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Abstract: Let D/(R™) and £'(R™) be the spaces of distributions and compactly supported distributions
on R™, n > 2, respectively, let Eé (R™) be the space of all radial (invariant under rotations of the space R™)

distributions in £ (R™), let T' be the spherical transform (Fourier—Bessel transform) of a distribution T € 5h’ (R™),

and let Z4 (f) be the set of all zeros of an even entire function 7' lying in the half-plane Rez > 0 and not
belonging to the negative part of the imaginary axis. Let o, be the surface delta function concentrated on the
sphere S = {z € R™ : |z| = r}. The problem of L. Zalcman on reconstructing a distribution f € D/(R™) from
known convolutions f * o, and f * o, is studied. This problem is correctly posed only under the condition
r1/r2 & Mp, where M, is the set of all possible ratios of positive zeros of the Bessel function J,, /2. The paper
shows that if r1/r2 ¢ My, then an arbitrary distribution f € D’(R™) can be expanded into an unconditionally
convergent series

A\ N :
f= T (Pra(Q)((f % 0rg) * ) = Pry (A)((f % 0ry) % )
Aez§ﬁrl) uez%(:ﬁrz) (A2 = p2)Q2,, (N, (1) ( )

in the space D’'(R™), where A is the Laplace operator in R™, P, is an explicitly given polynomial of degree
[(n 4 5)/4], and Q, and Q) are explicitly constructed radial distributions supported in the ball |z| < r. The
proof uses the methods of harmonic analysis, as well as the theory of entire and special functions. By a similar
technique, it is possible to obtain inversion formulas for other convolution operators with radial distributions.

Keywords: Compactly supported distributions, Fourier—Bessel transform, Two-radii theorem, Inversion
formulas.

1. Introduction

The study of functions f € C(R?) with zero integrals over all sets congruent to a given compact
set of positive Lebesgue measure (for example, with zero integrals over all discs of a fixed radius
in R?) goes back to Pompeiu [17, 18]. Motivated by the works of Pompeiu, Nicolesco in his
paper [16] presents the following erroneous statement concerning integrals over circles of a fixed
radius: if a real-valued function u(x,%) belongs to the class C*(R?) for some s € Z,, r is a fixed
positive number, and the function

2
vs(z,y,r) = / u(x 4 rcosf, y+ rsinf)e*’do
0

does not depend on (z,y), then u(z,y) is a solution to the equation

i—l—'é 8( ) = const
5 Z@y u(z,y) = const.
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In particular, if © € C(R?) and u has constant integrals over all circles of fixed radius, then
u = const. The impossibility of such a result is shown by the following proposition from a paper
by Radon published back in 1917 (see [19, Sect. CJ).

Proposition 1. Let v > 0 be fized, and let A\r be an arbitrary positive zero of the Bessel
function Jy. Then, for any k € Z, the function

Ti(2) = Je(Ap)e™®  (p and @ are the polar coordinates of z)

has zero integrals over all circles of radius .

Similar examples related to the zeros of the Bessel function J,/,_; can also be constructed
for spherical means in R™ for n > 2. This shows that knowing the averages of a function f over
all spheres of the same radius is insufficient to reconstruct f uniquely. Subsequently, the class of
functions f € C'(R") that have zero integrals over all spheres of fixed radius in R™ was studied by
many authors see [2, 23, 25, 27, 35, 36], and the references therein). A well-known result in this
direction is the following analog of Delsarte’s famous two-radius theorem [6] for harmonic functions.

Theorem 1 [7, 33]. Let r1,r2 € (0,+00), let Yo, = {71,72,...} be the sequence of all positive
zeros of the function J,, ;o1 numbered in ascending order, and let M, be the sel of numbers of the
form «/B, where o, B € Y,

(1) Ifri/re ¢ M,, f € C(R"), and
/ fz)do(z) = / f(z)do(z) =0, yeR", (1.1)
|z—y|=r1 le—y|=r2

(do is the area element), then f = 0.

(2) If r1/ro € My, then there exists a nonzero real analytic function f : R™ — C satisfying the
relations in (1.1).

In terms of convolutions (see formula (2.2) below), Theorem 1 means that the operator

Pf= (f*o-h’f*o-m)’ S C(Rn) (1'2)

is injective if and only if r1/ry ¢ M,,. Hereinafter, o, is a surface delta function concentrated on
the sphere

Sy ={x eR": |z| =71},
that is,
(0rr0) = /S o@)do(x), @€ CRY).

In this regard, Zalcman [34, Sect. 8] posed the problem of finding an explicit inversion formula
for the operator P under the condition 71 /ry ¢ M, (see also [19, Sect. C]). A similar question for
ball means values was studied by Berenstein, Yger, Taylor, and others (see [1, 3, 4]). Note that
their methods are also applicable in the case of spherical means. In particular, the following local
result is valid (see the proof of Theorem 9 in [1]).
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Theorem 2. Let
ri/ro & M,, R>ri+ry, Br={xeR":|z| <R},
and let {e}72, be a strictly increasing sequence of positive numbers with limit
R/(r1+1r2)—1, Rr=(r1+r2)(1+4+ex), Ro=0.

Then, for all T > 0, r € [Ri_1, Ri), and every spherical harmonic 'Y of degree m on the unit sphere
S*=1, one can explicitly construct two sequences € and ®; of compactly supported distributions
in Br_r, and Br_,,, respectively, such that the following estimate holds for | > cm? and every
function f € C>*(BRg):

||
(ro)Y (0)do — (€1, f % 01y) — (D1, f * 00)| < LR = 1) V92 | O —f(x)|, (1.3)
gn-1 l la|<N|Ox
2| <R,
where

N =[(n+13)/2] +1, R = 2R+ Ry)/3,

and v and ¢ are positive constants depending on ri, ro, R, n, and €1.

Here it is appropriate to make a few remarks. The distributions €; and ®; have a very complex
form and are constructed as inverse Fourier—Bessel transforms to some linear combinations of
products of rational and Bessel functions (see the proof of Proposition 8 and Theorem 9 in [1]).
Further, every function f € C°°(Bpg) can be represented as a Fourier series

0o dm

F@) =33 fui)Y ™ (0), z=r0, oces™, (1.4)
m=0 j=1

dm

;2 is a fixed orthonormal basis in the space of

converging in the space C°°(Bpg), where {Yj(m)}
spherical harmonics of degree m on S*~1,

fm,j("") = - f(T‘o')Y'j(m) (g')dO'

(see, for example, [10, Ch. 1, Sect. 2, Proposition 2.7], [24, Sect. 1]). Therefore, estimate (1.3) as
[ — oo and expansion (1.4) imply the reconstruction of a function f € C°°(Bpg) from its spherical
means fx*o,, and f*o,, in the ball Br. The transition to the class C'(Bg) can be done by smoothing
f by convolutions of the form f * ¢., where . € C*°(R"), supp ¢. C B- (see [1, Sect. 3]).

The above remarks and Theorem 2 for R = oo give a procedure for finding a function from its
two spherical means. However, “explicit” inversion formulas for the operator (1.2) were unknown.
This work aims to solve this problem.

2. Statement of the main result

In what follows, as usual, C" is an n-dimensional complex space with the Hermitian scalar
product

(Cag)zzgjfj’ CZ(Cl"-'aCn)’ §:(§1,...,§n),
j=1
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D'(R™) and &'(R™) are the spaces of distributions and compactly supported distributions on R,
respectively.
The Fourier-Laplace transform of a distribution 7" € £'(R™) is the entire function

T(Q) = (T(x),e "), ¢ecCm
In this case, T grows on R™ not faster than a polynomial and

(T, 4) = (T,4), ¢ e€SRY, (2.1)

where S(R"™) is the Schwartz space of rapidly decreasing functions from C*°(R") (see [13, Ch. 7]). If
Ty, T, € D'(R™) and at least one of these distributions has compact support, then their convolution
Ty x Ty is a distribution in D'(R™) acting according to the rule

<T1 * T2a SD> = <T2(y)’ <T1 (x)’ Qp(x + y)>>’ pe D(Rn)’ (2'2)

where D(R™) is the space of finite infinitely differentiable functions on R™. For T3, T, € £'(R™), the
Borel formula o
T1 * T2 = T1 T2 (23)

is valid.

Let &(R") be the space of radial (invariant under rotations of the space R") distributions
in &(R™), n > 2. The simplest example of distribution in the class 55(1[%”) is the Dirac delta
function § with support at zero. We set

The spherical transform T’ of a distribution T € Sh' (R™) is defined as
T(z) = (T,¢.), z€C, (2.4)
where @, is a spherical function on R"”, i.e.,
e:(@) = 27T (S) Lo a(Hlal), @ €R"
(see [9, Ch. 4]). The function ¢, is uniquely determined by the following conditions:
(1) ¢, is radial and ¢, (0) = 1;
(2) ¢, satisfies the Helmholtz differential equation

A(pz) + 2%, = 0. (2.5)

We note that T is an even entire function of exponential type and the Fourier transform T is

expressed in terms of T as
TQ)=T(H/G+...+¢), cecC (2.6)

The set of all zeros of the function 7' that lie in the half-plane Re z > 0 and do not belong to the

negative part of the imaginary axis will be denoted by Z (7).
For T = o,, we have (see [27, Part 2, Ch. 3, formula (3.90)])

or(z) = (277)"/2r"*11n/2,1(7"z). (2.7)
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Hence, by the formula
L,(2) = —2Ly41(2) (2.8)

(see [12, Ch. 7, Sect. 7.2.8, formula (51)]), we find

Fh(z) = —(2m)" 2T, o (r2). (2.9)
Using the well-known properties of zeros of Bessel functions (see, for example, [12, Ch. 7, Sect. 7.9]),
one can obtain the corresponding information about the set Z, (o,). In particular, all zeros of 7,
are simple, belong to R\{0}, and

Z.(G,) = {ﬂﬁ} (2.10)

r’or
In addition, since the functions J,, /51 and J, /5 do not have common zeros on R\{0}, the function

1 Lo (M)

A [
oy (@) = rA\2 L, /2(Ar)

xr(z), Xe€ Z,(a,),

is well defined, where Yy, is the indicator of the ball B;.

Let
11/ ()2 _[n+5
Pr(z)—H<z <r>> m—[ = (2.11)
7=1
Q, = P.(A)o,. (2.12)
Then, by the formula
pm(z) = p(—=2*)T(z) (p is an algebraic polynomial), (2.13)
we have
Q,(2) = P(—2%)7,(2), (2.14)
S 7o 12 Ym
z,(Q)=42 2 rr o Zm 2.1
o) = {3 o ) 219
and all zeros of Qr are simple. Besides,
2, (W) N2 () =0 © ; ¢ M,. (2.16)
2
For A e Z, (ﬁr), we set
Q) = P.(A)o) (2.17)
if \ € Z,(0,) and
O} = Qra(A)o, (2.18)
if P,(—\?) =0, where
P (2)
a(2) = — , 2.19

The main result of this work is the following theorem.
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Theorem 3. Let .
L ¢ M, feD®RY), n>2
T2

Then

f= Z Z Zi)\',u —7 (P7"2(A)((f * Oy ) * QA)

2 _ 2
Nz (@) pezs(@ry) AN = 1) (M), (1) (2.20)
—Pr(B)((f <) <)),
where the series (2.20) converges unconditionally in the space D'(R™).

Equality (2.20) reconstruct a distribution f € D'(R"™) from its known convolutions f x o,
and f oy, (see (2.11), (2.14), (2.15), and (2.17)—(2.19)). Thus, Theorem 3 gives a solution to
the Zalcman problem formulated above. Note that there is great arbitrariness in the choice of
polynomials P, and P,, in formula (2.20) (see the proof of Corollary 1 and Lemma 5 in Section 3).
In particular, they can be defined fully explicitly without using the zeros of the function J,, ;5. For
other results related to the inversion of the spherical mean operator, see [5, 8, 11, 20, 21, 26, 28—-32].

3. Auxiliary statements

Let us first describe the properties of the functions I,,, which we will need later.

Lemma 1. (1) The following inequality holds for v > —1/2 and z € C:

e\Imz\
L (2)] < ST 1) (3.1)
(2) Ifv €R, then
1 ellm 2|
I(2)] ~ — ——%5, Imz— 0. (3.2)

/o ’Z‘V-f—l/Q ?

(3) Letv > —1 and let {’yl,j} | be the sequence of all positive zeros of the function I, numbered
in ascending order. Then

v 1 1
V=T j+———>+0<—,>, j — oo. 3.3
In addition,
. v+3/2 2
Jim (35)" " L ()| =4/ (3.4)

Proof. (1) By the Poisson integral representation [12, Ch. 7, Sect. 7.12, formula (8)], we

have
1

I, V—1/2d )
(z) = \/_F = 1/2 /CO& u?) u
0
Hence,
2!-v / |Im 2| 2\v—1/2
I, < “ ullmz[ (1 _ v=1/24
L < gy [ 0t
0
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21—V e 1\ sy eltm |
< - 0@ Z Z mezf _ __ -~
= /rl(v +1/2) 2 (2’”+ 2) c 2T(v+ 1)

which is required.
(2) The asymptotic expansion of Bessel functions [12, Ch. 7, Sect. 7.13.1, formula (3)] implies
the equality

2 [Tm z|
L(z)= \/;Zul/2 <cos (z - % - %) + O<e|7|>>, z—00, —w<argz<m (3.5)

Considering that
elmw|
‘COS’U}‘N 5 s Imw—>00,

by (3.5), we obtain (3.2).
(3) The asymptotic behavior (3.3) for the zeros of I, is well known (see, for example, [25, Ch. 7,
formula (7.9)]). Then

L2 .om 1 1 .
cos(’yy,j—7—z>:cos<7rj—§+0<;>>—O(;), j — oo.

. T
sin (’Yu,j 9 Z)‘ =1

It follows that
lim
]*)OO

Using this relation and the equality

9 [Im z|
Ii(z) = \/;z”3/2<sin <z— % — Z) +O<6’T‘>>, z— 00, —w<argz<m,

(see (3.5)), we arrive at (3.4). O

Corollary 1. For all r > 0,

)\GZ+(S~]T) |Q7" (A)|

Proof. Using (2.14) and (2.9), we find

/

Q, (V=P (=X)5h () = 2APL(=A2)5,(A) = —(2m)" 2" PP (= A2)L, o (rA) — 2APL(=A2)5,(N).

T

Now, from (2.10) and (2.15), we have

o0

1 = 1 1 1
Z ~/ = Z ~ /!, . + n/2,n Z . A2 /02 Nl
ez 1 LTI, (/) (27) P2 = | P (=7 /12) | T2 ()

This series is comparable with the convergent series
> s
j2m7(n71)/2

=1

(see (2.11), (3.3), and (3.4)). Hence, we obtain the required assertion. O
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Lemma 2. Let g: C — C be an even entire function, and let g(\) =0 for some A € C. Then

Ag(2)
22 _ )\2

< max , 2€C; 3.7
< max [o(C) (3.7

the left-hand side in (3.7) for z = £\ is extended by continuity.

Proof. Wehave

2)g(2) 9(z) _ 9(2) 9(2) 9(2)
= — < . 3.8
22— \? z2—A  zH+A| T z—)\+z—|—)\ (38)
Let us estimate the first term on the right-hand side of (3.8).
If |z — A| > 1, then
9(2)
< < . .
LB < lgte) < ma (o) (39)

Assume that |z — A| < 1. Then, applying the maximum-modulus principle to the entire function

9(¢)/(¢ — A), we obtain ) 0
g\z g
Y C——A‘ = 19(O)]-

Considering that the circle | — A| = 1 is contained in the disc |( — z| < 2, we arrive at the estimate

I¢=AI<1

9(2)
—| < 1
~ x| S K@;yy(ou (3.10)
which is valid for all z € C (see (3.9)).
Similarly,
9(2)
< 11
2| < b0, s (3.11)
because g(—\) = 0. From (3.10), (3.11), and (3.8) the required assertion follows. O

Lemma 3. The function o) satisfies the equation

A(e)) + X0} = -0, Ne Z.(5,). (3.12)
P roof. For every function ¢ € D(R"), we have

(A(0) +Na2, ) = (o7, (A + X))

1 In/271()‘|x|) 1 In/271()‘|x|)
- 22V A o) d — = 2V eV d.
A2 /|x|3r I,20w) ple)de — - /xgr I2(w) pla)da

We apply Green’s formula

ou ov
/G(vAu — ulAv)dx = /aG <v6_n - ua—n> do

to the former integral (see, for example, [22, Ch. 5, Sect. 21.2]). Since A € Z, (o, ), we have

1 In 2—1()“'7’")
A(o)) + Ao, o) = ——— A </7> z)dx

Of 0 (Tl 1 Ll
+T}‘2 /ST SD( )8n< In/Z()‘T) >d ( ) r/xﬁr In/Z()‘T) SD( )d .
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Hence, by (2.5), we obtain

L, 1(\|z
(atad) + 32020 = 5 [ ot (R ) anta)

Now, using the formula
9 /
B_n(f(‘x’)) = f'(|lz), n= ma

and relation (2.8), we find

1 L/2(A|z]) B B
<A(0’7>,\) + A207>,‘,(p> = /sr o(x) |z W do(x) = — /T p(x)do(x) = — (o, ¥).

This proves equality (3.12). O

Remark 1. From (2.13) and the injectivity of the spherical transform, it follows that, for
distributions U, T' € &(R") and A € Z,.(T),

= T(z)
277 _ _
Therefore, relation (3.12) implies the equality
—~ o,(z .
oMz) = = _( ))\2, A€ Z (o). (3.14)
Lemma 4. Let \ € Z+(§~2r). Then
O ﬁr(z)

P roof. Formula (3.15) easily follows from (2.13) and Remark 1. Indeed, if A € Z, (o, ), then,
by (2.17), (2.13), (3.14), and (2.14), we have

Similarly, if P.(—=A?) = 0, then

O\ —225,(2 NT »
OA(=) = Qpr(—2)5, () = LrE2)on(@) _ (h(z)

22 _ )2 22 _ )2
(see (2.18), (2.19), (2.13), and (2.14)). O
Lemma 5. Let o)
U= Q) Ae Z,.(Q). (3.16)
2, (V)
Then
Yo wr=5 (3.17)
AEZ4 (D)

where the series in (3.17) converges unconditionally in the space D'(R™).
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P roof. For an arbitrary function ¢ € D(R"), we define a function ¢ € S(R") as follows:

n/ o(z)e!@Vdr, yeR"

Then (see (2.1), (2.6), and (3.15))

A g) = (U5 2 M ()
<\Ilr7(p> - <\Ijr71/}> - 71/} / 1/} ‘.%" dl’ - Qr/()\) \/R" w(x)‘xp _)\de

Using this representation and Lemma 2, we get

‘<\I/r790 )\ o] \C |m||<2{~r(ﬁ)‘dx.
From (2.14), (2.7), and (3.1), we obtain
(i, (O] = @02 ma 1Pl a0
< S e P < I -0
Therefore,
@] < T o)) max [P (319

T (n/2)|Q, (\)] /2" ¢zl <2
This inequality and Corollary 1 show that the series in (3.17) converges unconditionally in the

space D'(R") to some distribution f supported in B,. By Lemma 4, the spherical transform of this
distribution satisfies the equality

fo= Y we= Y e (3.19)

AEZL () AeZ+(ﬁr) r ()‘)

In this case, if 4 € Z,(9,), then

= 1. (3.20)

Further, since f(z) — 1 and Q,(z) are even entire functions of exponential type, by (3.20) and the
simplicity of the zeros of 2, their ratio

is an entire function of at most first order (see [15, Ch. 1, Sect. 9, Corollary of Theorem 12]). For
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Imz = +Rez, z# 0, it is estimated as follows:

O
[ERERNE]

h(z)] <

1 1 1 1
— Z r/()\) <z -\ oz )\> + @m) P T P (=)L, 5y (12)]

ok

< ¥ 1 ( L >+ 1
- Q, (W Nz =2l 221 7 @n) 21 P (=22)T, 51 (r2)

2V/2 1 1
o> it

< .
. 8 0| @O R (2 (1)

AEZ4 ()

It can be seen from this estimate and relations (3.6) and (3.2) that

lim h(z) = 0.
Z—00
Imz=4Rez

(3.21)

Then, according to the Phragmén-Lindeldf principle, & is bounded on C. Now it follows from (3.21)

and Liouville’s theorem that h = 0. Hence, f =1, i.e., f = . Thus, Lemma 5 is proved.

Lemma 6. Let A € Z,(Q,), 1t € Z2:(Qy,). Then

A\
= =7

(N — @)W« 0l =
0yt (N, (1)

<Qr2 SO — Q. Qﬁg) .

Proof By (3.15), (3.13), and (3.16), we have

22
(A+02) (W) = =7,
Q.. ()
2
(A +M2) (\I]ﬁg) = = /:U' QTQ'
Q,,(1)

0

(3.22)

(3.23)

(3.24)

From (3.23), (3.16) and the permutation of the differentiation operator with convolution, we obtain

(A+02) () +wt) = g ean
Q,, (N, (1)
Similarly, it follows from (3.24) that
4
_(A + //’2) <\II?1 * \1]52) = # QTQ * Qﬁl
Q,, (N, (1)

Adding the last two equalities, we arrive at relation (3.22).
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4. Proof of Theorem 3

By Lemma 5, we obtain

Yoo =4, >k = (4.1)

)\EZ+(§T1) ﬂ€Z+(ﬁT2)

We claim that

> oW Rk =5, (4.2)

NEZ4 () HEZ4 (Rry)

where the series in (4.2) converges unconditionally in the space D'(R"). Let ¢ € D(R"), ¥ € S(R"),
and let ¢ = . For A € Z,(Q,,) and p € Z,(Q,,), we have (see (2.3) and the proof of esti-
mate (3.18))

|<\Ilf)1 * \IJﬁQ,cpﬂ = |<\p>\ * Wk A>| ‘<\Il)‘ \I/ﬁg, | = ‘/ »(z ]w\ Qﬁé(\x!)dw

; T )\ﬁrl(|$|) ,U'Qrg(|$|) N
‘Qri()‘)ﬁr;(u){ /n )|:c|2 — 22 |22 _,U2d
< 15573"(7"{42,)”_162(7,1“2)/

{Qm ()\)Qm (M){PQ (n/z)

—(2 2
@) max |y (=¢*)] max |Pr(=C*)|de.

This and (3.6) imply that

> ( > |<\IIA*\IJ¢,‘2,Q0>‘><OO.

AEZy (ﬁrl ) NEZ+(QT2 )

Therefore (see, for example, [14, Ch. 1, Theorem 1.24]), the series in (4.2) converges unconditionally
in the space D'(R™). In addition (see (2.2) and (4.1)),

> Y @ ¥ (X o eeer))

AEZ1 (D)) HEZ 4 (Qry) AEZ1(Qry) HEZ+(Qry)

= > (T (2), 0(@)) = ¢(0),

AEZ4 (D)

which proves (4.2).
Convolving both parts of (4.2) with f and taking into account the separate continuity of the
convolution of f € D'(R") with g € &'(R™), (3.22) and (2.16), we find

AN A
f= ([ * () — f* (U x Q). (4.3)
AEZ%TI) MEZ%:QW) (A2 - 'u2)QT1 ()‘)Qrz (,u)

Finally, using (4.3), (2.12), and the commutativity of the convolution operator with the differenti-
ation operator, we arrive at formula (2.20). Thus, Theorem 3 is proved. O
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5. Conclusion

The proof of Theorem 3 shows that the key role in formula (2.20) is played by the expansion
of the delta function into a series of distributions W7, A € Z;(€2,) (see Lemma 5). This system of
distributions is biorthogonal to the system of spherical functions ¢,, 1 € Z24(Q,), i.e.,

0 if w#A
T p,) = ’
< r QOH> {1 lf M:)\

(see (2.4), (3.15) and (3.16)). Using similar expansions, it is possible to obtain inversion formulas
for other convolution operators with radial distributions.
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