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Abstract: The paper considers the Hyers–Ulam–Rassias stability for systems of nonlinear differential equa-
tions with a generalized action on the right-hand side, for example, containing impulses — delta functions. The
fact that the derivatives in the equation are considered distributions required a correction of the well-known
Hyers–Ulam–Rassias definition of stability for such equations. Sufficient conditions are obtained that ensure
the property under study.
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1. Introduction

The definition of the Hyers–Ulam stability appeared after Hyers gave a solution to the Ulam
problem on conditions for the proximity of an additive mapping and an approximate additive
mapping [1]. Then these results were interpreted for differential equations, which is reflected in
many publications (see, for example, [4, 6] and the references therein). Further development of the
Hyers–Ulam stability concept was developed in [5]. As a result, the concept of the Hyers–Ulam–
Rassias stability arose.

The paper considers sufficient conditions for the Hyers–Ulam–Rassias stability of generalized
solutions to nonlinear differential systems with a generalized action on the right-hand side. These
issues for ordinary differential equations with absolutely continuous trajectories were considered,
for example, in [6]. A distinctive feature of this work is that the right-hand side of the differential
equation contains generalized actions — generalized derivatives of functions of bounded variation.
Solutions are understood as pointwise limits of sequences of absolutely continuous solutions, which
are obtained as a result of approximations of generalized actions on the right-hand side of the
equation by summable functions [2, 8, 11]. The results obtained by the authors differ from [9, 10]
in that [9, 10] use the solution formalization proposed in [7], while we use the solution formalization
described in [8, 11].

For differential equations, the Hyers–Ulam–Rassias stability is defined as follows (see, for ex-
ample, [6]).

Definition 1. The equation

ẋ(t) = f(t, x) (1.1)

is Hyers–Ulam–Rassias stable with respect to a function ϕ (ϕ is a positive, continuous, nondecreas-
ing function) if there exists a number cfϕ > 0 such that, for every ε and every solution y ∈ C1[a, b]
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to the inequality
|y′ − f(t, y)| ≤ εϕ(t), t ∈ [a, b],

there exists a solution x(t) to equation (1.1) satisfying the inequality

|y(t)− x(t)| ≤ cfϕεϕ(t), t ∈ [a, b].

Obviously, such a definition does not apply to equations with a generalized action because the
right-hand side of the equation is unbounded. For linear differential equations of the first and second
orders, the authors of [3] proposed a formalization of the Hyers–Ulam stability for a differential
equation and obtained conditions for the presence of such stability for these equations.

2. Formulation of the problem

We will consider the following differential equation:

ẋ = f(t, x) +B(t, x)v̇(t). (2.1)

Here, x(t) and v(t) are n- and m-dimensional vector functions, respectively, f(t, x) is an n-
dimensional vector function, and B(t, x) is an n × m-matrix function. If the function v(t) is
absolutely continuous, then, under certain assumptions on f(t, x) and B(t, x), there exists a unique
solution to equation (2.1) on the segment [t0, ϑ] satisfying the initial condition x(t0) = x0.

If v(t) is a function of bounded variation, then the derivative in equation (2.1) should be
understood in the generalized sense [11]. As a result, an incorrect operation of multiplication of a
discontinuous function by a generalized function occurs on the right-hand side of the equation. One
of possible ways to solve this problem is based on the definition of the solution on the closure of the
set of smooth solutions in the space of functions of bounded variation [2, 11]. Since the variation
of a vector function can be defined in different ways, we note that, in this paper, the variation of
an m-dimensional vector function v(t) is understood as

var
[t0, t]

v(·) = sup
T

k−1
∑

i=0

|v(ti+1)− v(ti)|,

where T is an arbitrary partition of the segment [t0, t].
According to [11], by an approximable solution of (2.1) corresponding to a function of bounded

variation v(t), we mean a function of bounded variation x(t) which is the pointwise limit of a se-
quence xk(t) generated by a sequence of absolutely continuous functions vk(t) converging pointwise
to v(t) if x(t) does not depend on the choice of the sequence vk(t).

Theorem 1 [11, p. 214]. Assume that, in a domain t ∈ [t0, ϑ], x ∈ R
n, v ∈ R

m, v(·) is a
function of bounded variation, and the components of the vector f(t, x) and the elements of the
matrix B(t, x) are continuous in the set of variables, differentiable with respect to all variables
xi, i ∈ 1, n, and satisfy the inequalities

||f(t, x)|| ≤ κ(1 + ||x||), ||B(t, x)|| ≤ κ(1 + ||x||), (2.2)

||f(t, x)− f(t, y)|| ≤ Lf |x− y|, ||B(t, x)−B(t, y)|| ≤ LB |x− y|, (2.3)

where Lf , LB, and κ are some positive constants. In addition, assume that the following equality
(the Frobenius condition) holds for all admissible t and x:

n
∑

ν=1

∂bij(t, x)

∂xν
bνl(t, x) =

n
∑

ν=1

∂bil(t, x)

∂xν
bνj(t, x), i ∈ 1, n, j, l ∈ 1,m.
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Then, for every vector function v(t) satisfying the above conditions, there exists an approximable
solution x(t) to the Cauchy problem (2.1) that satisfies the integral equation

x(t) = x0 +

t
∫

t0

f(ξ, x(ξ)) dξ +

t
∫

t0

B(ξ, x(ξ)) dvc(ξ)

+
∑

ti≤t, ti∈Ω−

S
(

ti, x(ti − 0),∆v(ti − 0)
)

+
∑

ti<t, ti∈Ω+

S
(

ti, x(ti),∆v(ti + 0)
)

,

(2.4)

where

S(t, x,∆v) = z(1) − x,

ż(ξ) = B(t, z(ξ))∆v(t), z(0) = x, (2.5)

and Ω−(Ω+) is the set left-side discontinuity (right-side discontinuity) points of the vector func-
tion v(t),

∆v(t− 0) = v(t)− v(t− 0), ∆v(t+ 0) = v(t+ 0)− v(t).

Definition 2. We will say that a differential equation (2.1) is Hyers–Ulam–Rassias stable with
respect to a function ϕ (ϕ is a positive, continuous, and nondecreasing function) on [t0, ϑ] if, for
every vector function y ∈ BV [t0, ϑ] satisfying the inequality

∣

∣

∣

∣

y(t)− x0 −

t
∫

t0

f(ξ, y(ξ)) dξ −

t
∫

t0

B(ξ, y(ξ)) dvc(ξ)

−
∑

ti≤t, ti∈Ω−

S
(

ti, y(ti − 0),∆v(ti − 0)
)

−
∑

ti<t, ti∈Ω+

S
(

ti, y(ti),∆v(ti + 0)
)

∣

∣

∣

∣

≤ ǫϕ(t),

(2.6)

for all ǫ > 0, and every solution to the inequality (2.6), there exists a positive real number cf,ϕ and
a solution to the equation (2.1) x(t) satisfying the inequality

|y(t)− x(t)| < cf,ϕǫϕ(t)

for all t ∈ [t0, ϑ].

3. Main result

Theorem 2. Let the conditions of Theorem 1 be satisfied. Then the differential equation (2.1)
is Hyers–Ulam–Rassiyas stable.

P r o o f. Let y(t) ∈ BV [t0, ϑ] be the solution to inequality (2.6), and let x(t) be the solution
to equation (2.4). According to (2.4),

|y(t)− x(t)| =

∣

∣

∣

∣

y(t)− x0 −

t
∫

t0

f(ξ, x(ξ)) dξ −

t
∫

t0

B(ξ, x(ξ)) dvc(ξ)

−
∑

ti≤t, ti∈Ω−

S
(

ti, x(ti − 0),∆v(ti − 0)
)

−
∑

ti<t, ti∈Ω+

S
(

ti, x(ti),∆v(ti + 0)
)

∣

∣

∣

∣

.
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We add and subtract the following sum under the modulus on the right-hand side of this relation:

t
∫

t0

f(ξ, y(ξ)) dξ +

t
∫

t0

B(ξ, y(ξ)) dvc(ξ) +
∑

ti≤t, ti∈Ω−

S
(

ti, y(ti − 0),∆v(ti − 0)
)

+
∑

ti<t, ti∈Ω+

S
(

ti, y(ti),∆v(ti + 0)
)

.

After grouping and taking into account the properties of the modulus, we obtain

|y(t)− x(t)| ≤

∣

∣

∣

∣

y(t)− x0 −

t
∫

t0

f(ξ, y(ξ)) dξ −

t
∫

t0

B(ξ, y(ξ)) dvc(ξ)

S
(

ti, y(ti − 0),∆v(ti − 0)
)

−
∑

ti<t, ti∈Ω+

S
(

ti, y(ti),∆v(ti + 0)
)

∣

∣

∣

∣

+

∣

∣

∣

∣

t
∫

t0

(

f(ξ, y(ξ))− f(ξ, x(ξ))
)

dξ

∣

∣

∣

∣

+

∣

∣

∣

∣

t
∫

t0

(

B(ξ, y(ξ)) −B(ξ, x(ξ))
)

dvc(ξ)

∣

∣

∣

∣

+
∣

∣

∣

∑

ti≤t, ti∈Ω−

S
(

ti, y(ti − 0),∆v(ti − 0)
)

+
∑

ti<t, ti∈Ω+

S
(

ti, y(ti),∆v(ti + 0)
)

−
∑

ti≤t, ti∈Ω−

S
(

ti, x(ti − 0),∆v(ti − 0)
)

−
∑

ti<t, ti∈Ω+

S
(

ti, x(ti),∆v(ti + 0)
)

∣

∣

∣
.

(3.1)

Using the definition of the Stieltjes integral and assumption (2.3), it is not difficult to verify the
validity of the inequality

∣

∣

∣

∣

t
∫

t0

(

B(ξ, y(ξ))−B(ξ, x(ξ))
)

dvc(ξ)

∣

∣

∣

∣

≤

t
∫

t0

LB |y(s)− x(s)| d var
[t0, s]

vc(·). (3.2)

From inequality (3.1), given assumptions (2.3), and inequality (3.2), we get

|y(t)− x(t)| ≤

∣

∣

∣

∣

y(t)− x0 −

t
∫

t0

f(ξ, y(ξ)) dξ −

t
∫

t0

B(ξ, y(ξ)) dvc(ξ)

−
∑

ti≤t, ti∈Ω−

S
(

ti, y(ti − 0),∆v(ti − 0)
)

−
∑

ti<t, ti∈Ω+

S
(

ti, y(ti),∆v(ti + 0)
)

∣

∣

∣

∣

+

∣

∣

∣

∣

t
∫

t0

Lf |y(ξ)− x(ξ)| dξ

∣

∣

∣

∣

+

∣

∣

∣

∣

t
∫

t0

LB|y(ξ)− x(ξ)| d var
[t0, ξ]

vc(ξ)

∣

∣

∣

∣

+

∣

∣

∣

∣

∑

ti≤t, ti∈Ω−

S
(

ti, y(ti − 0),∆v(ti − 0)
)

−
∑

ti≤t, ti∈Ω−

S
(

ti, x(ti − 0),∆v(ti − 0)
)

∣

∣

∣

∣

+

∣

∣

∣

∣

∑

ti<t, ti∈Ω+

S
(

ti, y(ti),∆v(ti + 0)
)

−
∑

ti<t, ti∈Ω+

S
(

ti, x(ti),∆v(ti + 0)
)

∣

∣

∣

∣

.

From the above chain of inequalities, taking into account (2.6), we obtain

|y(t)− x(t)| ≤ εϕ(t) +

t
∫

t0

Lf |y(ξ)− x(ξ)| dξ +

t
∫

t0

LB|y(ξ)− x(ξ)| d var
[t0, ξ]

vc(·)
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+

∣

∣

∣

∣

∑

ti≤t, ti∈Ω−

S
(

ti, y(ti − 0),∆v(ti − 0)
)

−
∑

ti≤t, ti∈Ω−

S
(

ti, x(ti − 0),∆v(ti − 0)
)

∣

∣

∣

∣

+

∣

∣

∣

∣

∑

ti<t, ti∈Ω+

S
(

ti, y(ti),∆v(ti + 0)
)

−
∑

ti<t, ti∈Ω+

S
(

ti, x(ti),∆v(ti + 0)
)

∣

∣

∣

∣

.

(3.3)

According to definition (2.5) of the function S(t, y,∆v), the following equality holds:

∣

∣S
(

ti, y(ti − 0),∆v(ti − 0)
)

− S
(

ti, x(ti − 0),∆v(ti − 0)
)
∣

∣

=
∣

∣zy(1)− y(ti − 0)−
(

zx(1) − x(ti − 0)
)
∣

∣

=

∣

∣

∣

∣

1
∫

0

(

B(ti − 0, zy(s))−B(ti − 0, zx(s))
)

∆v(ti − 0) ds

∣

∣

∣

∣

.

Hence, using property (2.3), we obtain the inequality

∣

∣zy(1)− y(ti − 0)−
(

zx(1)− x(ti − 0)
)
∣

∣ ≤

1
∫

0

LB|∆v(ti − 0)|
∣

∣zy(s)− zx(s)
∣

∣ ds.

Adding and subtracting y(ti − 0)− x(ti − 0) under the modulus in the integral and then applying
the triangle inequality to this modulus, we get

|zy(1) − y(ti − 0)− (zx(1) − x(ti − 0))| ≤ LB|∆v(ti − 0)|
∣

∣y(ti − 0)− x(ti − 0)
∣

∣

+

1
∫

0

LB|∆v(ti − 0)|
∣

∣zy(s)− y(ti − 0)− (zx(s)− x(ti − 0))
∣

∣ ds.
(3.4)

Using Gronwall’s lemma in (3.4), we get

∣

∣zy(1)− y(ti − 0)−
(

zx(1)− x(ti − 0)
)∣

∣ ≤ LB|∆v(ti − 0)|
∣

∣y(ti − 0)− x(ti − 0)
∣

∣eLB |∆v(ti−0)|. (3.5)

On the right-hand side of (3.5), we use the obvious inequality aeb ≤ eab − 1, a > 0, b ≥ e, which
can be easily proved by means of the Taylor expansion of the exponent and the inequality bn > n

for b ≥ e. As a result, we obtain

∣

∣zy(1)− y(ti − 0)− (zx(1)− x(ti − 0))
∣

∣ ≤ |y(ti − 0)− x(ti − 0)|
(

eeLB |∆v(ti−0)| − 1
)

. (3.6)

It is clear that a similar inequality can also be obtained at the point (ti + 0).

Estimating the differences of the sums in (3.3) with the use of (3.6), we obtain the inequality

|y(t)− x(t)| ≤ εϕ(t) +

t
∫

t0

Lf |y(ξ)− x(ξ)| dξ +

t
∫

t0

LB |y(ξ)− x(ξ)| d var
[t0, ξ]

vc(ξ)

+
∑

ti≤t, ti∈Ω−

|y(ti − 0)− x(ti − 0)|
(

eeLB |∆v(ti−0)| − 1
)

+
∑

ti<t, ti∈Ω+

|y(ti)− x(ti)|
(

eeLB |∆v(ti+0)| − 1
)

.

(3.7)
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Inequality (3.7) obviously implies the inequality

|y(t)− x(t)| ≤ εϕ(t) +

t
∫

t0

max{Lf ;LB}|y(ξ) − x(ξ)| d
(

ξ + var
[t0, ξ]

vc(·)
)

+
∑

ti≤t, ti∈Ω−

|y(ti − 0)− x(ti − 0)|
(

eeLB |∆v(ti−0)| − 1
)

+
∑

ti<t, ti∈Ω+

|y(ti)− x(ti)|
(

eeLB |∆v(ti+0)| − 1
)

.

Applying an estimate from [11, p. 192], we get

|y(t)− x(t)| ≤ εϕ(t)eH(t) ,

where

H(t) = max{Lf ;LB}
(

t− t0 + var
[t0, t]

vc(ξ) +
∑

ti≤t, ti∈Ω−

|∆v(ti − 0)| +
∑

ti≤t, ti∈Ω+

|∆v(ti + 0)|
)

.

Taking into account that H(t) is a monotonically increasing function, we set cfϕ = H(ϑ), which
completes the proof of the theorem.

�

4. Conclusion

The paper presents a formalization of the concept of the Hyers–Ulam–Rassias stability for non-
linear systems of differential equations with a generalized action on the right-hand side. Sufficient
conditions are obtained that ensure such stability.
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