously exists).

Consider a differential equation of the form

ẋ(t) = Fλ

(

t, x(t)
)

+ δ(t)p
(

t, x(t− 0)
)

, (3.12)

where Fλ(t, x) is the Yoshida approximation of the set-valued mapping F (t, x).

Corollary 1. Let the assumptions of Theorem 1 be satisfied. Then there exist positive constants

λ′ and K such that, for any generalized solutions x(t) and xλ(t) of problems (3.1) and (3.6),
respectively, the following holds:

‖x(t)− xλ(t)‖ ≤ K(
√
λ+ ‖x(t0)− xλ(t0)‖)

for all t ∈ I and λ ∈ (0, λ′].
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Corollary 2. Let the assumptions of Theorem 1 be satisfied, let xλi (t) be solutions of equa-

tions (3.5) such that xλi (t0) → x0 for λ → +0, i → +∞, and let x(t) be a generalized solution of

inclusion (3.2) with the initial condition x(t0) = x0. Then, for any ε > 0, there are numbers λ′ > 0
and N such that

‖xλi (t)− x(t)‖ < ε

for all 0 < λ < λ′ and i ≥ N .

Remark 2. Theorem 1 and its corollaries are formulated for differential inclusions with impulsive
action at time t = 0. However, this does not limit the generality of the results since the change of
variable s = t− t′ allows us to consider inclusions with impulsive action at the time t = t′.

Remark 3. In Definition 1 of the generalized solution of the differential inclusion (3.1), the
set-valued mapping F (t, x) can be replaced by the mapping m(F (t, x)) from Assertion 1. In the
case when the matrix A(t, x) in Condition A is identity, m(F (t, x)) is the point of the set F (t, x)
closest to the origin in the Euclidean norm.

4. Euler broken line approximation

Euler broken line approximations for system (1.1) are based on Theorem 1 and its corollaries.
Suppose that assumptions (B1) and (B2) and ConditionA are satisfied and consider a jump function
g(t, x) = S(t, x, r(t, x)) defined by the equality (1.3).

We define a partition h : t0 < t1 < . . . < tN = t0 + T of the segment I = [t0, t0 + T ], and
Euler broken lines xh(t), which on each interval (tk, tk+1] coincide with the solutions of the Cauchy
problems for the differential inclusion

ẋ ∈ F (t, x), x(ti) = xh(tk) + g
(

tk, x
h(tk)

)

, k = 0, . . . , N − 1.

In this case, the following conditions are satisfied for k = 0, . . . , N − 1:

xh(t0) = x0, xh(tk + 0) = xh(tk) + g
(

tk, x
h(tk)

)

.

For the partition h of the segment I, we introduce the sequence of problems







ẋ(t) ∈ F
(

t, x(t)
)

+ g
(

t, x(t− τki )
)

N−1
∑

k=0

δki (t− tk), i = 1, 2, . . . ,

x(t0) = x0 + g(t0, x0)

(4.1)

as i → +∞. For each fixed k = 1, . . . , N − 1, we impose the following conditions on the func-
tions δki (t):

(D1k) δki (t) = 0 (t ≤ αk
i , t ≥ βk

i ) and δki (t) ≥ 0 (αk
i < t < βk

i ), where αk
i → 0, βk

i → 0, and
βk
i − αk

i ≤ τki → 0 as i → +∞;

(D2k)
βk

i
∫

αk

i

δki (t)dt → 1 for all i = 1, 2, . . ..

Since αk
i → 0, βk

i → 0, and τki → 0 as i → +∞, we initially consider these quantities to be so small
that the intervals (tk + αk

i , tk + βk
i ), k = 1, N − 1, are pairwise disjoint.
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Theorem 2. Let F (t, x) and g(t, x) satisfy the assumptions of Lemma 1, and let the functions

δki (t) satisfy conditions (D1k)–(D2k). Then, for every fixed partition h of the segment I, the

sequence of solutions xhi (t) of problems (4.1) converges as i → +∞ to the Euler broken line xh(t)
at every point t ∈ I such that t 6= tk, k = 0, N − 1.

P r o o f. Taking into consideration Remark 2, we apply Theorem 1 to the inclusion (4.1) on
the segment Iε1 = [t0, t2 − ε] for an arbitrary ε > 0 so small that t1 ∈ Iε1 . Here we take into account
that, starting from some number i, δ2i (t) = 0 will hold for all t ∈ Iε1 . As a result, we get

xhi (t) → xh(t) (4.2)

for any t ∈ Iε1 , t 6= t1 and t 6= t0. Then, in view of the right uniqueness of the solutions of the
inclusion ẋ ∈ F (t, x) and the arbitrariness of ε > 0, we conclude that (4.2) holds at all points of
the segment [t0, t2] except for the points tk, k = 0, 1, 2.

Now, as initial data, we take some point s ∈ (t1, t2) (for example, the midpoint of this interval)
and the value xhi (s) of the Euler broken line at this point. Applying similar reasoning to the
segment Iε2 = [s, t3 − ε] and taking into account the right uniqueness of the solutions, we conclude
that (4.2) holds at all points of the segment [t0, t3] except for the points tk, k = 0, 1, 2, 3. Here we
took into account that, starting from some number i, δki (t) = 0 holds for all t ∈ Iε2 , k = 1, 2. This
process continues up to the point tN−1, and at this last step, we consider the segment [s, t0 + T ],
where s is the midpoint of the segment [tN−2, tN−1]. �

Consider the problems







ẋ(t) ∈ F
(

t, x(t)
)

+ p
(

x(t− 0)
)

N−1
∑

k=1

δ(t − tk),

x(t0) = x0 + g(x0).

(4.3)







ẋ(t) = Fλ

(

t, x(t)
)

+ p
(

x(t− 0)
)

N−1
∑

k=1

δ(t− tk),

x(t0) = x0 + g(x0),

(4.4)

where Fλ(t, x) is the Yoshida approximation for F (t, x).

For (4.3) and (4.4), the concepts of generalized solutions x(t) and xλ(t) are introduced by
analogy with Definition 1.

Corollary 3. Let all assumptions of Theorem 2 be satisfied. Then, for any fixed partition h of

the segment I, there exists a constant K depending on the number N of points of the partition h
such that, for any generalized solutions x(t) and xλ(t) of the inclusions (4.3) and equations (4.4),
respectively, the inequality

‖x(t)− xλ(t)‖ ≤ K
√
λ

holds for any 0 < λ < λ′ and t ∈ I.

P r o o f. The proof follows from the successive application of Corollary 3 to the segments
[tk−1, tk] and the initial conditions x(tk−1 + 0) and xλ(tk−1 + 0) for k = 1, N − 1. �

Corollary 4. Let all assumptions of Theorem 2 be satisfied. Then, for any fixed partition h of

the segment I, there exists a constant K depending on the number N of points of the partition h



Approximation of Positional Impulse Controls 53

such that, for any generalized solutions xλ(t) of equation (4.4) and “Euler’s broken lines” xh(t) of

inclusions ẋ ∈ F (t, x), the inequality

‖xh(t)− xλ(t)‖ ≤ K
√
λ

holds for any 0 < λ < λ′ and t ∈ (t0, t0 + T ].

P r o o f. The definition of the Euler broken line xh(t) implies that, on the interval (t0, t0+T ],
it coincides with the generalized solution to the inclusion (4.3), and then the corollary follows from
Corollary 3. �

Remark 4. Let condition (1.4) be satisfied. Then, using Theorem 2 and its corollaries, we can
formulate statements about the approximation of ideal impulse-sliding modes, which satisfy the
inclusion (1.5).

5. Conclusion

Let us make a number of concluding remarks.

1. The Yosida approximation has a rather complex structure, and for its applications, it is
necessary to calculate the resolution Jλ, which reduces to finding fixed points of set-valued
mappings. It is not always possible to solve such a problem in an analytical form in the general
case. At the same time, the results of Sections 2–4 remain valid for any other continuous
approximations of set-valued mappings for which inequality (2.2) holds. For a set-valued
function u(x) = sgnx equal to −1 for x > 0, 1 for x < 0, and segment [−1, 1] for x = 0, the
Yosida approximation is

uλ(x) =

{

x/λ, |x| ≤ λ;

sgnx, |x| > λ.

But instead of it, for example, the function uλ(x) = 2/π · arctan(λx) can be used.

2. Consider the system
P (t, x)ẋ ∈ R(t, x)−H(t, x) sgn x, (5.1)

where P (t, x) is a symmetric, positive definite n × n matrix, H(t, x) is a diagonal n × n
matrix with nonzero elements, and sgnx = (sgnx1 × · · · × sgnxn) is a set-valued function.
If the function R(t, x) and the elements of the matrices P and H are continuous and locally
Lipschitz functions in x, then the mapping F (t, x) = P−1(t, x)(R(t, x)−H(t, x) sgn x) satisfies
assumptions (B1) and (B2) and Condition A with matrix A(t, x) = P (t, x), and all the results
of Sections 2–4 are valid. In this case, to approximate sgnxi, one can use functions of the
form uλ(xi).

If the matrix P (t, x) and the function H(t, x) are constant, then, using the scheme of the
proof of Lemma 1, we can obtain the estimate

v(t) ≤ Hγλ

2L
(e2L/γ(t−t0) − 1),

where L is the Lipschitz constant of the function f(t, x) in the variable x, γ is the smallest
eigenvalue of the matrix P , H =

∑n
i=1Hi, and

v(t) = (x(t)− xλ(t))
TP (x(t)− xλ(t)), x(t0) = xλ(t0).
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3. A large class of systems that lead to differential inclusions are differential equations with a
discontinuous right-hand side. As stated in [6], near the discontinuity points of the function
F (t, x), the approximate solution obtained by some numerical method usually differs from
the exact one by O(h), where h is an integration step, regardless of the order of accuracy
of the approximate method. The guaranteed in Lemma 1 accuracy of the approximation of
solutions to the differential inclusion (1.2) by solutions to the approximating inclusions (2.3)
is of order O(

√
λ). Numerical experiments using computers and graphical visualization of

the integration results have shown that if an integration step is much smaller than the pa-
rameter λ, then the qualitative behavior of the approximate solutions to the approximating
equations is closer to the exact sliding modes of the original discontinuous equations; in the
presence of discontinuities of the signature type, there are no sawtooth curves characteristic
of approximate solutions to discontinuous systems.

4. Note that discontinuous characteristics, as a rule, are included in systems of equations in the
form of terms or factors with continuous functions. Therefore, for some classes of systems,
it is expedient to approximate discontinuous characteristics directly.
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