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Abstract: Here we consider a certain transfert operator M(c,ω) = IP − c τω , ω 6= 0, c ∈ R− {0, 1}, and
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1. Introduction and preliminaries

Let O be a linear operator acting on the space of polynomials as a lowering operator (the
derivative [4, 18, 19], the q-derivative [4, 12, 14, 15], the divided-difference [1], the Dunkl [6, 8, 9,
11, 13], the q-Dunkl [5, 7, 13], other [17, 21]), a transfert operator (see [20]) or a raising operator
(see [2, 3, 17]). Many researchers in this vast field cited above had the concern to characterize
the O-classical polynomial sequences that is those which fulfill the so-called Hahn property: the
sequences {Pn}n≥0 and {OPn}n≥0 are orthogonal.

By the way, in [20], the authors characterized the I(q,ω)-classical orthogonal polynomials where
I(q,ω) is a transfert operator acting on the space of polynomials P and defined by [20]

I(q,ω) := IP + ωhq, ω ∈ C \ {0}, q ∈ Cω :=
{
z ∈ C, z 6= 0, zn+1 6= 1, 1 + ωzn 6= 0, n ∈ N

}
,

with IP being the identity operator in P and (hqf)(x) = f(qx), f ∈ P (homothety). Therefore,
our goal is to consider the following transfert operator M(c,ω) acting on P and defined by

M(c,ω) = IP − c τω, ω 6= 0, c ∈ R− {0, 1}, (1.1)

where
(τωf)(x) = f(x− ω), f ∈ P,

(translation) and to characterize all sequences of orthogonal polynomials {Pn}n≥0 having the Hahn
property; the resulting up an affine transformation (that is to say up a composition of a homothety
and a translation; see (1.4) below), is the Meixner polynomials of the first kind (see Theorem 2

https://doi.org/10.15826/umj.2024.1.001
mailto:emna.abassi@fst.utm.tn
mailto:kheriji@yahoo.fr


Meixner Polynomials of the First Kind 5

below). Indeed, in Section 2, firstly we deal with the M(c,ω)-character by presenting some char-
acterizations of it (see Theorem 1), secondly, we establish the system verified by the elements of
second-order recurrence relation for the sequences {Pn}n≥0 and {M(c,ω)Pn}n≥0 and thirdly we solve
it to deduce the desired result (Theorem 2). Moreover, the divided-difference equation fulfilled by
its canonical form and the second order linear divided-difference equation satisfied by any Meixner
polynomial are highlighted.

Let P be the vector space of polynomials with coefficients in C and let P ′ be its dual. We
denote by 〈u, f〉 the action of u ∈ P ′ on f ∈ P. In particular, we denote by

(u)n := 〈u, xn〉, n ≥ 0

the moments of u. The form u is called regular if we can associate with it a sequence of monic
polynomials {Pn}n≥0 with degPn = n, n ≥ 0 ((MPS) in short) [18] such that

〈u, PmPn〉 = rnδn,m, n,m ≥ 0; rn 6= 0, n ≥ 0.

The sequence {Pn}n≥0 is then called orthogonal with respect to u ((MOPS) in short). In this case,
the (MOPS) {Pn}n≥0 fulfils the standard recurrence relation ((TTRR) in short) [10, 18]

{
P0(x) = 1, P1(x) = x− β0 ,

Pn+2(x) = (x− βn+1)Pn+1(x)− γn+1Pn(x), n ≥ 0,
(1.2)

where

βn =
〈u, xP 2

n〉

rn
, γn+1 =

rn+1

rn
6= 0, n ≥ 0.

Moreover, the regular form u will be supposed normalized that is to say (u)0 = 1.

For any form u, any polynomial g and a, ω ∈ C\{0}, b ∈ C, we let τbu, hau, gu, Du = u′, Dωu

be the forms defined by duality [18] namely

〈τbu, f〉 = 〈u, τ−bf〉, 〈hau, f〉 = 〈u, haf〉, 〈gu, f〉 = 〈u, gf〉,

〈u′, f〉 = −〈u, f ′〉, 〈Dωu, f〉 = −〈u,D−ωf〉

where

(τ−bf)(x) = f(x+ b), (haf)(x) = f(ax), (D−ωf)(x) =
f(x)− f(x− ω)

ω
, f ∈ P,

and due to the well known formulas [1, 18] we have

τb(fu) = (τbf)(τbu), ha(fu) = (ha−1f) (hau), u ∈ P ′, f ∈ P. (1.3)

Let δb be the Dirac mass at b defined by

〈δb, f〉 = f(b), b ∈ C, f ∈ P.

In addition, let {P̂n}n≥0 be the (MPS) defined by

P̂n(x) = a−nPn(ax+ b), n ≥ 0, a 6= 0, b ∈ C.

If {Pn}n≥0 is a (MOPS) associated with u, then {P̂n}n≥0 is a (MOPS) associated with

û =
(
ha−1 ◦ τ−b

)
u
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and fulfilling the (TTRR) in (1.2) (βn ←֓ β̂n, γn+1 ←֓ γ̂n+1, n ≥ 0) with [18]

β̂n =
βn − b

a
, γ̂n+1 =

γn+1

a2
, n ≥ 0. (1.4)

Let now {Pn}n≥0 be a (MPS) and let {un}n≥0 be its dual sequence, un ∈ P
′ defined by

〈un, Pm〉 = δn,m, n,m ≥ 0.

Let us recall some results [18].

Lemma 1 [18]. For any u ∈ P ′ and any integer m ≥ 1, the following statements are equivalent

(i) 〈u, Pm−1〉 6= 0, 〈u, Pn〉 = 0, n ≥ m,

(ii) ∃λν ∈ C , 0 ≤ ν ≤ m− 1, λm−1 6= 0,

such that

u =
m−1∑

ν=0

λνuν .

As a consequence,

− the dual sequence {ûn}n≥0 of {P̂n}n≥0 is given by

ûn = an
(
ha−1 ◦ τ−b

)
un, n ≥ 0,

− when {Pn}n≥0 be a (MOPS) then u = u0. In this case, we have

un = r−1
n Pnu0, n ≥ 0

and reciprocally. Lastly, when u0 is regular and Φ is a polynomial such that Φu0 = 0, then
Φ = 0.

The monic Meixner polynomials {Mn(.;α, c)}n≥0 of the first kind are given by [10, 16]

Mn(x;α, c) = (α+ 1)n

(
c

c− 1

)n

2F1

( −n,−x
α+ 1

∣∣∣1− 1

c

)
, n ≥ 0,

they are orthogonal with respect to the discrete weight

ρ(x) =
cx(α+ 1)x

x!
, x ∈ N

for α > −1, 0 < c < 1. Here, the Pochhammer symbol (z)n takes the form

(z)0 = 1, (z)n =
n∏

k=1

(z + k − 1), n ≥ 1,

and 2F1 is the hypergeometric function defined by

2F1

(
p, q

r

∣∣∣s
)
=

∞∑

k=0

(p)k(q)k
(r)k

sk

k!
.

By describing exhaustively the D−ω-classical orthogonal polynomials in [1], the authors redis-
cover the (MOPS) of Meixner {Mn(.;α, c)}n≥0 orthogonal with respect to theD−1-classical Meixner
form M(α, c) for α 6= −n − 1, n ≥ 0, c ∈ C − {0, 1} and the positive definite case occurring for
α+1 > 0, c ∈ (0,∞)−{1}; they establish successively the (TTRR) elements, the divided-difference
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equation, the modified moments, the discrete representation and the second order linear divided-
difference equation (see the following),





βn =
c

1− c
(α+ 1) +

1 + c

1− c
n, γn+1 =

c

(1− c)2
(n+ 1)(n + α+ 1), n ≥ 0,

D−1

(
(x+ α+ 1)M(α, c)

)
−
(
(1− c−1)x+ α+ 1

)
M(α, c) = 0,

(
M(α, c)

)φ
n
=

(
c

1− c

)n Γ(α+ 1 + n)

Γ(α+ 1)
, n ≥ 0, c ∈ C− {0, 1}, α+ 1 ∈ C− (−N),

M(α, c) = (1− c)α+1
∑

k≥0

Γ(α+ 1 + k)

Γ(α+ 1)

c−k

k!
δk, 0 < |c| < 1, α 6= −n− 1, n ≥ 0,

(x+ α+ 1)(D−1 ◦D1Mn+1)(x;α, c) +
(
(1− c−1)x+ α+ 1

)
(D1Mn+1)(x;α, c)

−(n+ 1)(1− c−1)Mn+1(x;α, c) = 0, n ≥ 0.

(1.5)

2. Main result

2.1. The M(c,ω)-classical character

First of all, let ω 6= 0 and c ∈ R− {0, 1}. By virtue of (1.1) we have

(M(c,ω)f)(x) = f(x)− cf(x− ω), f ∈ P. (2.1)

Particularly,

(M(c,ω)1)(x) = 1− c, (M(c,ω)ξ
n)(x) = (1− c)xn + lower degree terms, n ≥ 1. (2.2)

When c = 1, M(1,ω) is not a transfert operator but a lowering one since M(1,ω) = ωD−ω.

From (1.1), we have

M(c,ω) = IP − c τω.

The transposed tM(c,ω) of M(c,ω) is

tM(c,ω) = IP ′ − c τ−ω = M(c,−ω),

leaving out a light abuse of notation without consequence.

Thus,

〈M(c,−ω)u, f〉 = 〈u,M(c,ω)f〉, u ∈ P
′, f ∈ P.

Particularly, by virtue of (2.2) we get

(M(c,−ω)u)0 = 1− c, (M(c,−ω)u)n = (1− c)(u)n − c

n−1∑

k=0

(
n

k

)
(−ω)n−k(u)k, n ≥ 1.

Lemma 2. The following formulas hold

M(c,ω)(fg)(x) = f(x)(M(1,ω)g)(x) + (τωg)(x)(M(c,ω)f)(x), f, g ∈ P, (2.3)

M(c,−ω)(fu) = (τ−ωf)(M(c,−ω)u) + (M(1,−ω)f)u, u ∈ P ′, f ∈ P, (2.4)

ha ◦M(c,ω) = M(c,a−1ω) ◦ ha in P, ha ◦M(c,−ω) = M(c,−aω) ◦ ha in P ′, a ∈ C− {0}, (2.5)

τb ◦M(c,ω) = M(c,ω) ◦ τb in P, τb ◦M(c,−ω) = M(c,−ω) ◦ τb in P ′, b ∈ C. (2.6)
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P r o o f. The proof is straightforward since definitions and duality. �

Now consider a (MPS) {Pn}n≥0. On account of (2.2), let us define the (MPS) {P
[1]
n (.; c, ω)}n≥0

by

P [1]
n (x; c, ω) =

(M(c,ω)Pn)(x)

1− c
, ω 6= 0, c ∈ R− {0, 1}, n ≥ 0. (2.7)

Denoting by {u
[1]
n (c, ω)}n≥0 the dual sequence of {P

[1]
n (.; c, ω)}n≥0, we have the result

Lemma 3. The following formula holds

M(c,−ω)(u
[1]
n (c, ω)) = (1− c)un, n ≥ 0. (2.8)

P r o o f. Indeed, from the definition it follows

〈u[1]n (c, ω), P [1]
m (x; c, ω)〉 = δn,m, n,m ≥ 0,

so we have

〈(M(c,−ω)(u
[1]
n (c, ω)), Pm〉 = (1− c)δn,m, n,m ≥ 0,

therefore,

〈M(c,−ω)(u
[1]
n (c, ω)), Pm〉 = 0, m ≥ n+ 1, n ≥ 0;

〈M(c,−ω)(u
[1]
n (c, ω)), Pn〉 = 1− c, n ≥ 0.

By virtue of Lemma 1, we get

M(c,−ω)(u
[1]
n (c, ω)) =

n∑

ν=0

λn,νuν , n ≥ 0.

But,

〈M(c,−ω)(u
[1]
n (c, ω)), Pµ〉 = λn,µ, 0 ≤ µ ≤ n,

with λn,µ = 0, 0 ≤ µ < n and λn,n = 1− c. The formula (2.8) is then established. �

Definition 1. The (MPS) {Pn}n≥0 is called M(c,ω)-classical if {Pn}n≥0 and {P
[1]
n (.; c, ω)}n≥0

are orthogonal.

Remark 1. When the (MPS) {Pn}n≥0 is orthogonal, it satisfies the (TTRR) (1.2). When the

(MPS) {P
[1]
n (.; c, ω)}n≥0 is orthogonal, it satisfies the (TTRR) (1.2) with the notations (βn ←֓ β

[1]
n ,

γn+1 ←֓ γ
[1]
n+1, n ≥ 0).

Theorem 1. For any (MOPS) {Pn}n≥0, the following assertions are equivalent.

a) The sequence {Pn}n≥0 is M(c,ω)-classical.
b) There exist a polynomial φ monic, deg φ ≤ 1 and a constant K 6= 0 such that

M(c,−ω)(φu0)−K−1(1− c)u0 = 0, (2.9)

1− c−Kφ′(0)ω n 6= 0, n ≥ 0. (2.10)
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c) There exist a polynomial φ monic, degφ ≤ 1, a constant K 6= 0 and a sequence of complex
numbers {λn}n≥0, λn 6= 0, n ≥ 0, such that

(
Kφ(x)− 1 + c

)
(M(c,−ω) ◦M(c,ω)Pn)(x)

+(c− 1)(Kφ(x) − 1)(M(c,ω)Pn)(x) = λnPn(x), n ≥ 0.
(2.11)

P r o o f. a) ⇒ b), a) ⇒ c).

From (2.8) and the regularity of u0 and u
[1]
0 (c, ω), we have

M(c,−ω)

(
P [1]
n (.; c, ω)u

[1]
0 (c, ω)

)
= ζn Pnu0, n ≥ 0,

with

ζn = (1− c)
〈u

[1]
0 (c, ω), (P

[1]
n (.; c, ω))2〉

〈u0, P 2
n〉

, n ≥ 0.

By (2.4), we get

(τ−ωP
[1]
n (.; c, ω))M(c,−ω)(u

[1]
0 (c, ω)) + (M(1,−ω)P

[1]
n (.; c, ω))u

[1]
0 (c, ω) = ζn Pnu0, n ≥ 0.

In accordance with the definition of M(c,−ω), one may write

M(c,−ω)(u
[1]
0 (c, ω)) = u

[1]
0 (c, ω) − c(τ−ωu

[1]
0 (c, ω)),

which yields

P [1]
n (.; c, ω)u

[1]
0 (c, ω)− c(τ−ωP

[1]
n (.; c, ω))(τ−ωu

[1]
0 (c, ω)) = ζn Pnu0, n ≥ 0. (2.12)

Taking n = 0 in (2.12) leads to

u
[1]
0 (c, ω) − c(τ−ωu

[1]
0 (c, ω)) = (1− c)u0. (2.13)

Injecting (2.13) in (2.12) gives

{
P [1]
n (.; c, ω) − (τ−ωP

[1]
n (.; c, ω))

}
u
[1]
0 (c, ω) =

{
ζn Pn − (1− c)(τ−ωP

[1]
n (.; c, ω))

}
u0, n ≥ 0. (2.14)

Now, taking n = 1 in (2.14), we obtain

u
[1]
0 (c, ω) = Kφ(x)u0, (2.15)

where K be a normalization constant since φ monic and

Kφ(x) =
1− c

ω

{
(1−

γ
[1]
1

γ1
)x+ ω +

γ
[1]
1

γ1
β0 − β

[1]
0

}
.

Applying the operator τ−ω to (2.15), we get

(τ−ωu
[1]
0 (c, ω)) = K(τ−ωφ)(x)(τ−ωu0). (2.16)

Replacing (2.16) and (2.15) in (2.13) leads to the desired result (2.9). By virtue of (2.15), the
formula in (2.14) becomes

{
Kφ

(
P [1]
n (.; c, ω) − (τ−ωP

[1]
n (.; c, ω))

)
+ (1− c)(τ−ωP

[1]
n (.; c, ω)) − ζn Pn

}
u0 = 0, n ≥ 0.
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Therefore,

Kφ
(
P [1]
n (.; c, ω) − (τ−ωP

[1]
n (.; c, ω))

)
+ (1− c)(τ−ωP

[1]
n (.; c, ω)) − ζn Pn = 0, n ≥ 0,

thanks to the regularity of u0. Moreover, from (2.1) with the change ω ← −ω, we may write

(τ−ωP
[1]
n (.; c, ω)) = c−1

(
P [1]
n (.; c, ω) − (M(c,−ω)P

[1]
n (.; c, ω))

)
, n ≥ 0.

Consequently, the last equation becomes

(
Kφ(x)− 1 + c

)
(M(c,−ω) ◦M(c,ω)Pn)(x) + (c− 1)(Kφ(x) − 1)(M(c,ω)Pn)(x)

= c(1 − c)ζnPn(x), n ≥ 0.
(2.17)

Writing into (2.17)





φ(x) = φ′(0)x+ φ(0),

(M(c,ω)Pn)(x) = Pn(x)− cPn(x− ω),

(M(c,−ω) ◦M(c,ω)Pn)(x) = (1 + c2)Pn(x)− c
(
Pn(x− ω) + Pn(x+ ω)

)
,

Pn(x) =

n∑

k=0

an,kx
k, an,n = 1, n ≥ 0,

and by comparing the degrees we obtain

1− c−Kφ′(0)ω n = ζn 6= 0, n ≥ 0.

Hence (2.10) and a) ⇒ b).
Finally, (2.17) is (2.11) with λn = c(1− c)ζn 6= 0, n ≥ 0. We have also proved that a) ⇒ c).

b)⇒ a) Let us suppose that there exist a polynomial φ monic, deg φ ≤ 1 and a constant K 6= 0
such that (2.9)–(2.10) are valid. From (2.9), we have

0 = 〈M(c,−ω)(φu0)−K−1(1− c)u0, 1〉 = (1− c)
(
〈u0, φ〉 −K−1

)
.

Thus,

K−1 = 〈u0, φ〉 = φ′(0)β0 + φ(0) = φ(β0).

Necessarily, φ(β0) 6= 0. Let v = Kφu0. We are going to prove that the (MPS) {P
[1]
n (.; c, ω)}n≥0 is

orthogonal with respect to v. We have successively

〈v, P
[1]
0 (.; c, ω)〉 = K〈u0, φ〉 = 1, (2.18)

for all n ≥ 1,

〈v, P [1]
n (.; c, ω)〉 =

K

1− c
〈φu0,M(c,ω)Pn〉 =

K

1− c
〈M(c,−ω)(φu0), Pn〉

=
(2.9)

K

1− c
〈K−1(1− c)u0, Pn〉 = 0,
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and for m ≥ 1, n ≥ 0,

〈v, xmP [1]
n (.; c, ω)〉 =

K

1− c
〈φu0, x

m(Pn(x)− cPn(x− ω))〉

=
K

1− c
〈φu0, x

mPn(x)〉 −
Kc

1− c
〈φu0, τω

(
(ξ + ω)mPn(ξ)

)
(x)〉

=
K

1− c
〈φu0, x

mPn(x)〉 −
K

1− c
〈cτ−ω(φu0), (x+ ω)mPn(x)〉

=
cτ−ω(φu0)=(φ−K−1(1−c))u0

K

1− c
〈φu0, (x

m − (x+ ω)m)Pn(x)〉+ 〈u0, (x+ ω)mPn(x)〉,

or equivalently, for m ≥ 1, n ≥ 0,

〈v, xmP [1]
n (.; c, ω)〉 = −

Kφ′(0)

1− c

m∑

k=1

(
m

k − 1

)
ωm−k+1〈u0, x

kPn(x)〉

−
Kφ(0)

1− c

m−1∑

k=0

(
m

k

)
ωm−k〈u0, x

kPn(x)〉 +

m∑

k=0

(
m

k

)
ωm−k〈u0, x

kPn(x)〉

from which thanks to the orthogonality of {Pn}n≥0 and (2.10) we get





〈v, xmP
[1]
n (.; c, ω)〉 = 0, 1 ≤ m ≤ n− 1, n ≥ 2,

〈v, xnP
[1]
n (.; c, ω)〉 =

(
1−

Kφ′(0)

1− c
nω

)
〈u0, P

2
n〉 6= 0, n ≥ 1.

(2.19)

By the identities in (2.18)–(2.19), we see that {P
[1]
n (.; c, ω)}n≥0 is orthogonal with respect to v. We

then obtain the desired result.

c) ⇒ b) Comparing the degrees in (2.11), we can deduce (2.10). Making n = 0 into (2.11), we
obtain

λ0 = c(1 − c)2. (2.20)

Moreover, from definitions, (2.11) may be written as

φ
(
(M(c,ω)Pn)− (τ−ω ◦M(c,ω)Pn)

)
+K−1(1− c)(τ−ω ◦M(c,ω)Pn) = c−1K−1λnPn, n ≥ 0,

then,

〈u0, φ
(
(M(c,ω)Pn)− (τ−ω ◦M(c,ω)Pn)

)
+K−1(1− c)(τ−ω ◦M(c,ω)Pn)〉 = c−1K−1λn〈u0, Pn〉, n ≥ 0.

Equivalently,

〈M(c,−ω)(φu0)−(M(c,−ω) ◦τω)(φu0)+K−1(1−c)(M(c,−ω) ◦τωu0), Pn〉 = c−1K−1λn〈u0, Pn〉, n ≥ 0.

By virtue of Lemma 1 and (2.20), we get

M(c,−ω)(φu0)− (M(c,−ω) ◦ τω)(φu0) +K−1(1− c)(M(c,−ω) ◦ τωu0)−K−1(1− c)2u0 = 0.

A similar expression is

M(c,−ω)(φu0)−K−1(1− c)u0 = (M(c,−ω) ◦ τω)(φu0)

−K−1(1− c)(M(c,−ω) ◦ τωu0)−K−1(1− c)cu0.
(2.21)
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But, by (2.6) and definition of the operator (M(c,−ω), we have for the right side of (2.21),

(M(c,−ω) ◦ τω)(φu0)−K−1(1− c)(M(c,−ω) ◦ τωu0)−K−1(1− c)cu0

= τω
(
M(c,−ω)(φu0)

)
−K−1(1− c)τω

(
(M(c,−ω)u0) + cτ−ωu0

)

= τω
(
M(c,−ω)(φu0)−K−1(1− c)u0

)
.

Therefore, (2.21) becomes

M(1,ω)

(
M(c,−ω)(φu0)−K−1(1− c)u0

)
= 0.

From the fact that the operator M(1,ω) is injective in P ′ we get (2.9). �

Lemma 4. If u0 satisfies (2.9), then û0 =
(
ha−1 ◦ τ−b

)
u0 fulfills the equation

M(c,−ωa−1)

(
a− deg φφ(ax+ b)û0

)
− a− deg φK−1(1− c)û0 = 0.

P r o o f. We need the following formulas which are easy to prove from (1.3)

g(τbu) = τb
(
(τ−bg)u

)
; g(hau) = ha

(
(hag)u

)
, g ∈ P, u ∈ P ′. (2.22)

Now, with u0 =
(
τb ◦ (ha

)
û0, we have

−K−1(1− c)u0 =
(
τb ◦ (ha

)(
−K−1(1− c)û0

)
.

Further,

M(c,−ω)(φu0) = M(c,−ω)

(
φ(τb(haû0))

)
=

(2.22)
M(c,−ω)

(
τb((τ−bφ)(haû0))

)

=
(2.6)

(τb ◦M(c,−ω))
(
(τ−bφ)(haû0)

)
=

(2.22)
(τb ◦M(c,−ω))

(
ha((ha ◦ τ−bφ)û0)

)

=
(2.5)

(
τb ◦ ha ◦M(c,−ωa−1)

)(
(ha ◦ τ−bφ)û0

)
.

Consequently, equation (2.9) becomes

τb ◦ ha

(
M(c,−ωa−1)

(
φ(ax+ b))û0

)
−K−1(1− c)û0

)
= 0.

This leads to the desired equality. �

2.2. Determination of all M(c,ω)-classical (MOPS)s

Lemma 5. Let {Pn}n≥0 be a M(c,ω)-classical (MOPS). The following equality holds

c

1− c
ω Pn+1(x− ω) = (βn+1 − β

[1]
n+1)P

[1]
n+1(x; c, ω) + (γn+1 − γ

[1]
n+1)P

[1]
n (x; c, ω), n ≥ 0. (2.23)

P r o o f. From the (TTRR) (1.2) we have

Pn+2(x) = (x− βn+1)Pn+1(x)− γn+1Pn(x), n ≥ 0. (2.24)

Applying the transfert operator to (2.24), using (2.3) and (2.7) we obtain

(1− c)P
[1]
n+2(x; c, ω) = (1− c)(x− βn+1)P

[1]
n+1(x; c, ω) + c ωPn+1(x− ω)

−γn+1(1− c)P [1]
n (x; c, ω), n ≥ 0.

(2.25)
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But from the (TTRR) of {P
[1]
n (.; c, ω)}n≥0, one may write

xP [1]
n (.; c, ω) = P

[1]
n+2(.; c, ω) + β

[1]
n+1P

[1]
n+1(.; c, ω) + γ

[1]
n+1P

[1]
n (.; c, ω), n ≥ 0. (2.26)

Now, injecting (2.26) in (2.25) leads to the desired result (2.23). �

Proposition 1. The coefficients βn, γn+1, β
[1]
n , γ

[1]
n+1 satisfy the following system

βn − β[1]
n = ω

c

1− c
, n ≥ 0, (2.27)

γn+1 − γ
[1]
n+1 = −ω

2 c

(1− c)2
(n + 1), n ≥ 0, (2.28)

βn+1 − βn = ω
1 + c

1− c
, n ≥ 0, (2.29)

γ[1]n =
n

n+ 1
γn+1, n ≥ 1. (2.30)

P r o o f. Firstly, the higher degree test in (2.23) yields

βn+1 − β
[1]
n+1 = ω

c

1− c
, n ≥ 0. (2.31)

Secondly, n = 0 in (2.23) gives

γ1 − γ
[1]
1 = −ω

c

1− c
(ω + β0 − β

[1]
0 ). (2.32)

Thirdly, applying the transfert operator M(c,ω) to

P1(x) = x− β0

and by virtue of (2.7) and (2.31)–(2.32) we get (2.27) and

γ1 − γ
[1]
1 = −ω2 c

(1− c)2
. (2.33)

Thanks to (2.27), the formula in (2.23) becomes

c ω Pn+1(x− ω) = c ω P
[1]
n+1(x; c, ω) + (1− c)(γn+1 − γ

[1]
n+1)P

[1]
n (x; c, ω), n ≥ 0. (2.34)

Moreover, multiplication of (2.24) by c ω with the change x← x− ω yields

c ωPn+2(x− ω) = (x− ω − βn+1)c ωPn+1(x− ω)− γn+1c ωPn(x− ω), n ≥ 0. (2.35)

Replacing (2.34) for the index n, n + 1, n + 2 in (2.35), using (2.26) for the index n, n + 1, the

formula in (2.27) and the fact that {P
[1]
n (.; c, ω)}n≥0 is a basis , we obtain successively

(γ
[1]
n+2 − γn+2)− (γ

[1]
n+1 − γn+1) = ω2 c

(1− c)2
, n ≥ 0, (2.36)

(γ
[1]
n+1 − γn+1)

{
(1 − c)(βn − βn+1) + (1 + c)ω

}
= 0, (2.37)

(γ
[1]
n+1 − γn+1)γ

[1]
n = (γ[1]n − γn)γn+1, n ≥ 1. (2.38)

Summing on (2.36) and taking into account (2.33) lead to (2.28) and (2.37) yields (2.29).
Lastly, (2.30) is a direct consequence of (2.38) and (2.28).
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Now, we are able to solve the system (2.27)–(2.30).
Summing on (2.29) leads to

βn = β0 + ω
1 + c

1− c
n, n ≥ 0. (2.39)

Injecting (2.39) in (2.27) yields

β[1]
n = β0 − ω

c

1− c
+ ω

1 + c

1− c
n, n ≥ 0. (2.40)

Also, injecting (2.30) in (2.28) gives

γn+2

n+ 2
−

γn+1

n+ 1
= ω2 c

(1− c)2
, n ≥ 0.

Summing the previous equality leads to

γn+1 = (n+ 1)
(
γ1 + ω2 c

(1− c)2
n
)
, n ≥ 0. (2.41)

After replacing (2.41) in (2.30) we deduce the following

γ
[1]
n+1 = (n+ 1)

(
γ1 + ω2 c

(1− c)2
(n+ 1)

)
, n ≥ 0. (2.42)

�

Corollary 1. Let {Pn}n≥0 be a M(c,ω)-classical (MOPS). The following statements hold.

1) The recurrence elements of {Pn}n≥0 are





βn = ω
(β0
ω

+
1 + c

1− c
n
)
, n ≥ 0,

γn+1 = ω2 c

(1− c)2
(n+ 1)

(
n+

(1− c)2

c

γ1

ω2

)
, n ≥ 0.

(2.43)

2) The recurrence elements of {P
[1]
n (.; c, ω)}n≥0 are





β
[1]
n = ω

(β0
ω
−

c

1− c
+

1 + c

1− c
n
)
, n ≥ 0,

γ
[1]
n+1 = ω2 c

(1− c)2
(n+ 1)

(
n+ 1 +

(1− c)2

c

γ1

ω2

)
, n ≥ 0.

(2.44)

P r o o f. The formula (2.43) is a consequence of (2.39) and (2.41). Also, (2.44) is a direct
result from (2.40) and (2.42).

Theorem 2. Up to an affine transformation, the only M(c,1)-classical (MOPS) is the Meixner’s
one of the first kind.

P r o o f. The classification of the canonical situations depends on the fact that β0 6= 0 or
β0 = 0.

β0 6= 0. For (2.43)–(2.44), put
ω β0 = (1− c)γ1

and
(1− c)2

c

γ1

ω2
= α+ 1.
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Then,
β0

ω
=

c

1− c
(α+ 1).

Now, for (2.43), choosing a = ω, b = 0 in (1.4) and thanks to (2.5)–(2.6) this yields





β̂n =
c

1− c
(α+ 1) +

1 + c

1− c
n, n ≥ 0,

γ̂n+1 =
c

(1− c)2
(n+ 1)(n + α+ 1), n ≥ 0.

Therefore (see (1.5)),

P̂n = Mn(.;α, c), n ≥ 0,

with α 6= −n− 1, n ≥ 0. Next, for (2.44), choosing

a = ω, b = −
2ω c

1− c

in (1.4) and thanks to (2.5)–(2.6) this yields





β̂
[1]
n =

c

1− c
(α+ 2) +

1 + c

1− c
n, n ≥ 0,

γ̂
[1]
n+1 =

c

(1− c)2
(n+ 1)(n + α+ 2), n ≥ 0.

Thus,

P̂ [1]
n = Mn(.;α + 1, c), n ≥ 0,

with α 6= −n− 2, n ≥ 0.

β0 = 0. In this case, (2.43)–(2.44) become successively,





βn = ω
1 + c

1− c
n, n ≥ 0,

γn+1 = ω2 c

(1− c)2
(n+ 1)

(
n+

(1− c)2

c

γ1

ω2

)
, n ≥ 0,

(2.45)





β
[1]
n = ω

(
−

c

1− c
+

1 + c

1− c
n
)
, n ≥ 0,

γ
[1]
n+1 = ω2 c

(1− c)2
(n+ 1)

(
n+ 1 +

(1− c)2

c

γ1

ω2

)
, n ≥ 0.

(2.46)

For (2.45), putting
(1− c)2

c

γ1

ω2
= α+ 1,

and choosing in (1.4)

a = ω, b = −
ω c

1− c
(α+ 1),

we obtain 



β̂n =
c

1− c
(α+ 1) +

1 + c

1− c
n, n ≥ 0,

γ̂n+1 =
c

(1− c)2
(n+ 1)(n + α+ 1), n ≥ 0.

Consequently,

P̂n = Mn(.;α, c), n ≥ 0,
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with α 6= −n− 1, n ≥ 0. For (2.46), putting

(1− c)2

c

γ1

ω2
= α+ 1

and choosing in (1.4)

a = ω, b = −
ω c

1− c
(α+ 3),

we get 



β̂
[1]
n =

c

1− c
(α+ 2) +

1 + c

1− c
n, n ≥ 0,

γ̂
[1]
n+1 =

c

(1− c)2
(n+ 1)(n + α+ 2), n ≥ 0.

Equivalently,

P̂ [1]
n = Mn(.;α + 1, c), n ≥ 0,

with α 6= −n− 2, n ≥ 0.

The theorem is then proved. �

Remark 2. On account of Theorem 1, Theorem 2 and after some easy calculations we get for
the divided-difference equation (2.9) fulfilled by the Meixner formM(α, c),

M(c,−1)

((
x−

1 + c

1− c
(α+ 1)

)
M(α, c)

)
+ (α+ 1)M(α, c) = 0,

and also for the second order linear divided-difference equation (2.11) satisfied by any Meixner
polynomial Mn(.;α, c), for all n ≥ 0,

(
−
1− c

α+ 1
x+ 2c

)
(M(c,−1) ◦M(c,1)Mn)(x;α, c) + (1− c)

( 1− c

α+ 1
x− c

)
(M(c,1)Mn)(x;α, c)

= c(1 − c)2
n+ α+ 1

α+ 1
Mn(x;α, c).
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