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Abstract: In this paper, we apply some motion correction methods to the alignment problem in navigation.
This problem consists in matching two coordinate systems having the common origins. As a rule, one of the
systems named as basic coordinate system is located at a ship or airplane. The dependent coordinate system
belongs to another object (e.g. missile ) that starts from the ship. The problem is considered with incomplete
information on state coordinates which can be measured with disturbances without statistical description.
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Introduction

Alignment is the process whereby the orientation of the axes of an inertial navigation system
is determined with respect to the reference axis system. The basic concept of aligning an inertial
navigation system is quite simple and straightforward. However, there are many complications that
make alignment both time consuming and complex. Consider a simulated transport ship-airplane

system. Suppose that the base coordinate system (BCS) of the ship is correct. Let
−→
Ω 1 be the

absolute angular velocity of the BCS in the motionless coordinate system η1, η2, η3. The projection
Ω2
1 on vertical 21 equals zero. This system is shown on Fig. 1. The axis 11 is directed along the
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Figure 1. The section of Earth sphere and the base coordinate system.

parallel to the west. The axis 21 is the local vertical. The axis 31 is directed along the meridian
to the north. The position of the dependent coordinate system (DCS) related to the airplane or

1The research was supported by Russian Science Foundation (RSF), project No. 16-11-10146.
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the missile with respect to the BCS is estimated by the Krylov angles. In Fig. 2, one can see the
sequence of clockwise rotations: θ1 around axis 1, θ3 around new axis 3, and θ2 around new axis 2
coinciding now with 21.

Thus, the transition of coordinates of a vector ~f in the DCS to new coordinates in the BCS is
occurred by the formula ~f1 = M(θ)~f , where the matrix of direction cosines is of the form

M(θ) =



cos θ2 0 − sin θ2

0 1 0
sin θ2 0 cos θ2


 ·



cos θ3 − sin θ3 0
sin θ3 cos θ3 0
0 0 1


 ·



1 0 0
0 cos θ1 − sin θ1

0 sin θ1 cos θ1


 = (mij).
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Figure 2. The sequence of clockwise rotations.

Projecting the equality ~ω = ~̇θ1 + ~̇θ3 + ~̇θ2 for the angular velocities on the axes of the DCS, we
obtain the kinematic Krylov equations

θ̇1 = ω1 − θ̇2 sin θ3, θ̇2 = (ω2 cos θ1 − ω3 sin θ1)/ cos θ3, θ̇3 = ω2 sin θ1 + ω3 cos θ1, (0.1)

where ωi are the projections of the relative angular velocity. These projections are related with the
absolute velocities by the formulas

ωi = Ωi −m1iΩ
1
1 −m3iΩ

3
1 + εi, i ∈ 1 : 3, (0.2)

where εi are the projections of an uncertain drift.
For measurements, the differences of accelerometer readings in the DCS and BCS are used.

These accelerometers are on the axes and gage the nongravity acceleration ~a = −→wM − ~g. Let
ai be accelerometers readings in the DCS and ai1 be gage readings in the BCS. Therefore, the
measurement equations are of the form

y1 = (m11 − 1)a11 +m21 a
2
1 +m31 a

3
1 + w1, y2 = m12 a

1
1 + (m22 − 1)a21 +m32 a

3
1 +w2,

y3 = m13 a
1
1 +m23 a

2
1 + (m33 − 1)a31 + w3,

(0.3)

where wi are uncertain leavings of zero. About drifts εi in (0.2), the assumption is accepted
that they are constant but unknown. Uncertain functions in relations (0.3) satisfy the integral
inequalities

∫ T

0
(wi)2dt ≤ γ2i T, i ∈ 1 : 3. (0.4)
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Let ~i1,~i2,~i3 be the unit direction vectors of the BCS. The velocity of point M equals

4~vM =
−→
Ω 1 ×

−→
R =

∣∣∣∣∣∣

~i1 ~i2 ~i3
Ω1
1 0 Ω3

1

0 R 0

∣∣∣∣∣∣
,

where R is the radius of Earth. From here we find the projections of velocity on the BCS axes:
v11 = −RΩ3

1, v21 = 0, v31 = RΩ1
1. Computing the derivative of ~vM , we get the acceleration

−→wM = −̃→wM +
−→
Ω 1 × ~vM in the form of the sum of relative and translation accelerations. So, the

accelerometers readings in BCS are of the form:

a11 = −R Ω̇3
1, a21 = g − v2/R, a31 = R Ω̇1

1, (0.5)

where v is the velocity magnitude. As R = 6370 km and the velocity of the ship on water is no
more than 20 m/c, we assume a21 = g.

Further we consider some approaches from motion correction for solving the alignment problem.
This problem in inertial navigation was first in detail considered in [1]. Russian books devoted to
this topic are [2–5]. The alignment problem was mostly solved in [1–5] by statistical methods with
the help of Kalman filter or its modifications. On the other hand, in [2, 6] it was noted that the
statistics of disturbances often happens incomplete or completely absent. Therefore, it is natural
to use here the minimax methods from books [7, 8]. Thus, all the disturbances in our paper are
deterministic.

Consider only the case of small angular deviations (no more than several degrees). Equations
(0.1) are replaced by the follwing ones:

θ̇1 = u1 + ε1 − θ2Ω3
1 − θ3u2, θ̇2 = u2 + ε2 + θ3Ω1

1 − θ1Ω3
1 − θ1u3,

θ̇3 = u3 + ε3 + θ2Ω1
1 + θ1u2.

(0.6)

Here, ui = Ωi−Ωi
1, i ∈ 1 : 3. In the linear approximation, the differences of accelerometer readings

in (0.3) are equal to

y1 = gθ3 + a31θ
2 + w1, y2 = −a11θ

3 + a31θ
1 + w2, y3 = −a11θ

2 − gθ1 + w3. (0.7)

Equations (0.6) contain the multiplications of controls and state variables, but, in the case of small
angles and angular velocities these terms may be neglected. In the specific case of movement on
the equator under condition θ1 = θ2 ≡ 0, we assume θ = θ3 as shown on Fig. 3. The angular
velocity Ω1 = Ω3

1 6= 0 under given movement and the rest projections of absolute angular velocity
are equal to zero. We have

θ̇ = u+ ε, ε̇ = 0, y = gθ + w, (0.8)

where the first equation from (0.7) is taken as the output.

1. Set-membership background

So, we consider a determinate n-dimensional linear system of the form

ẋ(t) = A(t)x+B(t)u+ C(t)v, t ∈ [0, T ], (1.1)

assuming that the initial state x0 of system (1.1) is completely unknown, the matrices A(t), B(t), C(t),
and G(t) below are continuous. In comparison with equations (0.6), the term with disturbance v in
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Figure 3. System deviation in the simple model.

the system is added here. It corresponds to the case when drifts are not constants. The unknown
function v(·) and the disturbance w(·) in the m-dimensional equation of measurement

y(t) = G(t)x(t) + w(t) (1.2)

are bounded by the constraint

∫ T

0

(
|v(t)|2Q(t) + |w(t)|2R(t)

)
dt ≤ 1, (1.3)

where the symbol |x|2P equals x′Px, prime ′ means the transposition, Q(t), R(t) are symmetrical,
positive-defined, and continuous matrices having suitable dimension. Constraint (1.3) involves that
the elements of vector functions v(·) and w(·) belong to the space L2[0, T ]. We need the following

Assumption 1. The system (1.1), (1.2) under u ≡ 0, v ≡ 0, w ≡ 0 is completely observable [7]
on any subinterval [s, τ ] ⊂ [0, T ].

Assumption 1 means that the vector x(s) can be uniquely restored from the signal observed on
[s, τ ] if the disturbances are absent. Moreover, Assumption 1 holds if and only if

∫ τ

s
X ′(t, s)G′(t)G(t)X(t, s)dt > 0,

where X(t, s) is the fundamental matrix of system (1.1).

We use piecewise-constant functions u(t), for which

u(t) ∈ P ⊂ R
p, (1.4)

where P is a compact convex set. Constraint (1.4) is more realistic than integral constraints in [9].
The aim of the control is to minimize the terminal function |Dx(T )|, where | · | is the Euclidean
norm and D ∈ R

d×n is a matrix. The choice of uncertain parameters {x0, v(·), w(·)} may impede
the minimization.
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1.1. Informational and compatible sets

At first, let us consider a set-membership estimation scheme for system (1.1), (1.2) under
constraint (1.3).

Definition 1. A set X(t, y, u) ⊂ R
n is said to be the informational if it consists of all vectors

x = x(t), which may realize in system (1.1), (1.2) with given signal y(τ), 0 ≤ τ ≤ t, the control

u(τ), and some disturbances satisfying constraint (1.3).

To describe the informational set, we introduce the Bellman function

V (t, x) = inf
v(·)

{∫ t

0

(
|v(s)|2Q(s) + |y(s)−G(s)x(s)|2R(s)

)
ds

}
, x(t) = x.

The Bellman equation for V (t, x) is of the form:

Vt = min
v

{
−(A(t)x+B(t)u(t) + C(t)v)′Vx + |v|2Q(t) + |y(t)−G(t)x|2R(t)

}
, V (0, x) = 0. (1.5)

If the solution of equation (1.5) in any sense is found, the informational set X(t, y, u) is written as
the inequality X(t, y, u) = {x : V (t, x) ≤ 1}. Let us seek a solution of equation (1.5) in the form

V (t, x) = |x|2P (t) − 2x′d(t) + g(t), (1.6)

where P (t) is a positive definite and continuously differentiable matrix, d(t) and g(t) are a contin-
uously differentiable vector function and a function respectively. Substituting (1.6) into (1.5), we
get

|x|2
Ṗ (t)

− 2x′ḋ(t) + ġ(t) = |y(t)−G(t)x|2R(t) − |P (t)x− d(t)|2C(t)Q−1(t)C′(t)−

−2(A(t)x+B(t)u(t))′(P (t)x− d(t)).

Therefore, the parameters of (1.6) must satisfy the equations

Ṗ (t) = G′(t)R(t)G(t) − P (t)C(t)Q−1(t)C ′(t)P (t) −A′(t)P (t)− P (t)A(t), P (0) = 0,

ḋ(t) = G′(t)R(t)y(t)− (P (t)C(t)Q−1(t)C ′(t) +A′(t))d(t) + P (t)B(t)u(t), d(0) = 0,

ġ(t) = |y(t)|2R(t) − |d(t)|2C(t)Q−1(t)C′(t) + 2d′(t)B(t)u(t), g(0) = 0.

(1.7)

It is known [10] that the matrix P (t) is non-singular for any t > 0 under Assumption 1. Then the
ellipsoid (informational set)

X(t, y, u) =
{
x ∈ R

n : V (t, x) = |x|2P (t) − 2x′d(t) + g(t) = |x− x̂(t)|2P (t) + h(t) ≤ 1
}

(1.8)

is bounded for any t > 0 with the center x̂(t) = P−1(t)d(t) and the function h(t) = g(t)−|d(t)|2P−1(t).

Differentiating the x̂(t) and h(t), we obtain the equations

˙̂x(t) = A(t)x̂(t) +B(t)u(t) + P−1(t)G′(t)R(t)(y(t)−G(t)x̂(t)),

ḣ(t) = |y(t)−G(t)x̂(t)|2R(t).
(1.9)

Let us introduce the function

f(t) = y(t)−G(t)x̂(t), t ∈ (0, T ], (1.10)

that is similar to the innovation process in theory of Kalman filtering [10].
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Lemma 1. Function (1.10) does not depend on the control u(t), belongs to the space Lm
2 [0, T ],

and we have

h(t) =

∫ t

0
|y(s)−G(s)x̂(s)|2R(s)ds ≤ 1, t ∈ [0, T ].

On the other hand, let the instant τ ∈ (0, T ) and f(·) be any function from Lm
2 [τ, T ] with

∫ T

τ
|f(s)|2R(s)ds ≤ 1− h(τ).

Then we obtain

X(t, y, u) =
{
x ∈ R

n : |x− x̌(t)|2P (t) + h(t) ≤ 1
}
, t ∈ [τ, T ], (1.11)

where

˙̌x(t) = A(t)x̌(t) +B(t)u(t) + P−1(t)G′(t)R(t)f(t),

x̌(τ) = x̂(τ); h(t) = h(τ) +

∫ t

τ
|f(s)|2R(s)ds.

Here, we set y(t) = f(t) +G(t)x̌(t), t ∈ [τ, T ].

P r o o f. As 0 ≤ h(t) ≤ g(t) and g(0) = 0, we conclude that h(0) = 0. From (1.8) and (1.9) we
obtain the formula for h(t). The signal y(·) may realize in system (1.1), (1.2) on [τ, t], t ∈ (τ, T ],
under closed-loop disturbance v(s) = Q−1(s)C ′(s)(P (s)x(s) − d(s)) that gives minimum to the
functional according to (1.5), (1.6), and (1.7) with any final state x(t) = x ∈ X(t, y, u). As the
formulas for x̌(t) coincide with (1.9), formula (1.11) holds. �

From now on, the narrowings of a measurable vector-function x(s), s ∈ [0, T ], on intervals [0, t]
and [t, T ] are denoted by xt(·) and xt(·) respectively. The narrowing on [t, s] is denoted by xst(·).
Let the dimension of the disturbance v be equal q.

Definition 2. A set V(t, y, u) ⊂ R
n × Lq

2[t, T ] × Lm
2 [t, T ] is said to be the compatible if it

consists of all triples {(x(t), vt(·), wt(·))}, for which there exist functions (v(·), w(·)) satisfying (1.3)
such that output (1.2) on [0, t] with final state x = x(t) almost everywhere coincides with the given

signal yt(·).

Note that the sets X(t, y, u) and V(t, y, u) depend only on yt(·) and ut(·). Suppose that we have
the compatible set V(t, y, u), and on the interval [t, s] a signal yst (·) and a control ust (·) are realized.
Similarly to Definitions 1 and 2, we can define the sets X(s, yst , u

s
t | V(t, y, u)) and V(s, yst , u

s
t |

V(t, y, u)). The following assertion seems to be obvious.

Lemma 2. The relation between compatible and information sets is given by the equality X(t, y,
u) = projRnV(t, y, u). The compatible set is described by the formula

V(t, y, u) =

{
(x, vt, wt) :

∫ T

t

(
|vt(s)|2Q(s) + |wt(s)|R(s)

)
ds+ V (t, x) ≤ 1

}
, (1.12)

where V (t, x) is defined in (1.6) or (1.8). Under Assumption 1, set (1.12) is weakly compact in

the space R
n × Lq

2[t, T ]×Lm
2 [t, T ] when t ∈ (0, T ). Moreover, compatible sets posses the semigroup

property: V(s, yst , u
s
t | V(t, y, u)) = V(s, y, u), where 0 < t < s ≤ T . As a consequence, we have

X(s, yst , u
s
t | V(t, y, u)) = X(s, y, u).

The final reachable set of system (1.1) from the compatible set V (t, y, u) is denoted further by
XT (ut|V(t, y, u)). This set consists of all vectors x(T ) under searching in (1.12) for the set V (t, y, u)
with wt = 0.



22 B.I. Ananyev

2. Problems formulation

Let λ : 0 < t1 < · · · < tN+1 = T be a partition of the interval [0, T ]. The times ti are called the
instants of control correction. It is easily seen that the compatible set V(t, y, u) depends only on the
pair (x̂(t), h(t)) which is called the position at the instant t. The transition between two adjacent
positions (x̂(ti), h(ti)) and (x̂(ti+1), h(ti+1)) depends on the control ui(·) and the innovation function
fi(·) on the interval [ti, ti+1) according to Lemma 1. Consider two problems.

Problem 1. Find a piecewise-constant control u∗(t) (u∗(t) = u∗i on [ti, ti+1), i ∈ 1 : N) that

gives the value

J∗ = min
u1∈P

max
f1(·)

. . . min
uN∈P

max
fN (·)

max
x∈XT (uN |V(tN ,y,u))

|Dx|, (2.1)

where
N∑

i=1

∫ ti+1

ti

|fi(s)|2R(s)ds ≤ 1− h(t1).

Remark 1. As equations (1.1), (1.2) are linear, we have X(t, y, u) = z(t) + X(t, ỹ, 0), where
ỹ(t) = y(t)−G(t)z(t) and

ż(t) = A(t)z(t) +B(t)u(t), z(0) = 0. (2.2)

Similarly, we have V(t, y, u) = (z(t), 0, 0)+V(t, ỹ, 0). From now on, we write the sets with ỹ(·) and
u(·) = 0 as X(t, ỹ) and V(t, ỹ), respectively. Therefore, XT (ut | V(t, y, u)) = z(T )+XT (0 | V(t, ỹ))
and value (2.1) may be rewritten as

J∗ = min
u1∈P

max
f1(·)

. . . min
uN∈P

max
fN (·)

max
x∈XT (0|V(tN ,ỹ))

|D(z(T ) + x)|. (2.3)

Remark 2. We obtain as a fact that controls ui in (2.1) and (2.3) depend on the positions
(x̂(ti), h(ti)). Problem 1 may be generalized if we seek non-constant functions ui(·) on the interval
[ti, ti+1).

Problem 2. At the any instant ti, i ∈ 1 : N , we find open loop minimax control uT∗
i (·) that

give a solution of the problem:

max
fi(·)

max
x∈XT (ui|V(ti,y,u))

|Dx| → min
ui(t)∈P

= ji(y), (2.4)

where ∫ T

ti

|fi(s)|2R(s)ds ≤ 1− h(ti),

and do one-step forecasting

Ji(y, ui) = max
fi(·)

ji+1(y), (2.5)

where ∫ ti+1

ti

|fi(s)|2R(s)ds ≤ 1− h(ti).

If Ji(y, u
T∗
i ) < ji(y) we keep the control uT∗

i on the interval [ti, ti+1]. Otherwise, we pass to the

control ui+1∗
i that minimizes value (2.5). Of course, the controls may be not unique. If so, we

choose any minimizers.
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3. Minimax solutions

For brevity we denote x̂(ti) = x̂i and h(ti) = hi. Introduce the function of next losses

Wi(x̂i, hi) = min
ui∈P

max
fi(·)

. . . min
uN∈P

max
fN (·)

max
x∈XT (utN

|V(tN ,y,u))
|Dx|,

where
N∑

j=i

∫ tj+1

tj

|fj(s)|2R(s)ds ≤ 1− hi

for Problem 1. It is easily seen that the functions Wi(x̂i, hi) satisfy the following recurrent relations

Wi(x̂i, hi) = min
ui∈P

max
fi(·)

Wi+1(x̂i+1, hi+1), (3.1)

where ∫ ti+1

ti

|fi(s)|2R(s)ds ≤ 1− hi.

Relations (3.1) have the boundary condition

WN+1(x̂(T ), h(T )) = max
|x−x̂(T )|2

P (T )
≤1−h(T )

|Dx| = max
|l|≤1

{
l′Dx̂(T ) + (1− h(T ))1/2|D′l|P−1(T )

}
.

Consider the last stage of relations (3.1) when i = N . Using boundary condition, we obtain

WN (x̂N , hN ) = max
|l|≤1

{
r(l; tN )x̂N +min

u∈P

∫ T

tN

r(l; s)B(s)dsu+
(
(1− hN )

(
λ(tN )(1 − |l|2)

+|D′l|2P (T,tN )

))1/2
}
,

where

r(l; s) = l′DX(T, s), ∂P (t, s)/∂t = A(t)P (t, s) + P (t, s)A′(t) +C(t)Q−1(t)C ′(t),

P (s, s) = P−1(s), λ(s) = max
|l|≤1

|D′l|2P (T,s).
(3.2)

Here, the term with integral must be replaced on

∫ T

tN

min
u∈P

r(l; s)B(s)uds

if the control is not piecewise-constant. Let us explain the formula for WN (x̂N , hN ). It is obtained
with the help of elementary equality

max
k∈[0,1−hN ]

{
k1/2A+ (1− hN − k)1/2B

}
= (1− hN )1/2(A2 +B2)1/2,

where A ≥ 0, B ≥ 0, and the maximum is achieved at r∗ = (1 − hN )A2(A2 + B2)−1/2. Besides,

the optimization over f(·) is fulfilled under the constraint
∫ T
tN

|f(s)|2R(s)ds = k. If λ(s) is the

maximal eigenvalue of the matrix DP (T, s)D′, we use the fact that conc|l|Q on unite ball is equal

to
(
λmax(1− |l|2) + |l|2Q

)1/2
, see [7]. Hereinafter, the symbol concϕ(l) means a minimal concave

function majorizing ϕ(l) on unite ball. At last, we apply the minimax theorem.
Continuing calculations on the subsequent stages, we come to the conclusion.
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Theorem 1 (Conditions of the optimality in Problem 1). On the stage i, we have

Wi(x̂i, hi) = max
|l|≤1

{
r(l; ti)x̂i +min

u∈P

∫ ti+1

ti

r(l; s)B(s)dsu+ ϕi(l)

}
, where

ϕi(l) = conc

{
min
u∈P

∫ ti+2

ti+1

r(l; s)B(s)u+max
fi(·)

{∫ ti+1

ti

r(l; s)P−1(s)G′(s)R(s)fi(s)ds

+ϕi+1(l)

}}
, i ∈ 1 : N − 1.

(3.3)

Here ∫ ti+1

ti

|fi(s)|2R(s)ds ≤ 1− hi.

The optimal controls necessarily satisfy the relation

∫ ti+1

ti

r(l∗; s)B(s)dsu∗i = min
u∈P

∫ ti+1

ti

r(l∗; s)B(s)dsu or

∫ ti+1

ti

r(l∗; s)B(s)u∗i (s)ds

=

∫ ti+1

ti

min
u∈P

r(l∗; s)B(s)uds if the control is not piecewise-constant,

(3.4)

where l∗ is a maximizer in problem (3.3).

P r o o f. For the first two stages, we have

ϕN (l) =
(
(1− hN )

(
λ(tN )(1 − |l|2) + |D′l|2P (T,tN )

))1/2
,

ϕN−1(l) = conc

{
min
u∈P

∫ T

tN

r(l; s)B(s)dsu+ max
fN−1(·)

{∫ tN

tN−1

r(l; s)P−1(s)G′(s)R(s)fN−1(s)ds

+ϕN (l)

}}
= conc

{
min
u∈P

∫ T

tN

r(l; s)B(s)dsu+
(
(1− hN−1)

(
λ(tN )(1− |l|2) + |D′l|2P (T,tN−1)

))1/2
}
.

For derivation of the last relation, we use the same reasoning as for WN (x̂N , hN ). The subsequent
considerations are obtained by induction with the help of the minimax theorem. �

To solve Problem 2, we need to calculate values (2.4), (2.5). Doing as above we get

ji(y) = max
|l|≤1

{
r(l; ti)x̂i +

∫ T

ti

min
u∈P

r(l; s)B(s)uds +
(
(1− hi)

(
λ(ti)(1 − |l|2)

+|D′l|2P (T,ti)

))1/2
}
,

Ji(y, ui) = max
fi(·)

ji+1(y) = max
|l|≤1

{
r(l; ti)x̂i +

∫ ti+1

ti

r(l; s)B(s)ui(s)ds

+

∫ T

ti+1

min
u∈P

r(l; s)B(s)uds +
(
(1− hi)

(
λ(ti+1)(1 − |l|2) + |D′l|2P (T,ti)

))1/2
}
.

(3.5)

Theorem 2 (Properties of controls in Problem 2). The control procedure in Problem 2 begins

from i = 1 and leads to a sequence of positions, where j1(y) ≥ j2(y) ≥ · · · ≥ jN (y).
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P r o o f. Let us compare the values ji(y) and ji+1(y). If Ji(y, u
T∗
i ) < ji(y), we get ji(y) >

ji+1(y). Otherwise, we use the control ui+1∗
i that minimizes the value Ji(y, ui). Therefore,

min
ui(·)

Ji(y, ui) = max
|l|≤1

{
r(l; ti)x̂i +

∫ ti+1

ti

min
u∈P

r(l; s)B(s)uds

+conc

{∫ T

ti+1

min
u∈P

r(l; s)B(s)uds+
(
(1− hi)

(
λ(ti+1)(1− |l|2) + |D′l|2P (T,ti)

))1/2
}}

≤ ji(y),

as λ(ti+1) ≤ λ(ti). The last inequality implies the relation

∂P (T, s)/∂s = −X(T, s)P−1(s)G′(s)R(s)G(s)P−1(s)X ′(T, s),

whence the norm of the matrix P (T, s) decreases on s. �

Remark 3. The procedure of calculation of optimal controls in Problem 1 is more difficult than
in Problem 2. But we can simplify it if by a slight increase of the function of future losses. Namely,
we have Wi(x̂i, hi) ≤ ji(y). This inequality follows by induction from relations (3.3)–(3.5). One
can find the controls in this simplified procedure by formulas (3.4).

To illustrate the different approaches to optimal control, consider a simple

Example. Given the one-dimensional system ẋ = u + v, 0 ≤ t ≤ 3, with the measurement
y(t) = x(t) + w and the constraints

x20 +

∫ 3

0
(v2(t) + w2(t))dt ≤ 1,

|u| ≤ 1/2, we suppose y(t) ≡ 1 on [0, 3]. Let t1 = 1, t2 = 2 be two correction instants. Here, we
add the limitation on initial state for simplicity.

We have P ≡ 1, x̂(t) = 1 − e−t, h(t) = (1 − e−2t)/2 on [0, 3] under u ≡ 0, as follows from
(1.7), P (T, s) = 4 − s. The unknown real movement x(t) ≡ 1 under u ≡ 0. Formula (3.3) gives
W1(x̂1, h1) = 1.0655 and optimal control on [1, 2] equals u1 = −0.5. Here, the choice of control
is not unique. At the next stage W2(x̂2, h2) = 1.0091 and the optimal control on [2, 3] equals
u2 = −x̂2 = e−2 − 1/2 = −0.3647. In Problem 2, we have j1(y) = 1.3050 and we obtain the same
sequence of optimal controls. At last, consider the partition of [1, 3] with step 0.25, N = 8, and we
use the procedure of Remark 3. This procedure leads us to the sequence of control ui = −0.5 at
each step. The final value of the functional equals 0.7577.

4. Numerical simulation of alignment process

We restrict ourself by the consideration of the simple case of system (0.8) and the procedure of
Remark 3. The qualitative sense does not change in the common case.

The following data are used: |θi| ≤ 3 grad, |εi| ≤ 0.1 grad/sec, |ui| ≤ 0.1 rad/sec, T = 100
sec. In integral constraint (0.4) the constants are γi = 0.1 m/sec2. The signal is given by w(t) =
sin(t)/

√
55. The alignment process is shown on the figures.

5. Conclusion

In this paper, we consider the application of motion correction methods to the alignment prob-
lem in inertial navigation. We use the deterministic approach with set-membership description of
uncertainty. The Theorems 1, 2 and the procedure in Remark 3 are new. The investigation of the
influence of ship movement on the accuracy of alignment was not performed. It will be done in
subsequent papers.
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Figure 4. Alteration of the functional in the simple model.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2

 θ(rad)

0.0164

0.0166

0.0168

0.017

0.0172

0.0174

0.0176

0.0178

0.018

0.0182

0.0184

 ǫ
(r

ad
/s

)

Tube of informational ellipses

Figure 5. Informational ellipses at the instants t = 44, 58, 72, and 100.
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8. Krasovskĭi N.N. and Subbotin A.I. Game-Theoretical Control Problems. Springer–Verlag, New
York, 1988. 517 p.

9. Ananyev B.I. and Gredasova N.V. The Alignment Problem of Inertial Systems and Mo-
tion Correction Procedure // Bulletin of Buryatian State University, 2011. No. 9. P. 203–208.
old.bsu.ru/content/pages2/1074/2011/AnanevBI.pdf [in Russian]

10. Liptser R.Sh. and Shiryayev A.N. Statistics of Random Processes, V.1 General Theory, V.2 Appli-
cations, Springer–Verlag, New York, 2000.


