
URAL MATHEMATICAL JOURNAL, Vol. 2, No. 2, 2016

DEGENERATE DISTRIBUTED CONTROL SYSTEMS
WITH FRACTIONAL TIME DERIVATIVE1

Marina V. Plekhanova

Computational Mechanics Department, South Ural State University;
Laboratory of Quantum Topology, Mathematical Analysis Department,

Chelyabinsk State University, Chelyabinsk, Russia,
mariner79@mail.ru

Abstract: The existence of a unique strong solution for the Cauchy problem to semilinear nondegenera-
te fractional differential equation and for the generalized Showalter–Sidorov problem to semilinear fractional
differential equation with degenerate operator at the Caputo derivative in Banach spaces is proved. These results
are used for search of solution existence conditions for a class of optimal control problems to a system described
by the degenerate semilinear fractional evolution equation. Abstract results are applied to the research of an
optimal control problem solvability for the equations system of Kelvin–Voigt fractional viscoelastic fluids.
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Introduction

Let X , Y be Banach spaces, L,M : X → Y be linear operators, kerL ̸= {0}, α > 0, m ∈ N,
m − 1 < α ≤ m, r ∈ {0, 1, . . . ,m − 1}, N : (t0, T ) × X r+1 → Y. Denote by Dα

t the Caputo
fractional derivative [1]. The main purpose of the paper is to study the initial value problems
unique solvability to the fractional order differential equation

LDα
t x(t) =Mx(t) +N(t, x(t), x(1)(t), . . . , x(r)(t)), t ∈ (t0, T ), (0.1)

in the sense of the strong solutions and the solvability of optimal control problems for systems with
the state that described by (0.1). Such equations are called degenerate because of degeneracy of
the operator L at the highest derivative. The equation with left-hand side in the form DαLx is
considered also. It has different properties beginning with the definition of a solution.

The theory of fractional differentiation in the last decades is actively used in the engineering and
science problems. At first in the paper the existence of a unique solution is proved for the Cauchy
problem to the nondegenerate fractional differential equation (X = Y, L = I in (0.1)). These results
are used for research of the unique solvability for the generalized Showalter–Sidorov initial value
problem to the degenerate fractional differential equations. Applying the obtained statements
solution existence conditions are found for a class of optimal control problems to a distributed
systems described by equation (0.1) with initial conditions. Abstract results are illustrated on an
optimal control problem for the equations system of Kelvin–Voigt fractional viscoelastic fluids [2].

The main condition on the operators L, M in this paper is (L, p)-boundedness of M . It was
introduced in [3] for the investigation of the first order degenerate equations. The conditions of
the unique solution existence for the semilinear first order degenerate differential equations under
this condition were studied in [4]. The solvability in the classical sense of the linear degenerate
fractional equations with (L, p)-bounded operator M was studied in the works [5, 6] and in [7] in
the case of strongly (L, p)-sectorial operator. Initial boundary value problem for the linearized
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system of Kelvin–Voigt fractional fluids was investigated in [8]. The equations of form (0.1) with
(L, p)-bounded operator M and with α = m ∈ N were investigated in [9]. The solvability in the
sense of the classical solution for another class of degenerate fractional equations (0.1) in Banach
spaces with restriction on the image of N was studied in [10]. Related problems in Banach and
locally convex spaces for degenerate and nondegenerate fractional order evolution equations were
explored by M. Kostić [11] but for other classes of operators and using mild solution and similar
notions. Note papers by A.V. Glushak [12, 13] devoted to some differential equations in Banach
spaces with the Riemann–Liouville, Euler–Poisson–Darboux and other derivatives. In contrast to
the mentioned works the results of the present paper concern the existence of a unique strong
solution for semilinear degenerate evolution fractional order equations that previously were not
investigated.

In the present paper, when studying optimal control problems for equations of form (0.1), we use
the general scheme suggested in the monograph [14, p. 16]. It was earlier applied to optimal control
problems for a degenerate distributed systems of the first order in papers [15–17]. Optimal control
problems for fractional equations are poorly understood. Most of them devoted to nondegenerate
equations [18, 19], stochastic equations [20] and others. Here a research of control problems for
semilinear degenerate evolution equations that has previously not been studied is presented.

1. Nondegenerate linear equation of fractional order

Let Z be Banach space. Introduce the Lebesgue spaces Lq(0, T ;Z) and for q ∈ (1,∞), k ∈ N
Sobolev spaces

W k
q (0, T ;Z) = {f ∈ Lq(0, T ;Z) : f (k) ∈ Lq(0, T ;Z)}.

Denote gδ(t) = Γ(δ)−1tδ−1,

Jδ
t h(t) = (gδ ∗ h)(t) =

t∫
0

gδ(t− s)h(s)ds, for δ > 0, t > 0.

Let α > 0, m be the smallest positive number not exceeding α, Dm
t is a usual derivative of the

order m ∈ N, J0
t is the identical operator,

Dα
t f(t) = Dm

t J
m−α
t

(
f(t)−

m−1∑
k=0

f (k)(0)gk+1(t)
)

is the Caputo derivative [1, p. 11].
Consider the Cauchy problem

z(k)(0) = zk, k = 0, 1, . . . ,m− 1, (1.1)

for the inhomogeneous differential equation

Dα
t z(t) = Az(t) + f(t), t ∈ (0, T ), (1.2)

where A ∈ L(Z) (linear and bounded operator from Z to Z), the function f : (0, T ) → Z is given
for T > 0.

A strong solution of the problem (1.1)–(1.2) is a function z ∈ Cm−1([0, T ];Z), such that

gm−α ∗

(
z −

m−1∑
k=0

z(k)(0)gk+1

)
∈Wm

q (0, T ;Z),
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conditions (1.1) are valid and equality (1.2) holds almost everywhere on (0, T ).
For α, β > 0 denote the Mittag–Leffler function

Eα,β(z) =

∞∑
n=0

zn

Γ(αn+ β)
.

Theorem 1. Let A ∈ L(Z), f ∈ Lq(0, T ;Z), q ∈ (max{1, 1/α},∞). Then for any zk ∈ Z,
k = 0, 1, . . . ,m− 1, there exists a unique strong solution of the problem (1.1)–(1.2), it has the form

z(t) =

m−1∑
k=0

tkEα,k+1(At
α)zk +

t∫
0

(t− s)α−1Eα,α(A(t− s)α)f(s)ds. (1.3)

P r o o f. For k = 1, 2, . . . , m− 1, l = 1, 2, . . . , k we have

dl

dtl
tkEα,k+1(At

α) =
∞∑
n=0

Antαn+k−l

Γ(αn+ k + 1− l)
= tk−lEα,k+1−l(At

α), (1.4)

and for l = k + 1, k + 2, . . . , m− 1

dl

dtl
tkEα,k+1(At

α) =
∞∑
n=1

Antαn+k−l

Γ(αn+ k + 1− l)
= tα+k−lAEα,α+k+1−l(At

α).

So for l = 1, 2, . . . , m− 1

dl

dtl

m−1∑
k=0

tkEα,k+1(At
α)zk

∣∣∣∣
t=0

= Eα,1(At
α)zl

∣∣∣∣
t=0

= zl.

Then, using formula (1.4), we get with l = 0, 1, . . . ,m− 1

dl

dtl

∣∣∣∣
t=0

t∫
0

(t− s)α−1Eα,α(A(t− s)α)f(s)ds = 0,

therefore

Dα
t

t∫
0

(t− s)α−1Eα,α(A(t− s)α)f(s)ds =

= Dm
t

t∫
0

sm−α−1

Γ(m− α)
ds

t−s∫
0

(t− s− σ)α−1Eα,α(A(t− s− σ)α)f(σ)dσ =

= Dt

t∫
0

f(σ)dσ

∞∑
n=0

t−σ∫
0

An(t− s− σ)α(n+1)−msm−α−1

Γ(m− α)Γ(α(n+ 1)−m+ 1)
ds =

= Dt

t∫
0

f(σ)dσ

∞∑
n=0

(t− σ)αnAn

1∫
0

(1− τ)α(n+1)−mτm−α−1

Γ(m− α)Γ(α(n+ 1)−m+ 1)
dτ =

= Dt

t∫
0

f(σ)Eα,1(A(t− σ)α)dσ = A

t∫
0

(t− s)α−1Eα,α(A(t− s)α)f(s)ds+ f(t)
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almost everywhere on (0, T ).
From Hölder’s inequality it follows that

T∫
0

∥∥∥∥A
t∫

0

(t− s)α−1Eα,α(A(t− s)α)f(s)ds

∥∥∥∥q
Z
dt ≤

≤
(
q − 1

αq − 1

)q−1

Tαq
(
∥A∥L(Z)Eα,α(T

α∥A∥L(Z))
)q ∥f∥qLq(0,T ;Z)

because q > 1/α. Thus, function (1.3) is a strong solution of problem (1.1), (1.2).
If there exist strong solutions y1 and y2 of the problem (1.1)–(1.2), then their difference z =

y1− y2 is the solution of the Cauchy problem (1.1) with the initial data zk = 0, k = 0, 1, . . . ,m− 1,
for a homogeneous equation Dα

t z(t) = Az(t). Act on both sides of this equation by the operator
Jα
t and obtain

z(t) =

t∫
0

(t− s)α−1

Γ(α)
Az(s)ds, (1.5)

because [1, p. 12]

Jα
t D

α
t z = z +

m−1∑
k=0

z(k)(0)gk+1.

By definition of a strong solution we have z ∈ C([0, T ];Z) even for α ∈ (0, 1). Then

max
t∈[0,tA]

∥∥∥∥
t∫

0

(t− s)α−1

Γ(α)
Az(s)ds

∥∥∥∥
Z
≤
tαA∥A∥L(Z)

Γ(α+ 1)
∥z∥C([0,tA];Z).

Therefore, the integral operator defined by the right-hand side of equality (1.5) is a contraction
operator in the space C([0, tA];Z) if

tA <
(
Γ(α+ 1)/∥A∥L(Z)

)1/α
.

Consequently, the unique fixed point of the integral operator is the solution z ≡ 0 on [0, tA]. On
the segment [tA, t2A] repeat the reasoning. After finite number of steps the uniqueness of the zero
solution will be obtained for the homogeneous Cauchy problem on the interval (0, T ). �

2. The Cauchy problem for the semilinear equation

Let A ∈ L(Z), m ∈ N, m − 1 < α ≤ m. Operator B : (t0, T ) × Zm → Z be Caratheodory
mapping, i.e. for all z0, z1, . . . , zm−1 ∈ Z it sets measurable mapping on (t0, T ) and for almost all
t ∈ (t0, T ) it is continuous with respect to z0, z1, . . . , zm−1 ∈ Z. Consider the Cauchy problem

z(k)(t0) = zk, k = 0, 1, . . . , m− 1, (2.1)

for the semilinear equation

Dα
t z(t) = Az(t) +B(t, z(t), z(1)(t), . . . , z(m−1)(t)), t ∈ (t0, T ). (2.2)

A strong solution of the problem (2.1)–(2.2) on the interval (t0, T ) is a function z ∈ Cm−1([t0, T ];Z),
such that

gm−α ∗

(
z −

m−1∑
k=0

z(k)(t0)gk+1

)
∈Wm

q (t0, T ;Z),
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conditions (2.1) hold and almost everywhere on (t0, T ) equality (2.2) is true, (here gk+1=(t− t0)
k/k!,

k = 0, 1, . . . ,m− 1).

Lemma 1. Let A ∈ L(Z), z0, z1, . . . , zm−1 ∈ Z, B : (t0, T ) × Zm → Z be Caratheodory
mapping, for all y0, y1, . . . ym−1 ∈ Z and almost all t ∈ (t0, T ) the estimate

∥B(t, y0, y1, . . . , ym−1)∥Z ≤ a(t) + c
m−1∑
k=0

∥yk∥Z , (2.3)

be satisfied, where a ∈ Lq(t0, T ;R), c > 0. Then the function z is a strong solution of the problem
(2.1)–(2.2) if and only if z ∈ Cm−1([t0, T ];Z) and on [t0, T ] we have

z(t) =
m−1∑
k=0

(t− t0)
kEα,k+1(A(t− t0)

α)zk+

+

t∫
t0

(t− s)α−1Eα,α(A(t− s)α)B(s, z(s), z(1)(s), . . . , z(m−1)(s))ds.

(2.4)

P r o o f. Let z be a solution of the problem (2.1)–(2.2), then z ∈ Cm−1([t0, T ];Z). In view of
condition (2.3) the operator B is bounded and continuous as mapping from Wm−1

q (t0, T ;Z) (and
also from Cm−1([t0, T ];Z)) to Lq(t0, T ;Z). Arguing as in the proof of Theorem 1, we find that the
solution satisfies equation (2.4).

Let z ∈ Cm−1([t0, T ];Z) on [t0, T ] satisfies equation (2.4), then the function
B(·, z(·), . . . , z(m−1)(·)) ∈ Lq(t0, T ;Z) and by analogy with Theorem 1 we can verify that z is
a strong solution of the problem (2.1)–(2.2). �

The bar over a symbol will mean an ordered set of m elements with indexes from 0 to m − 1,
for example, z = (z0, z1, . . . , zm−1). A mapping B : (t0, T )×Zm → Z is called uniformly Lipschitz
continuous in y, if there exists l > 0, such that the inequality

∥B(t, y)−B(t, z)∥Z ≤ l

m−1∑
k=0

∥yk − zk∥Z

is true for almost all t ∈ (t0, T ) and for all y, z of Zm.

Theorem 2. Let A ∈ L(Z), B : (t0, T ) × Zm → Z be Caratheodory mapping, uniformly
Lipschitz continuous in y, q ∈ (max{1, 1/α},∞), for some v ∈ Zm B(·, v) ∈ Lq(t0, T ;Z). Then
for any z0, z1, . . . , zm−1 ∈ Z the problem (2.1)–(2.2) has a unique strong solution on (t0, T ).

P r o o f. The uniformly Lipschitz continuity implies that for any y ∈ Zm for almost all
t ∈ (t0, T ) we have

∥B(t, y)∥Z ≤ ∥B(t, v)∥Z + l

m−1∑
k=0

∥vk∥Z + l

m−1∑
k=0

∥yk∥Z ,

therefore condition (2.3) is performed with

a(t) = ∥B(t, v)∥Z + l

m−1∑
k=0

∥vk∥Z , c = l.
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According to the statement of Lemma 1 it is sufficient to show that the equation (2.4) has a
unique solution z ∈ Cm−1([t0, T ];Z). In the space Cm−1([t0, T ];Z) define an operator F as

F (y)(t) =

m−1∑
k=0

(t− t0)
kEα,k+1(A(t− t0)

α)zk+

+

t∫
t0

(t− s)α−1Eα,α(A(t− s)α)B(s, y(s), y(1)(s), . . . , y(m−1)(s)) ds.

By the proof of Theorem 1 F : Cm−1([t0, T ];Z) → Cm−1([t0, T ];Z).
We denote by F r the r-th power of the operator F , r ∈ N, and in further reasoning if T − t0 < 1

we will replace T − t0 by 1. For t ∈ [t0, T ], n = 0, 1, . . . ,m− 1, r ∈ N, y, z ∈ Cm−1([t0, T ];Z) by
induction the inequality

∥[F r(y)](n)(t)− [F r(z)](n)(t)∥Z ≤
Kr(t− t0)

α−m+r∥y − z∥Cm−1([t0,T ];Z)

m(r − 1)!
(2.5)

can be proved, where

K = ml(α−m+ 1)−1(T − t0)
α max
n=0,...,m−1

Eα,α−n((T − t0)
α∥A∥L(Z)).

For r = 1, n = 0, 1, . . . ,m− 1 Hölder’s inequality implies that

∥[F (y)](n)(t)− [F (z)](n)(t)∥Z ≤ Eα,α−n((t− t0)
α∥A∥L(Z))×

×
t∫

t0

(t− s)α−1−n∥B(s, y(s), . . . , y(m−1)(s))−B(s, z(s), . . . , z(m−1)(s))∥Zds ≤

≤ l(t− t0)
α−m+1(T − t0)

m−1−n

α−m+ 1
Eα,α−n((T − t0)

α∥A∥L(Z))∥y − z∥Cm−1([t0,T ];Z).

If for r − 1 inequality (2.5) is valid, then

∥[F r(y)](n)(t)− [F r(z)](n)(t)∥Z ≤ K

m

t∫
t0

m−1∑
k=0

∥[F r−1(y)](k)(s)− [F r−1(z)](k)(s)∥Zds ≤

≤ K

t∫
t0

Kr−1(s− t0)
α−m+r−1∥y − z∥Cm−1([t0,T ];Z)

m(r − 2)!
ds ≤

≤
Kr(t− t0)

α−m+r∥y − z∥Cm−1([t0,T ];Z)

m(α−m+ r)(r − 2)!
<
Kr(t− t0)

α−m+r∥y − z∥Cm−1([t0,T ];Z)

m(r − 1)!
.

From (2.5) it follows that for r ∈ N we have

∥[F r(y)]− [F r(z)]∥Cm−1([t0,T ];Z) ≤
Kr(T − t0)

α−m+r∥y − z∥Cm−1([t0,T ];Z)

(r − 1)!
.

Therefore, if r is sufficiently large, then F r is a strict contraction in
Cm−1([t0, T ];Z), so it has in this space a unique fixed point. It is the unique solution of the
equation (2.4) in the space Cm−1([t0, T ];Z), and, therefore, a unique strong solution of the prob-
lem (2.1)–(2.2) on the interval (t0, T ). �
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We will need solutions of the problem (2.1)–(2.2) with additional smoothness. For fractional
α > 1 conditions of their existence were found in the case of incomplete equation only (without
(m− 1)-th derivative under the sign of operator B).

Theorem 3. Let α > 1, q > (α + 1−m)−1, A ∈ L(Z), n ∈ N, B ∈ Cn([t0, T ]× Zm−1;Z) be
uniformly Lipschitz continuous in z0, z1, . . . , zm−2 ∈ Z, f ∈ Wn

q (t0, T ;Z) and let for z satisfying
conditions (2.1) and the equation

Dα
t z(t) = Az(t) +B(t, z(t), z(1)(t), . . . , z(m−2)(t)) + f(t) (2.6)

the equalities

Dk
t

∣∣∣∣
t=t0

[B(t, z(t), z(1)(t), . . . , z(m−2)(t))] = −f (k)(t0), k = 0, 1, . . . , n− 1, (2.7)

hold. Then for every z0, z1, . . . , zm−1 ∈ Z there exists a unique strong solution z of the problem (2.1),
(2.6). Besides, z ∈ Cm−1+n([t0, t1];Z).

P r o o f. For α > 1 we have m ≥ 2. Using equalities (2.7) and sequentially computing the
derivatives of the right-hand side of (2.4), we obtain for k ∈ N0

Dm+k
t

t∫
t0

(t− s)α−1Eα,α(A(t− s)α)B(s, z(s), z(1)(s), . . . , z(m−2)(s))ds =

=

t∫
t0

(t− s)α−mEα,α−m+1(A(t− s)α)Dk+1
s [B(s, z(s), . . . , z(m−2)(s)) + f(s)]ds.

�

Remark 1. The form of the integral in the solution formula (2.4) implies the existence of
singularity of a solution at t = t0 in case of fractional α, if conditions (2.7) isn’t used.

3. Degenerate semilinear equation

Let an operator L ∈ L(X ;Y) (linear and continuous from a Banach space X to a Banach space
Y), M ∈ Cl(X ;Y) (linear, closed and densely defined in X with image in Y), DM is a domain
of an operator M , endowded by the graph norm ∥ · ∥DM

= ∥ · ∥X + ∥M · ∥Y . Define L-resolvent
set ρL(M) = {µ ∈ C : (µL −M)−1 ∈ L(Y;X )} of an operator M and introduce the denotations
RL

µ(M) = (µL−M)−1L, LL
µ = L(µL−M)−1.

An operator M will be called (L, σ)-bounded, if

∃a > 0 ∀µ ∈ C (|µ| > a) ⇒ (µ ∈ ρL(M)) .

Lemma 2 [3]. Let an operator M be (L, σ)-bounded, γ = {µ ∈ C : |µ| = r > a}. Then the
operators

P =
1

2πi

∫
γ

RL
µ(M) dµ ∈ L(X ), Q =

1

2πi

∫
γ

LL
µ(M) dµ ∈ L(Y)

are projections.
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Put X 0 = kerP , X 1 = imP , Y0 = kerQ, Y1 = imQ. Denote by Lk (Mk) the restriction of the
operator L (M) on X k (DMk

= DM ∩ X k), k = 0, 1.

Theorem 4 [3]. Let an operator M be (L, σ)-bounded. Then

(i) M1 ∈ L
(
X 1;Y1

)
, M0 ∈ Cl

(
X 0;Y0

)
, Lk ∈ L

(
X k;Yk

)
, k = 0, 1;

(ii) there exist operators M−1
0 ∈ L

(
Y0;X 0

)
, L−1

1 ∈ L
(
Y1;X 1

)
.

Denote N0 = {0} ∪ N, G = M−1
0 L0. For p ∈ N0 the operator M is called (L, p)-bounded, if it

is (L, σ)-bounded, Gp ̸= O, Gp+1 = O.
For m− 1 < α ≤ m, r ∈ {0, 1, . . . ,m− 1} consider the semilinear evolution equation

Dα
t Lx(t) =Mx(t) +N(t, x(t), x(1)(t), . . . , x(r)(t)) + f(t), t ∈ (t0, T ), (3.1)

with operators L ∈ L(X ;Y), kerL ̸= {0}, M ∈ Cl(X ;Y), with a nonlinear operator N : (t0, T ) ×
X r+1 → Y and a function f : (t0, T ) → Y.

A strong solution of equation (3.1) on the interval (t0, T ) is a function x ∈ W r
q (t0, T ;X ) ∩

Lq(t0, T ;DM ), q ∈ (1,∞), such that Lx ∈ Cm−1([t0, T ];Y),

gm−α ∗

(
Lx−

m−1∑
k=0

(Lx)(k)(t0)gk+1

)
∈Wm

q (t0, T ;Y),

and almost everywhere on (t0, T ) equality (3.1) is true.
Let operator M be (L, σ)-bounded. Consider the generalized Showalter—Sidorov problem

[21,22]
(Px)(k)(t0) = xk, k = 0, 1, . . . ,m− 1, (3.2)

for equation (3.1) on the interval (t0, T ).

Remark 2. We have the equalities Px = L−1
1 L1Px = L−1

1 QLx. Therefore, the smoothness of
Px is not smaller than for the function Lx.

Denote by [β] the integer part of β ∈ R.

Theorem 5. Let α > 0, q ∈ (max{1, 1/α},∞), r = [(m− 1)/2], an operator M be (L, 0)-
bounded, an operator N : [t0, T ]×X r+1 → Y be Caratheodory mapping, the equality

N(t, z0, z1, . . . , zr) = N1(t, Pz0, P z1, . . . , P zr) (3.3)

with some N1 : [t0, T ]× (X 1)r+1 → Y be valid for all z0, z1, . . . , zr ∈ X , almost all t ∈ (t0, T ). Let
QN1 be uniformly Lipschitz continuous in v = (v0, v1, . . . , vr) ∈ (X 1)r+1, for some v ∈ (X 1)r+1,
QN1(·, v0, . . . , vr) ∈ Lq(t0, T ;Y), (I − Q)N1 ∈ Cr([t0, T ] × (X 1)r+1;Y), (I − Q)f ∈ W r

q (t0, T ;Y),
Qf ∈ Lq(t0, T ;Y). Then for any x0, x1, . . . , xm−1 ∈ X 1 the problem (3.1)–(3.2) has a unique strong
solution on the interval (t0, T ).

P r o o f. Multiply (3.1) from the left by the operators L−1
1 Q or M−1

0 (I − Q) and obtain the
problem

Dα
t v(t) = S1v(t) + L−1

1 QN1(t, v(t), v
(1)(t), . . . , v(r)(t)) + L−1

1 Qf(t),

v(k)(t0) = Pxk, k = 0, 1, . . . ,m− 1,
(3.4)

0 = w(t) +M−1
0 (I −Q)N1(t, v(t), v

(1)(t), . . . , v(r)(t)) +M−1
0 (I −Q)f(t) (3.5)
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for the pair of functions v(t) ≡ Px(t), w(t) ≡ (I − P )x(t). Here the notations S1 = L−1
1 M1,

G =M−1
0 L0 are used.

By Theorem 2 the problem (3.4) has a unique strong solution, since the operator S1 is bounded
by Theorem 4. Knowing v, obtain

w(t) = −M−1
0 (I −Q)N1(t, v(t), v

(1)(t), . . . , v(r)(t))−M−1
0 (I −Q)f(t)

from equation (3.5). Here w ∈ W r
q (t0, T ;X ) ∩ Lq(0, T ;DM ), Lw ≡ 0. Thus, there exists a unique

strong solution x = v + w of the problem (3.1)–(3.2). �

A function x ∈ Cm−1([t0, T ];X ) ∩ Lq(t0, T ;DM ), q ∈ (1,∞), is a strong solution of equation

LDα
t x(t) =Mx(t) +N(t, x(t), x(1)(t), . . . , x(r)(t)) + f(t) (3.6)

on the interval (t0, T ) if

gm−α ∗
(
x−

m−1∑
k=0

x(k)(t0)gk+1

)
∈Wm

q (t0, T ;X ),

and almost everywhere on (t0, T ) the equality (3.6) is valid.

Theorem 6. Let α > 1, q > (α + 1 − m)−1, r = 0, operator M be (L, 0)-bounded, suppose
that N : [t0, T ] × X → Y for all z ∈ X , t ∈ [t0, T ] satisfies the equality N(t, z) = N1(t, Pz)
for some mapping N1 ∈ C1([t0, T ] × X 1;Y), (I − Q)N1 ∈ Cm([t0, T ] × X 1;Y), QN1 is uniformly
Lipschitz continuous in v ∈ X 1, f ∈ W 1

q (t0, T ;Y), q > (α + 1 −m)−1, (I −Q)f ∈ Cm([t0, T ];Y),
x0, x1, . . . , xm−1 ∈ X 1, the equality QN1(t0, Px0) +Qf(t0) = 0 is valid. Then there exists a unique
strong solution of the problem (3.2), (3.6).

P r o o f. Arguing as in the proof of Theorem 5, obtain the unique solution x = v+w, where v
is an unique solution of the Cauchy problem for the equation Dα

t v(t) = S1v(t)+L
−1
1 QN1(t, v(t))+

L−1
1 Qf(t) and the function w(t) = −M−1

0 (I −Q)N1(t, v(t))−M−1
0 (I −Q)f(t). By Theorem 3 we

have v ∈ Cm([t0, T ];X ), therefore w ∈ Cm([t0, T ];X ) and there exists Dα
t x ∈ Lq(t0, T ;X ). �

The proof of the next statement for the equation of an order α > 2, with r ∈ {1, 2, . . . ,m− 2}
is similar to the previous one.

Theorem 7. Let α > 2, q > (α+1−m)−1, r ∈ {1, 2, . . . ,m−2}, operatorM be (L, 0)-bounded,
suppose that N : [t0, T ] × X r+1 → Y for all z0, z1, . . . zr ∈ X , t ∈ [t0, T ] satisfies condition (3.3)
with some N1 ∈ Cr+1([t0, T ] × (X 1)r+1;Y); a mapping QN1 is uniformly Lipschitz continuous in
v ∈ X r+1, (I − Q)N1 ∈ Cm([t0, T ] × (X 1)r+1;Y), f ∈ W r+1

q (t0, T ;Y), (I − Q)f ∈ Cm([t0, T ];Y),
x0, . . . , xm−1 ∈ X 1; when k = 0, 1, . . . ,m− 1 for the solution of problem

Dα
t v(t) = S1v(t) + L−1

1 QN1(t, v(t), v
(1)(t), . . . , v(r)(t)) + L−1

1 Qf(t),

v(l)(t0) = Pxl, l = 0, 1, . . . ,m− 1,
(3.7)

conditions

Dk
t

∣∣∣∣
t=t0

Q(N1(t, v(t), v
(1)(t), . . . , v(r)(t)) + f(t)) = 0, k = 0, 1, . . . , r, (3.8)

hold. Then problem (3.2), (3.6) has a unique strong solution on the interval (t0, T ).

P r o o f. The proof is similar to the previous one. Here we have v ∈ Cm+r([t0, T ];X ) by
Theorem 3. �
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4. Optimal control problem

Now let X , Y, U be Banach spaces, L ∈ L(X ;Y), kerL ̸= {0}, B ∈ L(U ;Y), M ∈ Cl(X ;Y) is
(L, p)-bounded operator, N : [t0, T ]×X → Y. Consider the control problem

LDα
t x(t) =Mx(t) +N(t, x(t)) +Bu(t), (4.1)

(Px)(k)(t0) = xk, k = 0, 1, . . . ,m− 1, (4.2)

u ∈ U∂ , (4.3)

J(x, u) → inf, (4.4)

where U∂ is a set of admissible controls, the cost functional J will be described below.
Taking into account the form of equation (4.1), we will seek its strong solutions in the linear

space

Zα,q =

{
x ∈ Lq(t0, T ;DM ) ∩ Cm−1([t0, T ];X ) : gm−α ∗

(
x−

m−1∑
k=0

x(k)(t0)gk+1

)
∈Wm

q (t0, T ;X )

}
.

Lemma 3. For q ∈ (max{1, 1/α},∞) Zα,q is a Banach space with the norm

∥x∥Z = ∥x∥Lq(t0,T ;DM ) + ∥x∥Cm−1([t0,T ];X ) + ∥Dα
t x∥Lq(t0,T ;X ).

P r o o f. Prove the closedness of the operator Dα
t : Lq(t0, T ;DM ) ∩ Cm−1([t0, T ];Z) →

Lq(t0, T ;Z) with the domain Zα,q. By definition of the Caputo fractional derivativeDα
t = RLDα

t Sm,
where RLDα

t is the Riemann—Liouville fractional derivative [1], we have

Smz ≡ z −
m−1∑
k=0

z(k)(t0)gk+1.

It is evident that the operator Sm acts continuously from Zα,q with the norm of Cm−1([t0, T ];Z)
into the space

Rα,q,0 ≡ {z ∈ Lq(t0, T ;Z) : gm−α ∗ z ∈Wm
q,0(t0, T ;Z)},

endowed with the norm of Lq(t0, T ;Z). And the operator RLDα
t : Rα,q,0 → Lq(t0, T ;Z) is closed

by Lemma 1.8 (a) [1, p. 15]. �

Introduce the continuous operator γ0 : C([t0, T ];X ) → X , γ0x = x(t0).
The set of pairs (x, u) will be called as admissible pairs set W of the problem (4.1)–(4.4) if

u ∈ U∂ , x ∈ Zα,q is a strong solution of (4.1), (4.2), J(x, u) <∞. Problem (4.1)–(4.4) is the problem
of finding pairs (x̂, û) ∈ W, which minimize the cost functional, i. e. J(x̂, û) = inf

(x,u)∈W
J(x, u).

Theorem 8. Let α > 1, q > (α + 1 −m)−1, an operator M be (L, 0)-bounded, N : (t0, T ) ×
X → Y, for all z ∈ X , t ∈ (t0, T ) N(t, z) = N1(t, Pz) for some N1 ∈ C1([t0, T ] × X 1;Y), QN1

be uniformly Lipschitz continuous in x ∈ X 1, (I − Q)N1 ∈ Cm([t0, T ] × X 1;Y). Suppose that
U∂ is a non-empty closed convex subset of Lq(t0, T ;U), there exists u0 ∈ U∂ ∩W 1

q (t0, T ;U) such
that (I − Q)Bu0 ∈ Cm([t0, T ];U), QBu0(t0) = −QN1(t0, Px0); Zα,q is continuously embedded in
Banach space Y, Y is continuously embedded in Lq(t0, T ;X ), cost functional J is convex, lower
semicontinuous, and bounded from below on Y×Lq(t0, T ;U), and J is coercive on Zα,q×Lq(t0, T ;U),
xk ∈ X 1, k = 0, 1, . . . ,m− 1. Then there exists a solution (x̂, û) ∈ Zα,q × U∂ of the problem (4.1)–
(4.4).
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P r o o f. The operatorN and the function f = Bu0 satisfy the conditions of Theorem 6. Hence,
Theorem 6 implies the existence of a strong solution of problem (4.1), (4.2) with u = u0 ∈ U∂ . So,
the set of admissible pairs W is nonempty.

Further we will use Theorem 1.2.4 [14]. Put Y1 = Zα,q, U = Lq(t0, T ;U), V = Lq(t0, T ;Y) ×
Xm, F(x(·)) = −(N(·, x(·)), x0, x1, . . . , xm−1), L(x, u) = (LDα

t x−Mx−Bu, γ0Px, . . . , γ0Px(m−1)).
The continuity of the linear operator L : Y1 × U → V follows from the inequalities

∥(LDα
t x−Mx−Bu, γ0Px, γ0Px

(1), . . . , γ0Px
(m−1))∥Lq(t0,T ;Y)×Xm ≤

≤ C1

(
∥x∥Zα,q + ∥u∥Lq(t0,T ;U) + ∥x∥Cm−1([t0,T ];X )

)
≤ C2∥(x, u)∥Zα,q×U .

From the relation ∥xn − x∥Zα,q → 0 for n→ ∞ it follows that

∥N(·, xn(·))−N(·, x(·))∥Lq(t0,T ;Y) ≤ C1∥xn − x∥C([t0,T ];X ) → 0,

therefore the operator F is continuous.
After choosing Y−1 = Lq(t0, T ;X ), check the remaining conditions of Theorem 1.2.4 [14].

From Rellich—Kondrashov theorem it follows that Zα,q enclosed toWm−1
q (t0, T ;X ) and compactly

enclosed to Lq(t0, T ;X ). For v ∈ (Lq(t0, T ;Y))∗ the uniform Lipschitz continuity of the operator
N implies the inequality

|v(N(t, xn(t))−N(t, x(·))| ≤ C1∥v∥(Lq(t0,T ;Y))∗∥xn − x∥Lq(t0,T ;X ).

It gives the continuous extension of the functional f(·) = v(F(·)) from Zα,q to Lq(t0, T ;X ). �

In applications the condition of the uniform Lipschitz continuity of N is too strong. But the
nonemptyness of W is often evident. Consider the optimal control problem in such case.

A mapping N ∈ C([t0, T ]×X ;Y) will be called locally Lipschitz continuous in x ∈ X , uniformly
with respect to t ∈ [t0, T ], if for every x ∈ X there exists δ > 0 and l > 0 such that for every y ∈ Y
the inequality ∥y − x∥X < δ implies that ∥N(t, y)−N(t, x)∥Y ≤ l∥y − x∥X for all t ∈ [t0, T ].

Theorem 9. Let α, q > 1, an operatorM be (L, p)-bounded, the mapping N ∈ C([t0, T ]×X ;Y)
be locally Lipschitz continuous in z ∈ X , uniformly with respect to t ∈ [t0, T ]. Suppose that xk ∈ X 1,
k = 0, 1, . . . ,m− 1, U∂ is a non-empty closed convex subset of Lq(t0, T ;U), for some u0 ∈ U∂ there
exists a solution of the problem (4.1)–(4.2); Zα,q is continuously embedded in Banach space Y, Y
is continuously embedded in Lq(t0, T ;X ), cost functional J is convex, lower semicontinuous, and
bounded from below on Y×Lq(t0, T ;U), and J is coercive on Zα,q ×Lq(t0, T ;U). Then there exists
a solution (x̂, û) ∈ Zα,q × U∂ of the problem (4.1)–(4.4).

P r o o f. The set W is non-empty by the conditions of the theorem. The conditions on the
mapping N are sufficient for repeating the previous proof. �

5. Optimal control for fractional Kelvin—Voigt fluid

Consider a control problem

(1− χ∆)Dα
t v(s, t) = ν∆v(s, t)− (v · ∇)v(s, t)− r(s, t) + u(s, t), (s, t) ∈ Ω× [0, T ], (5.1)

∇ · v(s, t) = 0, (s, t) ∈ Ω× [0, T ], (5.2)

v(s, t) = 0, (s, t) ∈ ∂Ω× [0, T ], (5.3)
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∂kv

∂tk
(s, 0) = ψk(s), k = 0, 1, . . . ,m− 1, s ∈ Ω, (5.4)

∥u∥Lq(0,T ;L2) ≤ R, (5.5)

J(v, r, u) = ∥v − vd∥Cm−1([0,T ];H2
σ)

+ ∥r − rd∥Cm−1([0,T ];Hπ)+

+∥Dα
t v −Dα

t vd∥
q
Lq(0,T ;H2

σ)
+ ∥Dα

t r −Dα
t rd∥

q
Lq(0,T ;Hπ)

+ ∥u− ud∥qLq(0,T ;L2)
→ inf . (5.6)

Here, Ω ⊂ R3 is a domain with a smooth boundary ∂Ω, χ, ν ∈ R, T > 0. The vector-functions
ψk = (ψk1, ψk2, ψk3) : Ω → R3, k = 0, 1, . . . ,m− 1, are set. Vector-functions v = (v1, v2, v3) of the
velocity and r = (r1, r2, r3) = (ps1 , ps2 , ps3) of the pressure p gradient are unknown. An external
source u = (u1, u2, u3) : Ω× [0, T ] → R3 is a control function. The system models the dynamics of
a fractional viscoelastic incompressible Kelvin — Voigt fluid [2].

To reduce the optimal control problem (5.1)–(5.6) to problem (4.1)–(4.4), denote the Lebesgue
space L2 = (L2(Ω))

3, and the Sobolev spaces H1 = (W 1
2 (Ω))

3, H2 = (W 2
2 (Ω))

3 of vector-functions
w = (w1, w2, w3), defined in Ω. A closure of the lineal L = {w ∈ (C∞

0 (Ω))3 : ∇ · w = 0} by the
norm in L2 is denoted by Hσ; H1

σ is its closure by the norm in H1. Also, we use H2
σ = H1

σ ∩ H2.
An orthogonal complement to Hσ in L2 is denoted by Hπ. The corresponding orthoprojectors are
Σ : L2 → Hσ, Π = I − Σ : L2 → Hπ.

Consider an operator A = Σ∆ in L. The operator A, extended to a closed operator in Hσ, with
a domain H2

σ, is known (see [23]) to have a real, negative discrete spectrum of finite multiplicity,
condensing at −∞ only. Its eigenvalues are denoted by {λk}, numbered in non-increasing, counting
their multiplicities. The orthonormal system of corresponding eigenfunctions {φk} is known to form
a basis in Hσ.

Choose spaces and operators as

X = H2
σ ×Hπ, Y = L2 = Hσ ×Hπ, U = L2, (5.7)

L =

(
I − χA O
−χΠ∆ O

)
, M =

(
νA O
νΠ∆ −I

)
∈ L(X ;Y). (5.8)

Lemma 4. Let spaces X and Y be defined in (5.7), and operators L and M be defined in (5.8),
ν, χ ̸= 0, χ−1 ̸∈ σ(A). Then M is (L, 0)-bounded operator, and

P =

(
I O

νΠ∆(I − χA)−1 O

)
, Q =

(
I O

−χΠ∆(I − χA)−1 O

)
. (5.9)

Denote

Ψ(s, t) = ψ0(s) + ψ1(s)t+ · · ·+ ψm−1(s)
tm−1

(m− 1)!
.

Theorem 10. Let ν, χ ̸= 0, χ−1 ̸∈ σ(A), α, q > 1, ψk ∈ H2
σ, k = 0, 1, . . . ,m− 1, the inequality

∥(1− χ∆)Dα
t Ψ− ν∆Ψ+ (Ψ · ∇)Ψ∥Lq(0,T ;L2) ≤ R

is true. Then there exists a solution of the problem (5.1)–(5.6).

P r o o f. From the form of the projector P it follows that (5.4) are Showalter — Sidorov
conditions. Besides, there exists a control

u0 = (1− χ∆)Dα
t Ψ− ν∆Ψ+ (Ψ · ∇)Ψ ∈ U∂ = {u ∈ Lq(0, T ;L2) : ∥u∥Lq(0,T ;L2) ≤ R},

such that (Ψ, 0) (r = 0) is a strong solution of the problem (5.1)–(5.4) with u = u0, i. e.
(Ψ, 0, u0) ∈ W.
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Define N(v) = −(v · ∇)v, hence, by Sobolev’s embedding theorem

∥N(v)∥2L2
≤ C1∥v∥4W1

4
≤ C2∥v∥4H2 ,

where W1
4 = (W 1

4 (Ω))
3. Besides, N doesn’t depend on r and is locally Lipschitzian mapping.

Choose Y = {(v, r) ∈ Cm−1([0, T ];X ) : (Dα
t v,D

α
t r) ∈ Lq(0, T ;X )} with the norm

∥x∥Y = ∥x∥Cm−1([t0,T ];X ) + ∥Dα
t x∥Lq(t0,T ;X ), x = (v, r).

The completeness of Y can be shown as in the proof of Lemma 4. The functional J is coercive on
Zα,q because of the estimate

∥Mx∥Lq(0,T ;L2) ≤ C1∥Dα
t v∥Lq(0,T ;H2

σ)
+ ∥u∥Lq(0,T ;L2) + max

∥v∥H2
σ
≤1

∥N(v)∥L2 .

The required statement follows from Theorem 9. �
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