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Abstract: We consider the problem of an enhanced evasion for linear discrete-time systems, where there are
two conflicting bounded controls and the aim of one of them is to be guaranteed to avoid the trajectory hitting
a given target set at a given final time and also at intermediate instants. First we outline a common solution
scheme based on the construction of so called solvability tubes or repulsive tubes. Then a much more quick and
simple for realization method based on the construction of the tubes with parallelepiped-valued cross-sections
is presented under assumptions that the target set is a parallelepiped and parallelotope-valued constraints on
controls are imposed. An example illustrating this method is considered.
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1. Introduction

We consider linear discrete-time systems under conflicting controls that may have different aims.
Namely, the aim of the one control may be to guide the trajectory to a given target set, and the
aim of the other control may be the opposite. This gives rise to two subproblems under conditions
of uncertainty, namely, the approach problem and the evasion one.

There are well known approaches for solving the problems of such sort that are based on the
construction of special tubes of trajectories known as stable bridges or solvability tubes [2, 16–19].
Since an exact construction of trajectory tubes is usually a very complicated problem, different
numerical methods are being devised. Of the many works, we only indicate as examples [1–15,
17–22, 24], including those based on estimation of sets by more simple sets such as ellipsoids
[1, 2, 4–6, 17–20] and parallelepipeds/parallelotopes [9–15, 21, 22]. In particular, for discrete-
time systems, ellipsoidal and polyhedral solution schemes have been developed for the terminal
target approach problem and the terminal evasion problem at a given final time (see, for example,
[2, 11, 12, 20] and [14] for both problems respectively). But two methods presented in [14] guarantee
the evasion from the given set only at the given final time. Computer simulations corroborate this.

The present paper is devoted to solving the problem of enhanced evasion for linear discrete-time
systems with two bounded controls, where the aim of one of them is to avoid, regardless of the
actions of the other, the trajectory hitting the given target set not only at the final time, but also at
intermediate instants. First the common solution scheme is outlined. Then a much more quick and
simple for realization method based on the construction of repulsive parallelepiped-valued tubes is
presented. In fact, here, in contrast to [14], a pair of polyhedral tubes is constructed and explicit
formulas for feedback control strategies are given on the base of both tubes. A corresponding
illustrative example is included.

Note that the solutions to the evasion problems may be useful for construction of dangerous
disturbances, for example, in problems of aircraft control [3, 22].
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We will use the following notation. Let the symbol Rn denotes the n-dimensional vector space;
‖x‖∞ = max1≤i≤n |xi| be the vector norm for x = (x1, . . . , xn)

⊤ ∈ R
n (we use ⊤ as the transposition

symbol); Rn×m be the space of real n×m-matrices A = {aji} = {aj} with elements aji and columns
aj (the superscript numbers the columns of the matrix and the subscript numbers the components
of vectors). Let diag π be the diagonal matrix A with aii = πi (where πi are the components of the

vector π); AbsA = {|aji |} for A = {aji} ∈ R
n×m. Let the symbol I stands for the identity matrix

and 0 stands for zero matrices and vectors; detA be the determinant of A ∈ R
n×n. The value of

sign z is equal to −1, 0, 1 for z < 0, z = 0, z > 0 respectively. We use the notation k = 1, . . . , N
instead of k = 1, 2, . . . , N for the sake of brevity.

2. Problem statements

Consider the following discrete-time system

x[k] = A[k]x[k−1] +B[k]u[k] + C[k]v[k], k = 1, . . . , N, (2.1)

where
u[k] ∈ R[k], v[k] ∈ Q[k], k = 1, . . . , N, (2.2)

with the target set M ⊂ R
n. Here x[k] ∈ R

n are states, the matrices A[k] ∈ R
n×n, B[k] ∈ R

n×nu,
C[k] ∈ R

n×nv are given and matrices A[k] are nonsingular; u[k] ∈ R
nu and v[k] ∈ R

nv are controls,
which may have different aims; M, R[k], and Q[k] are given compact sets. The functions u[·] and
v[·] satisfying (2.2) are called admissible.

We consider the evasion problem, where the aim of v is to guarantee x[N ] /∈ M and moreover
x[k] /∈ M for all k = 1, . . . , N−1 regardless of the admissible realizations of u, and formulate it as
follows.

Problem 1 (Evasion problem, enhanced evasion problem). For system (2.1)–(2.2), find sets
Ŵ[k], k = 0, 1, . . . , N , satisfying Ŵ[k] ⊇ M, k = 1, . . . , N , and find a corresponding feedback
control strategy v = v[k, x] satisfying v[k, x] ∈ Q[k], k = 1, . . . , N , such that each solution x[·] to
the equation

x[k] = A[k]x[k−1] +B[k]u[k] + C[k]v[k, x[k−1]], k = 1, . . . , N,

that starts from any initial point x[0] = x0 with x0 /∈ Ŵ[0] would satisfy x[k] /∈ Ŵ[k], k = 1, . . . , N ,
for all admissible functions u[·].

Similarly to [3, 22] the multivalued function Ŵ[·] with the crossections Ŵ [k], k = 0, 1, . . . , N ,
can be called a repulsive tube.

It is possible to formulate this problem in a form more close to statements and constructions
from [16, Ch. 2] if we consider the solvability tube W̌ [·] with cross-sections W̌[k] = R

n \ Ŵ [k],
where the symbol Rn \ X means the complement of X : R

n \ X = {x ∈ R
n |x /∈ X}. The term

“enhanced evasion problem” is used to emphasize the difference from the following problem.

Problem 1′ (Terminal evasion problem). It is similar to Problem 1, but we require Ŵ [k] ⊇ M
only for k = N .

As it will be presented below the solution to Problem 1 can be obtained through relations which
involve rather labor-consuming operations with sets, namely, Minkowski’s sum (X 1+X 2 = {y| y =
x1 + x2, xk ∈ X k}), Minkowski’s difference (X 1−̇X 2 = {y | y+X 1 ⊆ X 2}), union, and intersection.

Therefore we consider a similar polyhedral evasion problem under the assumptions which are
similar to [14].
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Assumption 1. Let matrices A[k] in (2.1) be nonsingular : detA[k] 6= 0, k = 1, . . . , N , the
sets R[k] and Q[k] in (2.2) be parallelotopes, and the target set M be a parallelepiped :

R[k] = P[r[k], R̄[k]], R̄[k] ∈ R
nu×nu ; Q[k] = P[q[k], Q̄[k]], Q̄[k] ∈ R

nv×nv ;

M = P(pf , Pf , πf).
(2.3)

By a parallelepiped P(p, P , π) ⊂ R
n we call a set defined as

P = P(p, P , π) = {x ∈ R
n|x = p+

n
∑

i=1

piπiξi, ‖ξ‖∞ ≤ 1}.

Here p ∈ R
n; P = {pi} ∈ R

n×n is a nonsingular matrix (detP 6= 0) with columns pi such that
‖pi‖2 = 1; π ∈ R

n, π ≥ 0. We call p the center of the parallelepiped and P its orientation matrix.
Note that the above conditions ‖pi‖2 = 1 for the Euclidean norm may be omitted to simplify
formulas. We say that a parallelepiped is nondegenerate if all πi > 0.

By a parallelotope P[p, P̄ ] ⊂ R
n we call a set defined as

P = P[p, P̄ ] = {x ∈ R
n|x = p+ P̄ ξ, ‖ξ‖∞ ≤ 1}.

Here p ∈ R
n and P̄ = {p̄i} ∈ R

n×m, m ≤ n, i.e., the matrix P̄ , which determines the shape, may be
singular and not square. We say that a parallelotope P is nondegenerate if m = n and det P̄ 6= 0.
Note that each parallelepiped P(p, P , π) is a parallelotope P[p, P̄ ], where P̄ = P ·diag π, and each
nondegenerate parallelotope P[p, P̄ ] is a parallelepiped P(p, P , π) with P = P̄ , π = (1, 1, . . . , 1)⊤.

Problem 2 (Polyhedral evasion problem). Under Assumption 1, find a solution of Problem 1
in a class of polyhedral tubes P [·] = P(p[·], P [·], π[·]) with parallelepiped-valued cross-sections. More-
over introduce a family of such tubes P [·] (i.e. instead of Ŵ[·] there are the tubes P [·]).

Recall that in [11, 12] the solutions to terminal target polyhedral approach problems are given
even for more general classes of systems, namely, for systems (2.1) with uncertainties / controls in
the matrices A[k] and with state constraints. There the families of the tubes P−[·] = P[p−[·], P̄−[·]]
with parallelotope-valued cross-sections and corresponding control strategies u[k, x] have been con-
structed to guarantee x[N ] ∈ M at the given final time N .

In [14], the following problem was considered.

Problem 2′ (Polyhedral terminal evasion problem). Under Assumption 1, find a solution of
Problem 1′ in a class of polyhedral (parallelotope-valued) tubes P+[·] = P[p+[·], P̄+[·]].

In [14], two techniques to solve Problem 2′ to ensure x[N ] /∈ M were presented using two
families of the tubes P+[·] = P[p+[·], P̄+[·]] and Pe[·] = P[pe[·], P̄ e[·]].

In the present paper, the first of these techniques is extended to solve Problem 2. Note that now
we will use the tubes P [·] with parallelepiped-valued cross-sections because this is more convenient
in order to take into account the set M at times k < N .

3. Main results

To solve Problem 1 let us consider the following system of recurrence relations for calculating
the tubes Ŵ[·] and Ŵ1[·]:

Ŵ0[k−1] = Ŵ [k] + (−B[k]R[k]), k = N, . . . , 1;

Ŵ1[k−1] = A[k]−1(Ŵ0[k−1]−̇C[k]Q[k]), k = N, . . . , 1;

Ŵ[k−1] = Ŵ1[k−1]
⋃

M, k = N, . . . , 2;

Ŵ [N ] = M; Ŵ[0] = Ŵ1[0].

(3.1)
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Theorem 1. Let the tubes Ŵ[·] and Ŵ1[·] satisfy (3.1) and all of their cross-sections appear
to be nonempty. Then the tube Ŵ[·] together with the control strategy v[k, x] of the following form

v[k, x] ∈

{

V[k, x] for x /∈ Ŵ1[k−1];

Q[k], otherwise,

V[k, x] = Q[x]
⋂

{v |C[k]v ∈ (Rn \ Ŵ0[k−1])−A[k]x}

(3.2)

give a solution to Problem 1.

P r o o f (Sketch of the proof). The lines of reasoning from [2, 10] with necessary modifications
can be used. First the relations for W̌[k] = R

n \ Ŵ[k] and W̌1[k] = R
n \ Ŵ1[k] can be written

using duality interconnections basing, for example, on [23, p. 137]. Let W̌[·] and W̌1[·] be found.
Inclusions W̌ [k] ⊆ R

n \M and Ŵ[k] ⊇ M follow from (3.1). Then we can verify, for any k, that if
x = x[k−1] ∈ W̌1[k−1], then we obtain V[k, x] 6= ∅ and

x[k] = A[k]x+B[k]u[k] + C[k]v[k, x] ∈ W̌[k]

for any v[k, x] ∈ V[k, x] and arbitrary u[k] ∈ R[k]. �

So, to guarantee x[k] /∈ M for all k = 1, . . . , N we first need to find the tubes Ŵ[·] and Ŵ1[·]
by solving recurrence relations (3.1) backward starting from Ŵ [N ] = M. Then starting from any
x0 /∈ Ŵ[0] we can apply an arbitrary control strategy v that satisfies (3.2). According to the proof,
if x0 /∈ Ŵ[0], then only the first line in (3.2) can be implemented.

Also note that, in general, the sets Ŵ[k] satisfying (3.1) are not guaranteed to be convex even
if R[k], Q[k], and M are convex, and the sets Rn \ Ŵ0[k−1] are the sets with holes.

To solve Problem 2, we use elementary external polyhedral estimates for results of operations
with sets. Recall that the result of a linear transformation of a parallelepiped is a parallelepiped
or a parallelotope. The so called touching external estimate P

+
V (Q) for the set Q with the ori-

entation matrix V can be found on the base of the values of the support function for Q [15]. It
is easy to find touching estimates P

+
V (P

1 + P2) and P
+
V (P

1
⋃

P2) for a sum and for a union of
parallelepipeds/parallelotopes using explicit formulas [15]. Minkowski’s difference P1−̇P2 of a par-
allelepiped and a parallelotope is either a parallelepiped or an empty set (concrete formulas can be
found in [9]).

Notice that to check whether a point x belongs to the parallelepiped P(p, P , π) it is useful to
use relative coordinates ξ = P−1(x− p).

Lemma 1. Given x ∈ R
n and P = P(p, P , π), let ξ = P−1(x− p). Then x /∈ P iff |ξi∗ | > πi∗

for some i∗ ∈ {1, . . . , n}.

To solve Problem 2 we introduce the system of the following recurrence relations for calculating
parallelepipeds P [k] = P(p[k], P [k], π[k]) and P1[k] = P(p1[k], P 1[k], π1[k]), which determine the
couple of the tubes P [·] and P1[·]:

P0[k−1] = P
+
P [k](P [k] + (−B[k]R[k])), k = N, . . . , 1;

P1[k−1] = A[k]−1(P0[k−1]−̇C[k]Q[k]), k = N, . . . , 1;

P [k−1] = P
+
P [k−1](P

1[k−1]
⋃

M), k = N, . . . , 2;

P [N ] = P
+
P [N ](M); P [0] = P1[0].

(3.3)
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Given the tubes P [·] and P1[·], let us introduce the notation:

ξ[k, x] = P 1[k−1]−1(x− p1[k−1]);

Θ[k] = P [k]−1C[k]Q̄[k];

Φ[k, x] = (diag π1[k−1])−1Abs ξ[k, x].

Here ξ[k, x] stands for the relative coordinates of x with respect to the cross-section

P1[k−1] = P(p1[k−1], P 1[k−1], π1[k−1])

of the tube P1[·]; the matrix Θ[k] is determined by the parameters of system (2.1), (2.2), and (2.3),
and by the cross-section P [k] = P(p[k], P [k], π[k]) of the tube P [·]; the vector Φ[k, x] is determined
by ξ[k, x] and the cross-section P1[k−1] of the tube P1[·].

Then we can apply several formulas for construction of the control strategy v[k, x] basing on
the main formula of the form

v0[k, x] = q[k] + Q̄[k]χ[k, x],

χj[k, x] = signΘj
i∗
[k] · sign ξi∗ [k, x], j = 1, . . . , nv.

(3.4)

Let us consider three following variants of the formulas:

v(0)[k, x] =

{

v0[k, x] for x /∈ P1[k−1];

arbitrary v ∈ Q[k], otherwise,
(3.5)

where i∗ in (3.4) is any index i∗ = i∗[k] ∈ {1, . . . , n} such that |ξi∗ [k, x]| > π1
i∗
[k−1];

v(1)[k, x] = v0[k, x], ∀x ∈ R
n, (3.6)

where i∗ = i∗[k] ∈ Argmax 1≤i≤nΦi[k, x];

v(2)[k, x] =

{

v(1)[k, x] for x /∈ P1[k−1];

q[k], otherwise.
(3.7)

Theorem 2. Under Assumption 1, let P [k], k = N, . . . , 1, be arbitrary nonsingular orientation
matrices (i.e., arbitrariness is allowed when choosing P [N ] and matrices P [k−1] in the 3rd line
in (3.3)) and system (3.3) has a solution such that all parallelepipeds P1[k], k = N, . . . , 1, turn
out to be nondegenerate. Then the tube P [·] together with each of the control strategies v(l)[k, x],
l ∈ {0, 1, 2}, from (3.5)–(3.7), which are determined by the couple of the tubes P [·] and P1[·], give
a particular solution to Problem 2.

P r o o f (Sketch of the proof). It can be verified, using Lemma 1, that if x[0] /∈ P [0], then the
control strategy v(0)[·, ·] ensures that x[k] /∈ P [k] for all k > 0. The control strategies v(1) and v(2)

are in fact special cases when v(0) is concretized. �

Remark 1. Theorem 2 depicts the parametric family of the tubes P [·]. Here the matrix
function P [·] appears as a parameter. We note two following heuristic techniques to choose P [k]
for k < N in the 3rd line in (3.3) (then only P [N ] is the parameter).

(a) Given P [k], put P [k−1] = P 1[k−1] = A[k]−1P [k].
(b) Put P [k−1] using arguments of local volume minimization of the type:

V ∈ Argmin V ∈{P 1,P 2}volP
+
V (P

1
⋃

P2),

where Pk = P(pk, P k, πk), k = 1, 2.
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Corollary 1. Theorem 2 is true, with an evident modification, if in the evasion problem the
aim of v is to ensure x[N ] /∈ M and x[k] /∈ M only for k ∈ K, where K is some subset of
{1, . . . , N−1} (in particular, we have K = ∅ if we require only x[N ] /∈ M). Namely, it is sufficient
to replace the formulas for P [k−1] in the 3rd line of (3.3)) by P [k−1] = P1[k−1] for all k−1 such
that k−1 /∈ K. Then, for K = ∅, the parallelepiped-valued tubes P [·] turn out to coincide with the
parallelotope-valued tubes P+[·] from [14, Theorem 1].

Note that the solutions to Problem 2 described by Theorem 2 can be easily calculated by the
explicit formulas.

So, to guarantee x[k] /∈ M for all k = 1, . . . , N we can find several pairs of the tubes P [·] and
P1[·], which are determined by recurrence relations (3.3). Then for a given x0 we can choose the
most suitable tube P [·], for example, similarly to [14, Sec. IV] (we need to fulfill the condition
x0 /∈ P [0] to meet the above claims for the trajectory) and apply any of the control strategies
v(l)[k, x], l ∈ {0, 1, 2}, from (3.5)–(3.7), which are determined by the selected tube P [·] and the
corresponding tube P1[·]. If we get x0 ∈ P [0] for all calculated tubes, then we, generally speaking,
cannot guarantee x[k] /∈ M for all k = 1, . . . , N , but this can happen for some of realizations of u[·].

4. Example

Let us illustrate the presented constructions on the example of the same system as in [14,
Sec. IV]. The system is obtained by Euler’s approximations of a differential one considered on an
interval t ∈ [0, θ]:

A[k] ≡ I + hN ·

[

0 1
−8 0

]

, B[k] ≡ hN · (0, 1)⊤, R[k] ≡ P(0, I, 1) ⊂ R
1,

C[k] ≡ hN · (1, 0)⊤, Q[k] ≡ P(0, I, 0.2) ⊂ R
1, M = P((−0.5, 0)⊤ , I, (0.5, 0.5)⊤),

hN = θ/N, θ = 2, N = 200.

Given x0, let us denote by A
1
v; A

2
v; A

1
u the following three aims: to ensure x[N ] /∈ M; x[k] /∈ M,

k = 1, . . . , N ; x[N ] ∈ M via control strategies v; v; u respectively. To construct these controls
v; v; u we will use the solutions to Problem 2′; to Problem 2; to the terminal target approach
problem from [11, 12] through construction of several tubes P+,α[·]; Pβ [·]; P−,γ [·] from parametric
families of the tubes described in [14, Theorem 1] and also in Corollary 1; in Theorem 2; in [11, 12]
respectively (see [14, the end of Sec. III] about using the families of the tubes for more details).

We consider 5 initial points

x0,1 = (−0.6, 2)⊤, x0,2 = (0, 1.5)⊤, x0,3 = (0.87,−1.5)⊤,

x0,4 = (0.88,−1.5)⊤, x0,5 = (1,−1.5)⊤

and construct corresponding trajectories xj,(i)[·], j = 1, . . . , 5, i = 1, 2, under controls v(i), i = 1, 2,
from (3.6) and (3.7). We consider two Tests. In Test 1, we apply controls v, u with aims A1

v, A
1
u

respectively; in Test 2, we apply controls v, u with aims A
2
v, A

1
u. Note that in Test 2 the aim

A
1
u is not opposite to A

2
v (constructing u with the aim A

2
u opposite to A

2
v is out of the scope of

this paper). It is possible to use several formulas to construct u basing on tubes P−,γ [·] (see, for
example, [12]). Here we have applied the formulas which are similar to [13, Formula (13)]. We do
not supply the trajectories xj,(i)[·] by numbers of the Tests to simplify the notation.

The results of computer simulations are visualized in Fig. 1, where cross-sections P+,α[0],
α = 1, . . . , 4, and Pβ [0], β = 1, . . . , 4, of several tubes calculated for solving Problem 2′ and
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Figure 1. Used constructions and results of evasion from M (dashed red lines) in Example: several cross-
sections P+,α[0] (left figure, blue thick lines), Pβ[0] (two right figures, blue lines), P−,γ [0] (green thin lines),
and the controlled trajectories under suitable control strategies vi, i ∈ {1, 2}, and u. (a) Test 1: using v(1)

based on P+,α[·]. (b) Test 2: using v(1) based on Pβ [·]. (c) Test 2: using v(2) based on Pβ[·]

Problem 2 respectively are shown by thick lines, cross-sections P−,γ [0], γ = 1, . . . , 3, by thin lines;
the target set M is presented by dashed lines. The tubes P+,α[·] and P−,γ [·] are the same as in
[14, Sec. IV]; Pβ [·] are constructed as described in Theorem 2 and Remark 1(b) under the same
orientation matrices P [N ] at the final instant as for P+,α[·].

The point x0,1 ∈ P−,γ∗ [0] for some γ∗ and we obtained x[N ] ∈ M (aim A
1
u is achieved) for all

trajectories started at x0,1 in both Test 1 and Test 2 as it is theoretically guaranteed similarly to
[12, Theorem 3.1].

Each of the points x0,j, j = 2, . . . , 5, is outside at least one of P+,α[0] (see Fig. 1(a)). In Test 1,
we obtained x[N ] /∈ M (aim A

1
v is achieved) for all trajectories started at these x0,j as it was

theoretically guaranteed by [14, Theorem 1] and also by Corollary 1. Note that in Test 1 xj,(i)[·],
j = 2, 3, i = 1, 2, hit M at some instants k < N . The reason is that in Test 1 we used controls v
designed for solving Problem 2′ but not Problem 2.

It is also curious that in Test 2 we obtained x2,(i)[N ] ∈ M, i = 1, 2, in opposite to Test 1. The
reason here is that we have used controls v(i) basing on the tubes Pβ [·] without the guarantee to
achieve the aim A

2
v because we have x0,2 ∈

⋂4
β=1 P

β [0].

The point x0,5 /∈ Pβ∗ [0] for some β∗ (see Fig. 1(b), Fig. 1(c)). In Test 2, we obtained x[k] /∈ M,
k = 1, . . . , N , (aim A

2
v is achieved) for the trajectories x5,(i)[·], i = 1, 2, started at x0,5 as it is

theoretically guaranteed by Theorem 2.

For the trajectories started at x0,j , j = 2, 3, 4, we have no any guarantees about hitting M in
Test 2 because we have x0,j ∈

⋂4
β=1P

β [0] for these j. And we obtained, in particular, the following

results in Test 2. For very close initial points x0,3 and x0,4 we obtained that x3,(1)[k] ∈ M and
x3,(2)[k] ∈ M for 1 and 13 instants k respectively; x4,(1)[k] /∈ M for all k, and x4,(2)[k] ∈ M for 14
instants k. Thus, in this example, v(1) turned out to be more successful than v(2) for the initial
points without guarantees.
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5. Conclusion

We deal with linear discrete-time systems under two conflicting controls and given target sets.
Two subproblems arrise, namely the approach problem and the evasion one. Formerly we elaborated
the polyhedral control synthesis for the terminal approach problem and for the terminal evasion
problem using polyhedral (parallelotope-valued) tubes. In this paper, the enhanced evasion problem
is considered to avoid the trajectory hitting the given target set not only at the given final time,
but also at intermediate instants. The common solution scheme is outlined. Then the solution
technique is elaborated based on polyhedral (parallelepiped-valued) tubes. The recurrence relations
with explicit formulas are presented for the couple of such tubes, the finding of which is much less
time-consuming than the construction of the exact solutions. Control strategies, which can be
calculated also by explicit formulas on the base of these tubes, are constructed. The illustrative
example demonstrating the theoretical results is presented.
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