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Abstract: In this paper, we introduce the concept of the Bα-classical orthogonal polynomials, where Bα is
the raising operator Bα := x2 · d/dx+

(

2(α− 1)x+1
)

I, with nonzero complex number α and I representing the

identity operator. We show that the Bessel polynomials B
(α)
n (x), n ≥ 0, where α 6= −m/2, m ≥ −2, m ∈ Z, are

the only Bα-classical orthogonal polynomials. As an application, we present some new formulas for polynomial
solution.
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1. Introduction

Let {B
(α)
n }n≥0 be the monic Bessel polynomial sequence. It satisfies the following explicit

expression [10, 23]

B(α)
n (x) =

n
∑

ν=0

(

n

ν

)

2n−νΓ(n+ 2α+ ν − 1)

Γ(2n+ 2α − 1)
xν , n ≥ 0, (1.1)

for α 6= −m/2, m ∈ N. To complete the definition, B
(α)
n (0) is set equal to

B(α)
n (0) = 2n

Γ(n+ 2α− 1)

Γ(2n + 2α − 1)
, n ≥ 0. (1.2)

It is well known that the monic Bessel polynomial sequence is classical and satisfies the following
relations [8, 10, 16, 23]:

–The Second-Order Differential Equation (SODE)

x2B(α)′′
n (x) + 2

(

αx+ 1
)

B(α)′
n (x) = n(n+ 2α− 1)B(α)

n (x), n ≥ 0. (1.3)

–The Lowering Relation (LR)

DB(α)
n (x) = nB

(α+1)
n−1 (x), n ≥ 1, (1.4)
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where D := d/dx is the standard derivate operator.

After a simple calculation, the SODE can be written for n ≥ 0 as follows

(

x2B(α)′

n (x)
)′

+
(

2
(

(α− 1)x+ 1
)

B(α)
n (x)

)′

= (n+ 1)(n + 2α − 2)B(α)
n (x). (1.5)

Using the LR (1.4), the equation (1.5) becomes for n ≥ 0

(

x2B(α)′
n (x) + 2

(

(α− 1)x+ 1
)

B(α)
n (x)

)′

= (n+ 2α− 2)B
(α−1)′

n+1 (x).

Using the primitive of the last equation, we get

x2B(α)′

n (x) + 2
(

(α− 1)x+ 1
)

B(α)
n (x) = (n+ 2α− 2)B

(α−1)
n+1 (x) +K,

with (α 6= −m/2, m ≥ −2, m ∈ Z), and where, using (1.2), we have

K = 2B(α)
n (0)− (n+ 2α− 2)B

(α−1)
n+1 (0) = 0.

Then we finally obtain the following Raising Relation (RR) satisfied by the monic Bessel polyno-
mials

BαB
(α)
n (x) = (n+ 2α− 2)B

(α−1)
n+1 (x), (1.6)

where Bα := x2D + 2
(

(α − 1)x + 1
)

I is called the degree raising shift operator for the Bessel
polynomials with I representing the identity operator. For more details see also the degree raising
shift operator for the family of classical orthogonal polynomials [13].

In view of (1.6), we can say that {B
(α)
n }n≥0 is an Bα-classical polynomial sequence, since it

satisfies the Hahn’s property with respect to the operators Bα, i.e., it is an orthogonal polynomial
sequence whose sequence of Bα-derivatives is also orthogonal. Note that an orthogonal polynomial
sequence {pn}n≥0 is called classical, if {p′n}n≥0 is also orthogonal (see [16–19]). This characterization
is essentially the Hahn–Sonine characterization (see [11, 21]) of the classical orthogonal polynomials.

In the same context, a natural question arises about the characterization of Bα-classical or-
thogonal polynomials. The purpose of this paper is to introduce the concept of the Bα-classical
polynomial sequence and to give a complete description of this family of orthogonal polynomials.
Note that many researches have been devoted to these topics where lowering, transfer and raising
operators have been used (see for example [1–7, 9, 11, 12, 20]).

The paper is organized as follows: Section 2 gives the basic notations and tools that will be
used throughout the paper. Section 3 deals with Bα-classical orthogonal polynomial sequence. In
Section 4, we put in evidence some differential relations satisfied by the polynomials solution of our
problem. In Section 5, we give a conclusion.

2. Preliminaries

Let P be linear space of polynomials in one variable with complex coefficients and P ′ be its
dual space, whose elements are linear functionals. We write 〈u, p〉 := u(p) (u ∈ P ′, p ∈ P). In
particular, we denote by (u)n := 〈u, xn〉, n ≥ 0, the moments of u. Let us define the following
operations on P ′. For any linear functional u, any polynomial f and any (a, b) ∈ C\{0} × C, let
Du := u′, fu, hau and τbu be the linear functionals defined by the duality [15, 16]

〈fu, p〉 := 〈u, fp〉, 〈u′, p〉 := −〈u, p′〉,

〈hau, p〉 := 〈u, hap〉 = 〈u, p(ax)〉, 〈τbu, p〉 := 〈u, τ−bp〉 = 〈u, p(x+ b)〉.
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A linear functional u is called normalized if it satisfies (u)0 = 1. We assume that the linear
functionals used in this paper are normalized.

Let {pn}n≥0 be a sequence of monic polynomials with deg pn = n, n ≥ 0 (MPS in short) and
let {un}n≥0 be its dual sequence, un ∈ P ′, defined by 〈un, pm〉 = δn,m, n, m ≥ 0. Notice that u0 is
said to be the canonical functional associated with the MPS {pn}n≥0 (see [16–18]).

Let us recall the following result.

Lemma 1 [16, 17]. For any u ∈ P ′ and any integer m ≥ 1, the following statements are equiv-
alent :

(i) 〈u, pm−1〉 6= 0, 〈u, pn〉 = 0, n ≥ m,

(ii) ∃λν ∈ C, 0 ≤ ν ≤ m− 1, λm−1 6= 0 such that u =

m−1
∑

ν=0

λνuν.

As a consequence, the dual sequence {u
[1]
n }n≥0 of {p

[1]
n }n≥0 where

p[1]n (x) := (n+ 1)−1Dpn+1(x), n ≥ 0,

is given by [16, 19] as
Du[1]n = −(n+ 1)un+1, n ≥ 0.

Similarly, the dual sequence {ũn}n≥0 of {p̃n}n≥0, where

p̃n(x) := a−npn(ax+ b)

with (a, b) ∈ C\{0} × C, is given by [16, 19]

ũn = an(ha−1 ◦ τ−b)un, n ≥ 0.

A linear functional u is called regular if we can associate with it a MPS {pn}n≥0 such that [16, 19]
as

〈u, pnpm〉 = rnδn,m, n,m ≥ 0, rn 6= 0, n ≥ 0.

The sequence {pn}n≥0 is then called a monic orthogonal polynomial sequence (MOPS in short)
with respect to u. Note that u = (u)0u0 = u0, since u is normalized.

Proposition 1. [16]. Let {pn}n≥0 be a MPS and let {un}n≥0 be its dual sequence. The follow-
ing statements are equivalent :

(i) {pn}n≥0 is orthogonal with respect to u0,

(ii) {pn}n≥0 satisfies the linear recurrence relation of order two

{

p0(x) = 1, p1(x) = x− β0,
pn+2(x) = (x− βn+1)pn+1(x)− γn+1pn(x), n ≥ 0,

where
βn = 〈u0, xp

2
n〉〈u0, p

2
n〉

−1, n ≥ 0,

and
γn+1 = 〈u0, p

2
n+1〉〈u0, p

2
n〉

−1 6= 0, n ≥ 0,

(iii) the dual sequence {un}n≥0 satisfies:

un = 〈u0, p
2
n〉

−1pnu0, n ≥ 0.
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A MOPS {pn}n≥0 is called D-classical, if {Dpn}n≥0 is also orthogonal (Hermite, Laguerre,
Bessel or Jacobi) [19]. Moreover, if {pn}n≥0 is orthogonal with respect to u0, then there exists a
monic polynomial φ with deg φ ≤ 2 and a polynomial ψ with degψ = 1 such that u0 satisfies the
Pearson’s equation (PE) [19]

D(φu0) + ψu0 = 0.

A second characterization of these polynomials is that they are the only polynomial solutions of
the SODE [8, 19],

φ(x)p′′n+1(x)− ψ(x)p′n+1(x) = λnpn+1(x), n ≥ 0,

where

λn = (n+ 1)
(1

2
φ′′(0)n − ψ′(0)

)

6= 0, n ≥ 0.

Note that if pn(x) = B
(α)
n (x), n ≥ 0, (α 6= −n/2, n ≥ 0) is the monic Bessel polynomial and

we write B(α) for u0, then the regular form B(α) satisfies the following PE [16, 19]

D
(

x2B(α)
)

− 2(αx + 1)B(α) = 0, (2.1)

and B
(α)
n (x), n ≥ 0 satisfies the SODE (1.3).

3. The Bα-classical polynomials

Recall the operator

Bα : P −→ P,

f 7−→ Bα(f) := x2f ′ + 2
(

(α− 1)x+ 1
)

f,

with α 6= −m/2, m ≥ −2, m ∈ Z.
Clearly, the operator Bα raises the degree of any polynomial. Such an operator is called raising

operator [14, 22].

Definition 1. We call a sequence {Pn}n≥0 of orthogonal polynomials Bα-classical if
{BαPn}n≥0 is also orthogonal.

For any MPS {Pn}n≥0 we define

Qn+1(x;α) :=
1

n+ 2α− 2
BαPn(x), n ≥ 0,

or equivalently

(n+ 2α− 2)Qn+1(x;α) := x2P ′
n(x) + 2

(

(α− 1)x+ 1
)

Pn(x), n ≥ 0, (3.1)

with initial value Q0(x;α) = 1.
Clearly, {Qn+1(.;α)}n≥0 is a MPS and

degQn+1(x;α) = n+ 1.

In the sequel, we write
Qn(x) := Qn(x;α), n ≥ 0,

if there is no ambiguity. Our next goal is to describe all the Bα-classical polynomial sequences.
Assume that {Pn}n≥0 and {Qn}n≥0 are MOPS satisfying

Pn+2(x) = (x−̟n+1)Pn+1(x)− γn+1Pn(x), n ≥ 0, (3.2)
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with initial values P0(x) = 1, P1(x) = x−̟0, and

Qn+2(x) = (x− θn+1)Qn+1(x)− ζn+1Qn(x), n ≥ 0, (3.3)

with initial values Q0(x) = 1, Q1(x) = x− θ0.
Next, a first result will be deduced as a consequence of relations (3.1), (3.2) and (3.3).

Proposition 2. The sequences {Pn}n≥0 and {Qn}n≥0 satisfy the following finite type relation

x2Pn(x) = Qn+2(x) + snQn+1(x) + tnQn(x), n ≥ 0,

where

sn = (n+ 2α− 2)
(

̟n − θn+1

)

, n ≥ 0,

tn = (n + 2α− 3)γn − (n+ 2α− 2)ζn+1, n ≥ 0,

with the convention γ0 = 0.

P r o o f. Differentiating (3.2), we obtain

P ′
n+2(x) = (x−̟n+1)P

′
n+1(x)− γn+1P

′
n(x) + Pn+1(x), n ≥ 0.

We multiply the last equation by x2 and the relation (3.2) by 2
(

(α− 1)x+1
)

, take the sum of the
two resulting equations, and substitute (3.1). Then, we get

(n+ 2α)Qn+3(x) = (n+ 2α− 1)(x−̟n+1)Qn+2(x)

−(n+ 2α− 2)γn+1Qn+1(x) + x2Pn+1(x), n ≥ 0.

Using the relation (3.3), we get

x2Pn+1(x) = Qn+3(x) + (n+ 2α− 1)
(

̟n+1 − θn+2

)

Qn+2(x)

+
(

(n + 2α − 2)γn+1 − (n+ 2α− 1)ζn+2

)

Qn+1(x), n ≥ 0.

In fact, this result is valid if n+ 1 is replaced by n with the convention γ0 = 0. Hence we got the
desired result. �

Note that, for n = 0, the Proposition 2 gives

x2 = Q2(x) + (2α − 2)(̟0 − θ1)Q1(x)− (2α − 2)ζ1Q0(x), (3.4)

and using the fact that

Q1(x) = x− θ0 = x+
1

α− 1
,

we obtain
Q2(x) = x2 + (2α− 2)(θ1 −̟0)x+ (2α− 2)ζ1 + 2(θ1 −̟0).

It gives by comparing with (3.3) for n = 0

θ1 =
−θ0 + 2(α − 1)̟0

2α− 1
=

1

(α− 1)(2α − 1)
+

2(α − 1)

2α− 1
̟0,

ζ1 =
θ0θ1 + 2(̟0 − θ1)

2α− 1
=

−1

(α− 1)2
.

Denote by u0 and v0 the regular forms (linear functionals) in P ′ corresponding to {Pn}n≥0 and
{Qn}n≥0 respectively. Then we can state the following result.
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Lemma 2. The following algebraic relation between the regular forms u0 and v0 holds

x2v0 =
2

(α− 1)
u0.

P r o o f. According to Proposition 2, we obtain
〈

x2v0, Pn(x)
〉

= 0, n ≥ 1. (3.5)

On the other hand, by (3.4) we have
〈

x2v0, P0(x)
〉

= 〈v0, Q2(x)〉 + 2(α− 1)(̟0 − θ1)〈v0, Q1(x)〉 − 2(α − 1)ζ1〈v0, Q0(x)〉r

= −2(α− 1)ζ1 =
2

(α− 1)
,

(3.6)

since {Qn}n≥0 is orthogonal with respect to the normalized form v0. According to Lemma 1 and
using (3.5) and (3.6), we obtain the desired result. �

Based on PE satisfied by the linear functional of B(α), we can state the following theorem.

Theorem 1. The sequence of Bessel polynomials {B
(α)
n }n≥0, with α 6= −m/2, m ≥ −2,

m ∈ Z, is the only Bα-classical orthogonal sequence. More precisely, Pn(x) = B
(α)
n (x) and

Qn(x) = B
(α−1)
n (x), n ≥ 0.

P r o o f. If we apply v0 in (3.1), we get for n ≥ 0

〈

v0, (n + 2α− 2)Qn+1(x)
〉

=
〈

v0, x
2P ′

n(x) + 2
(

(α− 1)x+ 1
)

Pn(x)
〉

= 0.

But the right hand side may be read as
〈

−D
(

x2v0
)

+ 2
(

(α− 1)x+ 1
)

v0, Pn(x)
〉

= 0, n ≥ 0.

Hence we have for all polynomials P , expanding P in the basis {Pn}n≥0, the following relation
〈

−D
(

x2v0
)

+ 2
(

(α− 1)x+ 1
)

v0, P (x)
〉

= 0.

In other words we have
(

x2v0
)′
− 2

(

(α− 1)x+ 1
)

v0 = 0. (3.7)

This implies that v0 is the Bessel functional B(α−1) according to the corresponding PE (2.1), i.e.,

Qn(x) = B(α−1)
n (x), n ≥ 0,

with α 6= −m/2, m ≥ −2, m ∈ Z.
Multiplying (3.7) by x2 and using Lemma 2, we obtain

(

x2u0
)′
− 2

(

αx+ 1
)

u0 = 0. (3.8)

Essentially (3.8) corresponds to the PE of linear functional B(α) of the sequence of Bessel

polynomials {B
(α)
n }n≥0. Hence, Pn(x) = B

(α)
n (x), n ≥ 0. �

In conclusion, we give the following relation, which is satisfied by Bessel polynomials

x2B(α)′

n (x) + 2
(

(α− 1)x+ 1
)

B(α)
n (x) = (n+ 2α− 2)B

(α−1)
n+1 (x), n ≥ 0

with α 6= −m/2, m ≥ −2, m ∈ Z.
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4. Representations of Bessel polynomials in terms of the action of linear

differential operators

In this section, we prove some higher order differential relations between the Bessel polynomials
(solution of our problem). First, we need the following fundamental relation

(

xD + (n+ α− 1)I
)

B(α/2)
n (x) = (2n + α− 1)B((α+1)/2)

n (x), (4.1)

which is obtained after a simple calculation from (1.1).

Theorem 2. The representation of Bessel polynomials B
((α+m)/2)
n (x) in terms of action of

linear differential operators on the Bessel polynomials B
(α/2)
n (x) is given by

B((α+m)/2)
n (x) =

Γ(2n+ α− 1)

Γ(2n + α+m− 1)

m
∑

k=0

(

m

k

)

Γ(n+ α+m− 1)

Γ(n+ α+m− k − 1)
xm−kDm−kB(α/2)

n (x),

n ≥ 0, m ≥ 0.

(4.2)

P r o o f. We prove this by induction on m ∈ N. For m = 0 this is obvious. Now, suppose (4.2)
holds and prove the same for m+1 instead of m. Indeed, by differentiating both sides of (4.2) and
using (1.4), we get, for all n ≥ 1,

B
((α+m+2)/2)
n−1 (x) =

Γ(2n + α− 1)

Γ(2n+ α+m− 1)

m
∑

k=0

(

m

k

)

Γ(n+ α+m− 1)

Γ(n+ α+m− k − 1)

×
[

(m− k)xm−k−1Dm−k−1 + xm−kDm−k
]

B
((α+2)/2)
n−1 (x), n ≥ 1.

Replacing α+ 1 by α, n− 1 by n and using the identity (4.1) we obtain for all n ≥ 0

B((α+m+1)/2)
n (x) =

Γ(2n+ α− 1)

Γ(2n+ α+m)

m
∑

k=0

(

m

k

)

Γ(n+ α+m− 1)

Γ(n+ α+m− k − 1)

×
[

(m− k)xm−k−1Dm−k−1 + xm−kDm−k
](

xD + (n+ α− 1)I
)

B(α/2)
n (x), n ≥ 0.

Equivalently

B((α+m+1)/2)
n (x) =

Γ(2n + α− 1)

Γ(2n + α+m)

m
∑

k=0

(

m

k

)

Γ(n+ α+m− 1)

Γ(n+ α+m− k − 1)

×
[

(m− k)(n + α+m− k − 2)xm−k−1Dm−k−1

+(n+ α+ 2m− 2k − 1)xm−kDm−k + xm+1−kDm+1−k
]

B(α/2)
n (x), n ≥ 0.

After some calculations, we finally obtain for all n ≥ 0

B((α+m+1)/2)
n (x) =

Γ(2n+ α− 1)

Γ(2n+ α+m)

m+1
∑

k=0

(

m+ 1

k

)

Γ(n+ α+m)

Γ(n+ α+m− k)

×xm+1−kDm+1−kB(α/2)
n (x), m ≥ 0.

Hence the desired result is proved. �
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5. Conclusion

We have described the Bα-classical orthogonal polynomials using the Pearson’s equation
that the corresponding linear functionals satisfy. More precisely, we have proved that the Bessel

polynomial sequence {B
(α)
n (x)}n≥0, where α 6= −m/2, m ≥ −2, m ∈ Z, is the only Bα-classical

sequence. As a consequence, some connection formulas between the corresponding polynomials
are deduced.
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23. Szegö G. Orthogonal Polynomials. Amer. Math. Soc. Colloq. Publ., vol. 23. Providence, Rhode Island:
Amer. Math. Soc., 1975. 432 p.

Appendix

Table A. Bessel polynomials.

{Bn}n≥0
⊥ B(α)

Φ(x) = x2, Ψ(x) = −2(αx+ 1),

β0 = −
1

α
, βn+1 =

1− α

(n+ α)(n+ α+ 1)
, n ≥ 0,

γn+1 = −
(n+ 1)(n+ 2α− 1)

(2n+ 2α− 1)(n+ α)2(2n+ 2α+ 1)
, n ≥ 0,

x2B′′
n+1(x) + 2(αx+ 1)B′

n+1(x)− (n+ 1)(n+ 2α)Bn+1(x) = 0,

x2B′
n+1(x) = (n+ 1)

(

x−
1

n+ α

)

Bn+1(x) − (2n+ 2α+ 1)γn+1Bn(x),

〈B(α), f〉 = J(α)−1

∫ +∞

0

x2α−2e−2/x

(
∫ +∞

x

ξ−2αe2/ξs(ξ)dξ

)

f(x)dx,

J(α) := 4

∫ +∞

0

t3−8αe2/t
4

e−t sin(t)

(
∫ t4

0

x2α−2e−2/xdx

)

dt,

s(x) =







0, x ≤ 0,

e−x1/4

sinx1/4, x > 0.
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