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Abstract: This paper deals with the problem of Black–Scholes pricing for the Quanto option pricing with
power type powered and powered payoff underlying foreign currency is driven by Brownian motion and Poisson
jumps, via risk-neutral probability measure. Our approach in this work is probabilistic, based on Feynman–Kac
formula.
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1. Introduction

This study focuses on the pricing of Quanto options with a powered-power payoff, where the
underlying foreign currency is driven by a combination of Brownian motion and Poisson jumps,
with the aim of avoiding arbitrage. Quanto options are derivatives that permit investors to acquire
foreign assets without being exposed to the corresponding foreign exchange risk. These options are
typically used when an investor wants to gain exposure to foreign assets without assuming foreign
exchange risk [6]. For instance, if an investor wants to invest in a foreign market but does not want
to take on the associated foreign exchange risk, they could utilize. Although, swap options remain
a valuable strategic tool for the financial institutions by managing currency risks and exploring
the opportunities from international markets. The main reason that traders buy and sell these
assets is covering their risks in currency exposure, in addition to speculating that expected foreign
currency appreciation will happen. So, this trading allows investors to take advantage of this real
appreciation. Along with that, these financial instruments are multi-functional and cover more areas
as portfolio diversification, tax optimization, the reduction of risk, etc. At times, a circumstance,
where an investor tries to overcome currency problems and at the same time, manage their tax
implications and portfolio diversification by using Quanto option which exists.

Conventionally, Quanto options have been solved using the Black–Scholes model as the under-
lying asset opinions under the guard condition of volatile constantly [1]. Although volatility imply
method involves smiles and skews, however it is not a reason which leads to confusion. Address-
ing this, a series of local and volatility models are adopted, with a volatility, which is considered
as a deterministic function of multiple factors such as the asset’s price, underlying asset, current
time, maturity, and option strike price. Local variability hypothesis of Quanto options addresses
the accuracy of option price by overcoming the constraint of exogenously assumed volatility of
options inherent in Black–Scholes model. In actual, Dupire [4] and Derman [3] were the leading
researchers that developed and enhanced the permanent local volatility model as they identified a
special diffusion process that is in line with the observed densities of the risk neutral probabilities
which are derived from the implied volatility surfaces obtained from the European-style options in
the market. The main advantage of local volatility models is their simplicity which is such that a
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randomness source is just one input, the price of underlying assets, thus giving the ability to easily
calibrate. Here we have the power option that is a derivative in which the payoff is depended upon
the underlying assets in the square root, cubic form, etc. Through this structure, the purchaser will
be able to go for one side with respect to specific derivative or its volatility, or he will be left out
depending on the trend observed in the Vanilla Options. Power options are commonly associated
with the difference in the current price of the underlying instrument over fees that would exhibit
intensity. Option in power call counterpart corresponds to cash flow of max(Sα

T −K), while option
in power put partners with max(K − Sα

T ), where α ≥ 0, α ∈ N. Taking Black–Scholes [1] leverage
and diversification are the key discretionary using for only those investors who seek to acquire
larger initial capital or premium, and, most possibly, this desire contributes to creation of their
appeal.

Results are presented in this article are novel and have likely substantial value for the future
comparisons of respective researches. Our work would encompass a variety of new findings at one
point. The approach deals with gaps in the Black–Scholes risk-neutral valuation method, where
the powered α-power Quanto call option prevails in the domestic currency which is fixed before
and the use of the Feynman–Kac formula, both with and without Poisson jumps.

2. Price of Quanto option for a payoff at maturity

A foreign equity powered α-power Quanto call option, struck in a predetermined domestic
currency, matures with a payoff given by

V0 (max (Sα
T −Kf , 0))

n = V0

[

(Sα
T −Kf )

+]n = V0

[

(Sα
T −Kf )

n
ISTα>Kf

]

,

where V0 represents a fixed exchange rate and Kf denotes the foreign currency strike price.
Assuming n > 0 is an integer, the payoff transforms into

V0

n
∑

j=0

(

n

j

)

(Sα
T )

n−j (−Kf )
1,j

I{Sα
T
>Kf}. (2.1)

Theorem 1. Let St represent the asset price in foreign currency X, and Vt denote the foreign
exchange rate in foreign currency per unit of the domestic currency, both with constant volatilities
σS and σV , respectively. We consider the risk-neutral dynamics (in domestic currency, cf. [5]) for
a dividend-paying asset with rate q as follows:

{

dSt = (rf − q − ρσSσV )Stdt+ σSStdB
Qd

t ,

dVt = (rd − rf )Vtdt+ σV VtdW
Qd

t ,
(2.2)

where BQd

t and WQd

t , t ∈ [0, T ], are Qd-standard Wiener processes. Then, for α > 0, the price of a
European power-α Quanto call option at time t in domestic currency with the payoff (2.1) is given
by

Cq (t, S
α
t ) = V0e

−rd(T−t)
n
∑

j=0

(

n

j

)

(−Kf )
1,j S

α(n−j)
t eα(n−j){rf−q−ρσSσV −(1−α(n−j))·σ2

S/2}τN(d1,j).

Here

d1,j =
ln (Sα

t /Kf ) + α
(

rf − q − ρσSσV − (1 + α(n− j)/2) σ2
S/2

)

τ

ασS
√
τ

.
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P r o o f. Using the Feynman-Kac formula, as stated in Theorem 4.33 of the reference [2], the
arbitrage price of a call option at time t, where t is less than or equal to the expiration date T , can
be determined under the risk-neutral probability measure Qd,

Cq (t, S
α
t ) = V0e

−rd(T−t)
n
∑

j=0

(

n

j

)

(−Kf )
1,j

EQd

[

(Sα
T )

n−j
I{Sα

T
>Kf}|Ft

]

. (2.3)

Hence, it remains to evaluate the conditional expectation in (2.3) for 0 ≤ j < n. In order to
compute that, we must compute the solution for the SDE (2.2). Applying Ito’s lemma on process
(lnSt) for t ≥ 0, hence

d (lnSt) =

(

rf − q − ρσSσV − σ2
S

2

)

dt+ σSdB
Qd

t .

Integrating both sides, we get,
∫ T

t
d (lnSu) =

∫ T

t

(

rf − q − ρσSσV − σ2
S

2

)

du+

∫ T

t
σSdB

Qd

u ,

ln

(

ST

St

)

=

(

rf − q − ρσSσV − σ2
S

2

)

(T − t) + σS

(

BQd

T −BQd

t

)

,

i.e.

ST = Ste
{rf−q−ρσSσV −σ2

S/2}(T−t)+σS

(

BQd

T
−BQd

t

)

.

We then have

(Sα
T )

n−j = S
α(n−j)
t eα(n−j)(rf−q−ρσSσV −σ2

S/2)τ−α(n−j)σS

√
τZ , (2.4)

where

T − t = τ and Z = −BQd

T −BQd

t√
τ

∼ N (0, 1),

which is independent of Ft, we find that Sα
T > Kf if and only if

Z <
ln (Sα

t /Kf ) + α
(

rf − q − ρσSσV − σ2
S/2

)

τ

ασS
√
τ

=: −d2,j . (2.5)

It follows from (2.4), (2.5) and from the independence of Z with Ft that

EQd

[

(Sα
T )

n−j
I{Sα

T
>Kf}|Ft

]

= S
α(n−j)
t eα(n−j)(rf−q−ρσSσV −σ2

S
/2)τ

×EQd

[

e−α(n−j)σS

√
τZI{Z<d2,j}|Ft

]

= g(τ, Sα
t ),

where g(τ, x) is given by

g(τ, x) = xα(n−j)e
α(n−j)

(

rf−q−ρσSσV −σ2

S
2

)

τ
EQd

[

e−α(n−j)σS

√
τZI{Z<d2,j}|Ft

]

.

Since Z ∼ N (0, 1), we obtain

g(τ, x) = xα(n−j)eα(n−j)(rf−q−ρσSσV −σ2

S
/2)τ

∫ d2,j

−∞

1√
2π

e−α(n−j)σS

√
τz−z2/2dz

= xα(n−j)eα(n−j){rf−q−ρσSσV −(1−α(n−j))σ2

S
/2}τ

∫ d2,j

−∞

1√
2π

e−(z+α(n−j)σS

√
τ)2/2dz.
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Applying the substituting v = z + α(n− j)σS
√
τ and setting

d1,j := d2,j + α(n − j)σS
√
τ =

ln (Sα
t /Kf ) + α

(

rf − q − ρσSσV − σ2
S/2

)

τ

ασS
√
τ

+ α(n− j)σS
√
τ

=
ln (Sα

t /Kf ) + α
(

rf − q − ρσSσV − (1 + α(n − j)/2) σ2
S/2

)

τ

ασS
√
τ

,

(2.6)

we get

g(τ, x) = xα(n−j)eα(n−j){rf−q−ρσSσV −(1−α(n−j))σ2

S
/2}τ

∫ d1,j

−∞

1√
2π

e−v2/2dz

= xα(n−j)eα(n−j){rf−q−ρσSσV −(1−α(n−j))σ2

S/2}τN(d1,j).

(2.7)

From (2.6) and (2.7), (2.3) becomes

Cq (t, S
α
t ) =V0e

−rd(T−t)
n
∑

j=0

(

n

j

)

(−Kf )
1,j S

α(n−j)
t eα(n−j){rf−q−ρσSσV −(1−α(n−j))σ2

S/2}τN(d1,j),

where

d1 =
ln (Sα

t /Kf ) + α
(

rf − q − ρσSσV − (1 + α(n− j)/2) σ2
S/2

)

τ

ασS
√
τ

.

Fig. 1 depicts the progression of the Quanto expense concerning maturity time T and the strike
price Kf .

Figure 1. Powered power Quanto option value plotted against maturity time and strike price.

Now, our attention shifts to analyzing Quanto option premiums concerning the foreign currency
strike price and maturity time. With rd = 0.5, V0 = 30, α = 5, rf = 0.01, q = 0.1, ρ = 0.01, σs = 0.3,
and σv = 0.2, Fig. 1 illustrates the values of Quanto call option prices forKf ∈ [34, 44] and T ∈ [0, 4].
The plot reveals that while the evolution of Quanto option values isn’t strictly monotonic, there’s
a discernible trend of increasing option prices with higher strike prices and longer maturities.
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3. Pricing Quanto option with jumps

Theorem 2. Suppose St represents the asset price in foreign currency X, where (Nt), t ∈ R+,
is a standard Poisson process with intensity λ > 0, independent of (Bt), t ∈ R+, under a probability
measure Qd. Let Vt denote the foreign exchange rate in foreign currency per unit of the domestic
currency, both with constant volatilities σS and σV , respectively. We assume the following risk-
neutral dynamics for a dividend-paying asset with rate q.

{

dSt = (rf − q − ρσSσV )Stdt+ σSStdB
Qd

t + ηSt−dNt,

dVt = (rd − rf )Vtdt+ σV VtdW
Qd

t ,

where BQd

t and WQd

t , t ∈ [0, T ], are Qd — standard Wiener processes. Then, for α > 0, the price
Cq (t, S

α
t ) of a European power-α Quanto call option with jumps, at time t in domestic currency

with the payoff (2.1), is given by,

Cq = V0e
(λ−rd)(T−t)

n
∑

j=0

(

n

j

)

(−Kf )
1,j S

α(n−j)
t eα(n−j){rf−q−ρσSσV −(1−α(n−j))σ2

S
/2}τ

×
∑

n≥0

(λ(T − t))n

n!
N(d1,j).

Here

d1,j =
ln (Sα

t (1 + η)n/Kf ) + α
(

rf − q − ρσSσV − (1 + α(n − j)/2) σ2
S/2

)

τ

ασS
√
τ

.

P r o o f. As earlier, let us start by employing Feynman–Kac formula, as stated in [2, Theo-
rem 4.33]. Under the risk-neutral probability measure Qd, the arbitrage price of the call option at
time t ≤ T can be determined

Cq (t, S
α
t ) = V0e

−rd(T−t)
n
∑

j=0

(

n

j

)

(−Kf )
1,j

EQd

[

(Sα
T )

n−j
I{Sα

T
>Kf}|Ft

]

, (3.8)

where

Sα
T = Sα

t e
α{rf−q−ρσSσV −σ2

S/2}(T−t)−ασS (B
Qd

T
−BQd

t )(1 + η)NT−Nt .

We then have

(Sα
T )

n−j = S
α(n−j)
t eα(n−j)(rf−q−ρσSσV −σ2

S
/2)τ−α(n−j)σS

√
τZ(1 + η)Nτ , (3.9)

where

T − t = τ, Z = −BQd

T −BQd

t√
τ

∼ N (0, 1),

which is independent of Ft, we find that Sα
T > Kf if and only if

Z <
ln (Sα

t (1 + η)n/Kf ) + α
(

rf − q − ρσSσV − σ2
S/2

)

τ

ασS
√
τ

=: −d2,j . (3.10)

It follows form (3.9), (3.10) and the independence of Z with Ft that

EQd

[

(Sα
T )

n−j
I{Sα

T
>Kf}|Ft

]

= S
α(n−j)
t eα(n−j)(rf−q−ρσSσV −σ2

S/2)τ

×EQd

[

e−α(n−j)σS

√
τZ(1 + η)Nτ I{Z<d2,j}|Ft

]

= g(τ, Sα
t ),
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where g(τ, x) is given by

g(τ, x) = xα(n−j)eα(n−j)(rf−q−ρσSσV −σ2

S
/2)τEQd

[

e−α(n−j)σS

√
τZ(1 + η)Nτ I{Z<d2,j}|Ft

]

= xα(n−j)eα(n−j)(rf−q−ρσSσV −σ2

S
/2)τ

∑

n≥0

P(Nτ = n)EQd

[

e−α(n−j)σS

√
τZ(1 + η)nI{Z<d2,j}|Ft

]

.

Since Z ∼ N (0, 1), we obtain

g(τ, x) = xα(n−j)eα(n−j)(rf−q−ρσSσV −σ2

S/2)τ

×
∑

n≥0

P(Nτ = n)(1 + η)n
∫ d2,j

−∞

1√
2π

e−α(n−j)σS

√
τz−z2/2dz

= xα(n−j)eα(n−j){rf−q−ρσSσV −(1−α(n−j))σ2

S
/2}τeλτ

×
∑

n≥0

(λ(T − t))n

n!

∫ d2,j

−∞

1√
2π

e−(z+α(n−j)σS

√
τ)2/2dz.

Applying the substituting v = z + α(n − j)σS
√
τ and setting

d1,j := d2,j + α(n − j)σS
√
τ

=
ln (Sα

t (1 + η)n/Kf ) + α
(

rf − q − ρσSσV − σ2
S/2

)

τ

ασS
√
τ

+ α(n − j)σS
√
τ

=
ln (Sα

t (1 + η)n/Kf ) + α
(

rf − q − ρσSσV − (1 + α(n − j)/2) σ2
S/2

)

τ

ασS
√
τ

,

(3.11)

we get

g(τ, x)=xα(n−j)eα(n−j){rf−q−ρσSσV −(1−α(n−j))σ2

S/2}τeλτ
∑

n≥0

(λ(T − t))n

n!

∫ d1,j

−∞

1√
2π

e−v2/2dz

= xα(n−j)eλ+α(n−j){rf−q−ρσSσV −(1−α(n−j))σ2

S/2}τ ∑

n≥0

(λ(T − t))n

n!
N(d1,j).

(3.12)

From (3.11) and (3.12), (3.8) becomes

Cq = V0e
(λ−rd)(T−t)

n
∑

j=0

(

n

j

)

(−Kf )
1,j S

α(n−j)
t eα(n−j){rf−q−ρσSσV −(1−α(n−j))σ2

S
/2}τ

×
∑

n≥0

(λ(T − t))n

n!
N(d1,j),

where

d1,j =
ln (Sα

t (1 + η)n/Kf ) + α
(

rf − q − ρσSσV − (1 + α(n − j)/2) σ2
S/2

)

τ

ασS
√
τ

.

The diagram below illustrates the Quanto premium evolution with jumps concerning maturity
time T and the strike price Kf .

Using the same dataset as before, with rd = 0.5, V0 = 30, α = 5, rf = 0.01, q = 0.1, ρ = 0.01,
σs = 0.3, and σv = 0.2. Additionally, setting η = 5, λ = 5, n = 6 and N = 5, Fig. 2 depicts
the progression of Quanto option prices with jumps. It’s noticeable that the Quanto option value
exhibits an upward trend concerning both variables, maturity time and strike price.
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Figure 2. Powered power Quanto option call with jumps plotted against maturity time and strike price.

4. Conclusion

Quanto options are crucial tools for managing risk in the foreign exchange market. Determining
their fair prices without arbitrage opportunities is essential. In this study, we have developed
formulas to find the no-arbitrage prices for powered Quanto options. We considered scenarios
where the underlying currencies follow Brownian motion and Brownian motion with jumps. We
supported our theoretical framework with numerical simulations and results. We hope this research
will inspire further exploration and interest in pricing exotic options.
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