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Abstract: In this paper, we consider the following L-difference equation

Φ(x)LPn+1(x) = (ξnx+ ϑn)Pn+1(x) + λnPn(x), n ≥ 0,

where Φ is a monic polynomial (even), deg Φ ≤ 2, ξn, ϑn, λn, n ≥ 0, are complex numbers and L is either
the Dunkl operator Tµ or the the q-Dunkl operator T(θ,q). We show that if L = Tµ, then the only symmetric
orthogonal polynomials satisfying the previous equation are, up a dilation, the generalized Hermite polynomials
and the generalized Gegenbauer polynomials and if L = T(θ,q), then the q2-analogue of generalized Hermite

and the q2-analogue of generalized Gegenbauer polynomials are, up a dilation, the only orthogonal polynomials
sequences satisfying the L-difference equation.
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1. Introduction

The classical orthogonal polynomials (Hermite, Laguerre, Bessel, and Jacobi) have a lot of use-
ful characterizations: they satisfy a Hahn’s property, that the sequence of their monic derivatives
is again orthogonal (see [1, 8, 14, 16]), they are characterized as the polynomial eigenfunctions of
a second order homogeneous linear differential (or difference) hypergeometric operator with poly-
nomial coefficients [4, 15, 16], their corresponding linear functionals satisfy a distribution equation
of Pearson type (see [11, 13, 15]).

Another characterization was established by Al-Salam and Chihara in [1], in particular they
showed that the sequences Hermite, Laguerre and Jacobi are the only monic orthogonal polynomial
sequences {Pn}n≥0 that satisfy an equation of the form:

π(x)P ′
n+1(x) = (anx+ bn)Pn+1 + cnPn(x), n ≥ 0, (1.1)

where π is a monic polynomial, deg π ≤ 2.
Recently, Datta and J. Griffin [9] studied the q-analogue of (1.1). More precisely they studied

a q-difference equation of the form:

π(x)DqPn+1(x) = (anx+ bn)Pn+1 + cnPn(x), n ≥ 0, (1.2)

where π is a monic polynomial, deg π ≤ 2 and Dq is the Hahn operator defined by

Dqf(x) = (f(qx)− f(x))/(q − 1)x, f ∈ P.

In particular they showed that the only orthogonal polynomials satisfying (1.2) are the Al-Salam-
Carlitz I, the little and big q-Laguerre, the little and big q-Jacobi and the q-Bessel polynomials.
The aim of this paper is to study the equation of the form:

Φ(x)LPn+1(x) = (ξnx+ ϑn)Pn+1(x) + λnPn(x), n ≥ 0, (1.3)
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where Φ is a monic polynomial (even), deg Φ ≤ 2 and L ∈ {Tµ, T(θ,q)}.
This paper is organized as follows. In Section 2, we introduce the basic background and some

preliminary results that will be used in what follows. In Section 3, we show that the only symmetric
orthogonal polynomials satisfying (1.3), are, up a dilation, the generalized Hermite polynomials
and the generalized Gegenbauer polynomials if L = Tµ and the q2-analogue of generalized Hermite
polynomials and the q2-analogue of generalized Gegenbauer polynomials if L = T(θ,q).

2. Preliminaries and notations

Let P be the vector space of polynomials with coefficients in C and let P ′ be its dual. We
denote by 〈u, f〉 the action of u ∈ P ′ on f ∈ P. In particular, we denote by (u)n = 〈u, xn〉 , n ≥ 0,
the moments of u. For any form u, any polynomial f and any a ∈ C \ {0}, let fu and hau, be the
forms defined by duality:

〈fu, p〉 = 〈u, fp〉 , 〈hau, p〉 = 〈u, hap〉 , p ∈ P,

where hap(x) = p(ax).
Let {Pn}n≥0 be a sequence of monic polynomials (MPS, in short) with degPn = n, n ≥ 0. The

dual sequence associated with {Pn}n≥0 is the sequence {un}n≥0, un ∈ P ′ such that 〈un, Pm〉 = δn,m,
n, m ≥ 0, where δn,m is the Kronecker symbol [14].

The linear functional u is called regular if there exists a MPS {Pn}n≥0 such that (see [8, p. 7]):

〈u, PmPn〉 = rnδn,m, n, m ≥ 0, rn 6= 0, n ≥ 0.

Then the sequence {Pn}n≥0 is said to be orthogonal with respect to u. In this case, we have

un =
(
〈u0, P

2
n〉
)−1

Pnu0, n ≥ 0.

Moreover, u = λu0, where (u)0 = λ 6= 0 [17].
In what follows all regular linear functionals u will be taken normalized i.e., (u)0 = 1. Therefore,

u = u0.
A polynomial set {Pn}n≥0 is called symmetric if

Pn(−x) = (−1)nPn(x), n ≥ 0.

According to Favard’s theorem [8], a sequence of monic orthogonal polynomials {Pn(x)}n≥0 (MOPS,
in short) satisfies a three-term recurrence relation

{
P0(x) = 1, P1(x) = x,
Pn+2(x) = (x− βn+1)Pn+1(x)− γn+1Pn(x), n ≥ 0, γn+1 6= 0, n ≥ 0.

(2.1)

with

βn =
〈u0, xP

2
n〉

〈u0, P 2
n〉

, γn+1 =
〈u0, P

2
n+1〉

〈u0, P 2
n〉

, n ≥ 0.

A dilatation preserves the property of orthogonality. Indeed, the sequence {P̃n(x)}n≥0 defined by

P̃n(x) = a−nPn(ax), n ≥ 0, a ∈ C \ {0},

satisfies the recurrence relation [16]

{
P̃0(x) = 1, P̃1(x) = x− β̃0,

P̃n+2(x) = (x− β̃n+1)P̃n+1(x)− γ̃n+1P̃n(x), n ≥ 0,
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where

β̃n =
βn
a
, γ̃n+1 =

γn+1

a2
, n ≥ 0. (2.2)

Moreover, if {Pn}n≥0 is a MOPS with respect to the regular form u0, then {P̃n}n≥0 is a MOPS
with respect to the regular form ũ0 = ha−1u0.

Theorem 1 [8]. Let {Pn}n≥0 be a MOPS satisfying (2.1) and orthogonal with respect to a
linear functional u. The following statements are equivalent :

(i) the sequence {Pn}n≥0 is symmetric;
(ii) (u)2n+1 = 0, n ≥ 0;
(iii) βn = 0, n ≥ 0.

Next, we introduce the Dunkl operator Tµ defined on P by [10, 18]

(Tµf)(x) = f ′(x) + µH−1f(x), µ > −
1

2
, f ∈ P,

where

(H−1f)(x) =
f(x)− f(−x)

2x
.

For the Dunkl operator, we have the property [6]

Tµ(fg)(x) = (Tµf)(x)g(x) + f(x)(Tµg)(x) − 4µx(H−1f)(x)(H−1g)(x), f, g ∈ P.

In particular,

Tµ(xPn+1) =
(
1 + 2µ(−1)n+1

)
Pn+1(x) + x(TµPn+1)(x), n ≥ 0. (2.3)

We define the operator Tµ from P ′ to P ′ as follows:

〈Tµu, f〉 = −〈u, Tµf〉, f ∈ P, u ∈ P ′.

In particular,
(Tµu)n = −µn(u)n−1, n ≥ 0,

with the convention (u)−1 = 0, where

µn = n+ µ(1− (−1)n), n ≥ 0.

We introduce also the q-Dunkl operator T(θ,q) defined on P by [2, 5, 7]

(T(θ,q)f)(x) =
f(qx)− f(x)

(q − 1)x
+ θH−1f(x), f ∈ P, θ ∈ C.

Remark 1. Note that when q → 1, we again meet the Dunkl operator.

From the last definition, it is easy to prove that

T(θ,q)(fg) = (T(θ,q)f)g + (hqf)(T(θ,q)g) + θ(h−1f − hqf)H−1g, f, g ∈ P.

In particular,

Tµ(xPn+1) =

(
1 + θ − θ(q + 1)

1 − (−1)n+1

2

)
Pn+1(x) + qx(T(θ,q)Pn+1)(x), n ≥ 0. (2.4)
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We define the operator T(θ,q) from P ′ to P ′ as follows:

〈T(θ,q)u, f〉 = −〈u, T(θ,q)f〉, f ∈ P, u ∈ P ′.

In particular,
(T(θ,q))n = −θn,q(u)n−1, n ≥ 0,

where (u)−1 = 0 and

θn,q = [n]q + θ
1− (−1)n

2
, n ≥ 0, (2.5)

here [n]q, n ≥ 0, denotes the basic q-number defined by

[n]q =
1− qn

1− q
= 1 + q + ...+ qn−1, n ≥ 1, [0]q = 0.

According to the definitions of Tµ and T(θ,q), we have

Tµ(x
n) = µnx

n−1, T(θ,q)(x
n) = θn,qx

n−1.

3. The main results

In this section, we will look for all symmetric MOPS satisfying (1.3). We distinguish two cases.
The first case is when L = Tµ and the second one is when L = T(θ,q).

3.1. First case: when L = Tµ

Theorem 2. The only symmetric MOPS satisfying a Tµ-difference equation of the form

Φ(x)TµPn+1(x) = (ξnx+ ϑn)Pn+1(x) + λnPn(x), n ≥ 0, (3.1)

where Φ is a monic polynomial (even), degΦ ≤ 2, are, up a dilation, the generalized Hermite
polynomials and the generalized Gegenbauer polynomials.

P r o o f. Let {Pn}n≥0 be a symmetric MOPS satisfying (3.1). Since Φ is a monic, even and
degΦ ≤ 2, then we distinguish two cases: Φ(x) = 1 and Φ(x) = x2 + c.

Case 1. Φ(x) = 1, then (3.1) becomes

TµPn+1(x) = (ξnx+ ϑn)Pn+1(x) + λnPn(x), n ≥ 0.

By comparing the degrees in the last equation (in xn+2 and xn+1), we obtain ξn = ϑn = 0, n ≥ 0
and then

TµPn+1(x) = λnPn(x), n ≥ 0. (3.2)

Identifying coefficients in the monomials of degree n in the last equation, we obtain

λn = µn+1, n ≥ 0. (3.3)

On the other hand, applying the operator Tµ to (2.1) with βn+1 = 0 and using (2.3), we get

TµPn+2(x) =
(
1 + 2µ(−1)n+1

)
Pn+1(x) + x(TµPn+1)(x)− γn+1(TµPn)(x), n ≥ 0.

Substituting (3.2) and (3.3) in the last equation and taking into account the fact that

1 + 2µ(−1)n+1 = µn+2 − µn+1,
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we get
µn+1Pn+1(x) = µn+1xPn(x)− µnγn+1Pn−1(x), n ≥ 0.

From (2.1), the last equation is equivalent to

µn+1γnPn−1(x) = µnγn+1Pn−1(x), n ≥ 0,

hence,
µn+1γn = µnγn+1, n ≥ 1.

Therefore,

γn+1 =
γ1
µ1

µn+1, n ≥ 1.

Since the last relation remains valid for n = 0, then we have

γn+1 =
γ1
µ1

µn+1, n ≥ 0.

Using (2.2), where a2 = 2γ1/µ1, we obtain

β̃n = 0, γ̃n+1 =
µn+1

2
, n ≥ 0.

So, we meet the recurrence coefficients for the generalized Hermite polynomial sequence (see [8]).

Case 2. Φ(x) = x2 + c, then (3.1) becomes

(x2 + c)TµPn+1(x) = (ξnx+ ϑn)Pn+1(x) + λnPn(x), n ≥ 0. (3.4)

Identifying the coefficients of higher degree in both sides of (3.4), we obtain ξn = µn+1, n ≥ 0.
Therefore, (3.4) becomes

(x2 + c)TµPn+1(x) = (µn+1x+ ϑn)Pn+1(x) + λnPn(x), n ≥ 0. (3.5)

Applying the operator Tµ to (2.1) with βn+1 = 0 and using (2.3) and the fact that

1 + 2µ(−1)n+1 = µn+2 − µn+1,

we get

TµPn+2(x) = (µn+2 − µn+1)Pn+1(x) + x(TµPn+1)(x) − γn+1(TµPn)(x), n ≥ 0.

Multiplying the previous equation by x2 + c and using (3.5), we get

(µn+2x+ ϑn+1)Pn+2(x) + λn+1Pn+1(x) = (µn+2 − µn+1)(x
2 + c)Pn+1(x)+

(µn+1x
2 + ϑnx)Pn+1(x) + λnxPn(x)− γn+1

(
(µnx+ ϑn−1)Pn(x) + λn−1Pn−1(x)

)
, n ≥ 1,

or, equivalently,

(ϑn+1 − ϑn)xPn+1(x)− c(µn+2 − µn+1)Pn+1 + λn+1Pn+1(x)

= λnxPn(x) + γn+1

(
(µn+2x+ ϑn+1)Pn(x)− (µnx+ ϑn−1)Pn(x)− λn−1Pn−1(x)

)
, n ≥ 1.

(3.6)

Comparing the degrees in the last equation, we obtain ϑn+1 = ϑn, n ≥ 1. But, from (3.5) and the
fact that {Pn}n≥0 is symmetric, where n = 0 and n = 1, we get, respectively,

v0 = 0, λ0 = c(1 + 2µ),

v1 = 0, λ1 = 2(γ1 + c).
(3.7)
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Thus,

ϑn = 0, n ≥ 0.

Therefore, (3.6) becomes

c(µn+1 − µn+2)Pn+1(x) + λn+1Pn+1(x)

= λnxPn(x) + γn+1

(
(µn+2 − µn)xPn(x)− λn−1Pn−1(x)

)
, n ≥ 1.

Taking into account (2.1), we get

(
λn+1 + c(µn+1 − µn+2)

)
xPn(x)− γn

(
λn+1 + c(µn+1 − µn+2)

)
Pn−1(x)

=
(
λn + (µn+2 − µn)γn+1

)
xPn(x)− λn−1γn+1Pn−1(x), n ≥ 1.

Then,

λn+1 + c(µn+1 − µn+2) = λn + (µn+2 − µn)γn+1, n ≥ 1, (3.8)

(
λn+1 + c(µn+1 − µn+2)

)
γn = λn−1γn+1, n ≥ 1. (3.9)

Since µn+2 − µn = 2, then, substitution of (3.8) in (3.9) gives

(λn + 2γn+1)γn = λn−1γn+1, n ≥ 1.

Therefore,
λn

γn+1
=

λn−1

γn
− 2, n ≥ 1.

So,

λn =
λ0 − 2nγ1

γ1
γn+1, n ≥ 1. (3.10)

It is clear that (3.10) remains valid for n = 0. Then, we have

λn =
λ0 − 2nγ1

γ1
γn+1, n ≥ 0. (3.11)

Substitution of (3.11) in (3.8) gives

λn+1 =
λ0 − 2(n − 1)γ1

λ0 − 2nγ1
λn + c(µn+2 − µn+1), n ≥ 1.

By virtue of fourth equality in (3.7), we obtain that the previous equation remains valid for n = 0.

Hence,

λn+1 =
λ0 − 2(n − 1)γ1

λ0 − 2nγ1
λn + c(µn+2 − µn+1), n ≥ 0. (3.12)

We will distinguish two situations: c = 0 and c 6= 0.

• If c = 0, then from (3.7) we have λ0 = 0. Therefore, λn = 0, n ≥ 0. Consequently, according
to (3.11) and the fourth equality in (3.7), γn+1 = 0, n ≥ 0. This contradicts the orthogonality
of {Pn}n≥0.

• If c 6= 0, using a dilatation, we can take c = −1. Putting

γ1 =
1 + 2µ

3 + 2µ+ 2α
,
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then (3.12) becomes

λn+1 =
2n+ 2α+ 2µ + 1

2n+ 2α+ 2µ + 3
λn + µn+1 − µn+2, n ≥ 0. (3.13)

From (3.13), we can easily prove by induction that

λn = −
µn+1(µn+1 + 2α)

2n+ 2α + 2µ+ 1
, n ≥ 0.

Thus, (3.11) gives

γn+1 =
µn+1(µn+1 + 2α)

(2n+ 2α + 2µ + 1)(2n + 2α+ 2µ + 3)
, n ≥ 0.

So, we meet the recurrence coefficients for the generalized Gegenbauer polynomial (see [3, 8]). �

Remark 2. Notice that when µ = 0 in (3.1), we again meet (1.1) for the symmetric case.

3.2. Second case: when L = T(θ,q)

Theorem 3. The only symmetric MOPS satisfying a T(θ,q)-difference equation of the form:

Φ(x)T(θ,q)Pn+1(x) = (ξnx+ ϑn)Pn+1(x) + λnPn(x), n ≥ 0, (3.14)

where Φ is a monic polynomial (even), degΦ ≤ 2, are, up a dilation, the q2-analogue of generalized
Hermite polynomials and the q2-analogue of generalized Gegenbauer polynomials.

P r o o f. Let {Pn}n≥0 be a symmetric MOPS satisfying (3.1). As in proof of Theorem 2, we
distinguish two cases: Φ(x) = 1 and Φ(x) = x2 + c.

Case 1. Φ(x) = 1, then (3.14) becomes

T(θ,q)Pn+1(x) = (ξnx+ ϑn)Pn+1(x) + λnPn(x), n ≥ 0. (3.15)

By comparing the degrees in (3.15), we obtain ξn = ϑn = 0, n ≥ 0. Then,

T(θ,q)Pn+1(x) = λnPn(x), n ≥ 0.

The comparison of the coefficients of xn in the previous equation leads to λn = θn+1,q, n ≥ 0.
Therefore,

T(θ,q)Pn+1(x) = θn+1,qPn(x), n ≥ 0. (3.16)

Now, applying T(θ,q) to (2.1) with βn+1 = 0 and using (2.4), we get

T(θ,q)Pn+2(x) =

(
1 + θ − θ(q + 1)

1 − (−1)n+1

2

)
Pn+1(x)

+q x(T(θ,q)Pn+1)(x)− γn+1(T(θ,q)Pn)(x), n ≥ 0.

Substituting (3.16) in the last equation, we get

θn+2,qPn+1(x) =

(
1 + θ − θ(q + 1)

1− (−1)n+1

2

)
Pn+1(x)

+qθn+1,q xPn(x)− γn+1θn,qPn−1(x), n ≥ 0.
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Using the fact that
xPn = Pn+1 + γnPn−1,

we obtain
(
θn+2,q − 1− θ + θ(q + 1)

1 − (−1)n+1

2
− qθn+1,q

)
Pn+1(x)

= qθn+1,qγnPn−1(x)− θn,qγn+1Pn−1(x), n ≥ 0.

After easy calculations from (2.5), we have

θn+2,q − 1− θ + θ(q + 1)
1 − (−1)n+1

2
− qθn+1,q = 0, n ≥ 0. (3.17)

Therefore,
(qθn+1,qγn − θn,qγn+1)Pn−1(x) = 0, n ≥ 0.

Hence,
qθn+1,qγn = θn,qγn+1, n ≥ 1.

Then, we can deduce by induction that

γn+1 =
γ1

1 + θ
qn θn+1,q, n ≥ 1.

Moreover, the previous identity remains valid for n = 0, thus

γn+1 =
γ1

1 + θ
qn θn+1,q, n ≥ 0.

Then, according to (2.2), with the choice

a2 = q(q + 1)
γ1

1 + θ

and putting

µ =
1 + θ

q(q + 1)
−

1

2
,

we obtain

β̃n = 0, γ̃n+1 = qn
θn+1,q

q(q + 1)
, n ≥ 0,

which are the recurrence coefficients for the q2-analogue of generalized Hermite polynomial

H
(µ,q2)
n [12], with

µ =
1 + θ

q(q + 1)
−

1

2
.

Case 2 : Φ(x) = x2 + c, then in this case (3.14) becomes

(x2 + c)T(θ,q)Pn+1(x) = (ξnx+ ϑn)Pn+1(x) + λnPn(x), n ≥ 0. (3.18)

By comparing terms of higher degree in the previous equation, we obtain

ξn = θn+1,q, n ≥ 0.

Then, equation (3.18) becomes

(x2 + c)T(θ,q)Pn+1(x) = (θn+1,qx+ ϑn)Pn+1(x) + λnPn(x), n ≥ 0. (3.19)
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Applying the operator T(θ,q) to (2.1) with βn+1 = 0 and using (2.4), we get

T(θ,q)Pn+2(x) =

(
1 + θ − θ(q + 1)

1 − (−1)n+1

2

)
Pn+1(x)

+qx(T(θ,q)Pn+1)(x)− γn+1(T(θ,q)Pn)(x), n ≥ 0.

By (3.17), the last equation becomes

T(θ,q)Pn+2(x) = (θn+2,q − qθn+1,q)Pn+1(x)

+qx(T(θ,q)Pn+1)(x)− γn+1(T(θ,q)Pn)(x), n ≥ 0.

Multiplying the above equation by x2 + c and substituting (3.19) into the result, we get

(θn+2,qx+ ϑn+1)Pn+2(x) + λn+1Pn+1(x) = (θn+2,q − qθn+1,q)(x
2 + c)Pn+1(x)

+q(θn+1,qx
2 + ϑnx)Pn+1(x) + qλnxPn(x)− γn+1

(
(θn,qx+ ϑn−1)Pn(x) + λn−1Pn−1(x)

)
, n ≥ 1.

Substituting of (2.1) in the previous equation, we get

(ϑn+1 − qϑn)xPn+1(x) +
(
λn+1 − c(θn+2,q − qθn+1,q)

)
Pn+1(x) =

qλnxPn(x) + γn+1

(
((θn+2,q − θn,q)x+ ϑn+1 − ϑn−1)Pn(x)− λn−1Pn−1(x)

)
, n ≥ 1.

The comparison of the coefficients of xn+2 in the previous equation gives ϑn+1 = qϑn, n ≥ 1 and
putting n = 0 and n = 1 in (3.19), we get respectively

v0 = 0, λ0 = c(1 + θ),

v1 = 0, λ1 = (1 + q)(γ1 + c).
(3.20)

Hence, ϑn = 0, n ≥ 0.
Therefore, the last equation becomes

(
λn+1 − c(θn+2,q − qθn+1,q)

)
Pn+1(x)

= qλnxPn(x) + γn+1

(
(θn+2,q − θn,q)xPn(x)− λn−1Pn−1(x)

)
, n ≥ 1.

Using the fact that Pn+1 = xPn(x)− γnPn−1, the above equation is equivalent to

(
λn+1 − c(θn+2,q − qθn+1,q)

)
xPn(x)− γn

(
λn+1 − c(θn+2,q − qθn+1,q)

)
Pn−1(x)

=
(
qλn + (θn+2,q − θn,q)γn+1

)
xPn(x)− λn−1γn+1Pn−1(x), n ≥ 1.

Then, we deduce

λn+1 − c(θn+2,q − qθn+1,q) = qλn + (θn+2,q − θn,q)γn+1, n ≥ 1, (3.21)
(
λn+1 − c(θn+2,q − qθn+1,q)

)
γn = λn−1γn+1, n ≥ 1. (3.22)

Since
θn+2,q − θn,q = (1 + q)qn,

then the substitution of (3.21) in (3.22) gives

(qλn + (1 + q)qnγn+1)γn = λn−1γn+1, n ≥ 1,

therefore,

qλn =

(
λn−1

γn
− (1 + q)qn

)
γn+1, n ≥ 1.
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We can easily deduce by induction that

qnλn =

(
λ0

γ1
− q(q + 1)[n]q2

)
γn+1, n ≥ 1.

It is clear that the previous identity remains valid for n = 0. Then, we have

qnλn =

(
λ0

γ1
− q(q + 1)[n]q2

)
γn+1, n ≥ 0. (3.23)

Now, we will determine λn. By (3.23), we have

γn+1 = qn
γ1

λ0 − q(q + 1)γ1[n]q2
λn, n ≥ 0. (3.24)

Therefore, (3.21) becomes

λn+1 =
qλ0 − (q + 1)γ1([n]q2 − 1)

λ0 − q(q + 1)γ1[n]q2
λn + c(θn+2,q − qθn+1,q), n ≥ 1.

By virtue of (3.20), we obtain that the previous equation remains valid for n = 0.
Then,

λn+1 =
qλ0 − (q + 1)γ1([n]q2 − 1)

λ0 − q(q + 1)γ1[n]q2
λn + c(θn+2,q − qθn+1,q), n ≥ 0. (3.25)

We will distinguish two situations: c = 0 and c 6= 0.
• If c = 0, then from (3.20) λ0 = 0. Therefore, λn = 0, n ≥ 0. Consequently, according to

(3.24) and the fourth equality in (3.20), γn+1 = 0, n ≥ 0. This contradicts the orthogonality
of {Pn}n≥0.

• If c 6= 0, using a suitable dilatation, we can suppose that c = −1. Putting

γ1 =
1 + θ

1 + θ + q(q + 1)(α + 1)
. (3.26)

Equation (3.25) becomes

λn+1 = q
q(q + 1)(α + 1) + θ2n−1,q

q(q + 1)(α + 1) + θ2n+1,q
λn − (θn+2,q − qθn+1,q), n ≥ 0. (3.27)

Therefore, from (3.27), we can prove by induction that

λn = −
θn+1,q

(
q(q + 1)(α+ 1) + θn−1,q(1 + θ(1− q)(1− (−1)n)/2 )

)

q(q + 1)(α+ 1) + θ2n−1,q
, n ≥ 0. (3.28)

By virtue of (3.24), (3.26) and (3.28), we get

γn+1 = qn
θn+1,q

(
q(q + 1)(α + 1) + θn−1,q(1 + θ(1− q)(1 − (−1)n)/2)

)

(
q(q + 1)(α + 1) + θ2n−1,q

)(
q(q + 1)(α + 1) + θ2n+1,q

) , n ≥ 0.

So, we meet the recurrence coefficients for the q2-anlogue of generalized Gegenbauer polynomial

S
(α,β,q2)
n , with

β =
1 + θ

q(q + 1)
− 1

(see [12]). �

Remark 3. Notice that when q → 1, we recover the result in Theorem 2 and when θ = 0
in (3.14), we again meet (1.2) for symmetric case.
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4. Conclusion

To conclude this paper, we will present two tables in which we give the only symmetric MOPS
verifying the L-difference (1.3).

Polynomial Φ ξn ϑn λn

Generalized Hermite H
(µ,q2)
n 1 0 0 µn+1, n ≥ 0

Generalized Gegenbauer S
(α,β,q2)
n x2 − 1 µn+1 0 −

µn+1(µn+1 + 2α)

2n+ 2α + 2µ + 1
, n ≥ 0

Table 1: Case when L = Tµ

Polynomial Φ ξn ϑn λn

q2-analogue of generalized
1 0 0 θn+1,q, n ≥ 0

Hermite H
(µ,q2)
n

q2-analogue of generalized x2 − 1 θn+1,q 0 −
θn+1,q

(
q(q+1)(α+1)+θn−1,q (1+θ(1−q)(1−(−1)n)/2)

)

q(q+1)(α+1)+θ2n−1,q
,

Gegenbauer S
(α,β,q2)
n n ≥ 0.

Table 2: Case when L = T(θ,q)

Remark 4. In this paper, we have studied only the symmetric case. The question for non-
symmetric case remains open.
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