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Abstract: In this paper, the seminormed Cesàro difference sequence space ℓ(Fj , q, g, r, µ,∆t
(s)

, C) is

defined by using the generalized Orlicz function. Some algebraic and topological properties of the space
ℓ(Fj , q, g, r, µ,∆

t
(s)

, C) are investigated. Various inclusion relations for this sequence space are also studied.
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1. Preliminaries and introduction

The notation ω(X ) represents the spaces of all X -valued sequence spaces, and (X , g) is a
seminormed space. By ℓ∞, c, and c0, we indicate the spaces of all bounded, convergent, and null
convergent sequences, respectively. Also, we denote the set of natural numbers including zero by
N and the zero sequence by θ.

In [9], Kızmaz introduced the notion of difference sequence spaces λ(∆), where λ denotes any
one of the classical sequence spaces ℓ∞, c, and c0. Çolak and Et [5] further generalized the notion
of difference sequence space λ(∆m) for λ ∈ {ℓ∞, c, c0}. Following [14], for t, s ∈ N and λ = ℓ∞, c, c0,
we have

λ(∆t
(s)) =

{

x ∈ ω : (∆t
(s)xi) ∈ λ

}

,

where
∆t

(s)xi = ∆t−1
(s) xi −∆t−1

(s) xi+s, ∆0
(s)xi = xi ∀i ∈ N,

which has the following binomial expression:

∆t
(s)xi =

t
∑

k=0

(−1)k
(

t

k

)

xi+sk.

For s = t = 1, we obtain the spaces ℓ∞(∆), c(∆), and c0(∆).
A linear metric space X over C is said to be a paranormed space if there is a subadditive

function q : X → C such that q(0) = 0, q(x) = q(−x), and scalar multiplication is continuous; that
is, |αn − α| → 0 and q(xi − x) → 0 imply q(αixi − αx) → 0 as i → ∞ ∀α ∈ C and x ∈ X .

A paranorm q is called total if q(x) = 0 implies x = 0. The pair (X , q) is called a total
paranormed space.
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A convex function M : R → R such that M(0) = 0 and M(x) > 0 for all x > 0 is called an
Orlicz function. Let XM be the set of all sequences (xn) such that

∑

nM(|xn|/p) < ∞ for some
p > 0; XM is a Banach space with the norm

‖xn‖M = inf
{

p > 0 :

∞
∑

n=1

M
( |xn|

p

)

≤ 1
}

,

and (XM , ‖ · ‖) is called an Orlicz sequence space. An Orlicz function F : [0,∞) → [0,∞) is called
a modulus function if

F(x+ y) ≤ F(x) + F(y) ∀x, y ∈ [0,∞).

An Orlicz function F is said to satisfy ∆2-condition for all values of u ≥ 0 if there exists K > 0
such that

F(2u) ≤ KF(u).

This is equivalent to satisfying the inequality

F(ru) ≤ KrF(u)

for r > 1 and all values of u ≥ 0. The ∆2-condition implies

F(ru) ≤ Krlog2 KF(u)

for all values of u ≥ 0 and for r > 1.
Two Orlicz functions M and N are said to be equivalent if there exist α, β > 0, 0 < K ≤ L,

and a > 0 such that KM(αx) ≤ N(x) ≤ LM(βx) for each x ∈ [0, a]. A BK-space is a Banach
space of complex sequences with continuous coordinate maps. A sequence x = (xi) ∈ ν is called
sectionally convergent if

x[n] =
n
∑

i=1

xiei → x

as n → ∞, where ei = (δij) is the Kronecker symbol, that is, δij = 1 for i = j and δij = 0 for i 6= j.
A space ν is called an AK-space if and only if each element is sectionally convergent.

Orlicz [13] studied the Orlicz functions and introduced the sequence space ℓF . Orlicz spaces
have many applications in various fields including the theory of nonlinear integral equations. Also,
Orlicz sequence spaces generalize ℓp-spaces, and ℓp-spaces are enveloped in Orlicz spaces. Many
researchers have studied different sequence spaces using the Orlicz functions. For a more detailed
study of the Orlicz functions, one can refer to [2–4, 6–8, 11, 15–17].

For a sequence (Fi) of Orlicz functions, the vector space ℓ(Fi) defined by

ℓ(Fi) =
{

x = (xi) ∈ w :

∞
∑

i=1

Fi

( |xi|

ρ

)

< ∞ for some ρ > 0
}

is a Banach space with the norm

‖x‖ = inf
{

ρ > 0 :

∞
∑

i=1

Fi

( |xi|

ρ

)

≤ 1
}

and is called a modular sequence space. Furthermore, the space ℓ(Fi) generalizes the notion of
modular sequence space studied by Nakano [12] who introduced the space ℓ(Fi) for Fi(x) = xαi ,
where 1 ≤ αi < ∞ for i ∈ {1, 2, . . .}. In [10], Lindenstrauss and Tzafriri proved that every Orlicz
sequence space contains a subspace isomorphic to ℓp for some 1 ≤ p < ∞. They also proved that
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every subspace of a separable Orlicz sequence space is isomorphic to ℓp for some 1 ≤ p < ∞.
Woo [18] extended these findings to the separable modular sequence spaces.

In this paper, we define and study the seminormed Cesàro difference sequence space
ℓ(Fj , q, g, r, µ,∆

t
(s), C) using the concept of the generalized Orlicz function. Throughout the pa-

per, we use a well-known inequality which is explained as follows [1]:
let (qj) be a sequence of positive real numbers with

0 ≤ qj ≤ sup
j

qj = H, K = max(1, 2H−1),

then
|ai + bi|

qj ≤ K |ai|
qj +K |bi|

qj

for any two complex numbers ai and bi, for each i ∈ N.

2. Seminormed difference sequence space and Orlicz functions

Let F = (Fj) be a sequence of Orlicz functions, let (X , g) be a seminormed space, and let (qj)
be a strictly bounded sequence of positive real numbers. Let C be the Cesàro matrix of order 1.
Then, for a nonnegative real number r and a sequence of positive real numbers µ = (µi), we define
a difference sequence space ℓ(Fj , q, g, r, µ,∆

t
(s) , C) as follows:

ℓ(Fj , q, g, r, µ,∆
t
(s), C) =

{

x ∈ ω(X ) :
∞
∑

j=0

j−r

[

Fj

(

g

(

∑j
i=0 µi∆

t
(s)xi

ρ(j + 1)

))]qj

< ∞, ρ > 0

}

.

Theorem 1. The sequence space ℓ(Fj , q, g, r, µ,∆
t
(s), C) is a linear space over the field of com-

plex numbers C.

P r o o f. Let x = (xi) and y = (yi) belong to ℓ(Fj , q, g, r, µ,∆
t
(s), C). Let a and b be two

nonzero complex numbers. To establish the result, we need to find some ρ3 > 0 such that

∞
∑

j=0

j−r

[

Fj

(

g

(

∑j
i=0 µi∆

t
(s)(axi + byi)

ρ3(j + 1)

))]qj

< ∞.

For x, y ∈ ℓ(Fj , q, g, r, µ,∆
t
(s), C), there exist ρ1, ρ2 > 0 such that

∞
∑

j=0

j−r

[

Fj

(

g

(

∑j
i=0 µi∆

t
(s)xi

ρ1(j + 1)

))]qj

< ∞ and

∞
∑

j=0

1

jr

[

Fj

(

g

(

∑j
i=0 µi∆

t
(s)yi

ρ2(j + 1)

))]qj

< ∞.

Consider
1

ρ3
= min

{

1

|a| ρ1
,

1

|b| ρ2

}

.

Since F = (Fj) is nondecreasing, g is a seminorm, and ∆t
(s) is linear, we obtain

∞
∑

j=0

j−r

[

Fj ◦ g

(

∑j
i=0 µi∆

t
(s)(axi + byi)

ρ3(j + 1)

)]qj

≤
∞
∑

j=0

j−r

[

Fj

(

g

(

∑j
i=0 µi∆

t
(s)axi

ρ3(j + 1)

)

+ g

(

∑j
i=0 µi∆

t
(s)byi

ρ3(j + 1)

))]qj
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≤
∞
∑

j=0

j−r

[

Fj

(

g

(

∑j
i=0 µi∆

t
(s)xi

ρ1(j + 1)

)

+ g

(

∑j
i=0 µi∆

t
(s)yi

ρ2(j + 1)

))]qj

≤ K

∞
∑

j=0

j−r

[

Fj

(

g

(

∑j
i=0 µi∆

t
(s)xi

ρ1(j + 1)

))]qj

+K

∞
∑

j=0

j−r

[

Fj

(

g

(

∑j
i=0 µi∆

t
(s)yi

ρ2(j + 1)

))]qj

< ∞.

Hence, ℓ(Fj , q, g, r, µ,∆
t
(s), C) is a linear space. �

Theorem 2. The space ℓ(Fj , q, g, r, µ,∆
t
(s), C) is a paranormed space (not necessarily total

paranormed) with the paranorm H given by

H∆(x) = inf

{

ρqt/G :

∞
∑

j=0

j−r

[

Fj

(

g

(

∑j
i=0 µi∆

t
(s)xi

ρ(j + 1)

))]

≤ 1, ρ > 0, t ∈ N

}

,

where G = max
{

1,H = supj∈N qj
}

.

P r o o f. Trivially, H∆(x) = H∆(−x). Since Fj(θ) = 0 for all j ∈ N, we obtain inf{ρqn/G} = 0
for x = θ.

Let x = (xi) and y = (yi) be two arbitrary sequences in ℓ(Fj , q, g, r, µ,∆
t
(s), C). Then, for some

ρ1, ρ2 > 0, we have

∞
∑

j=0

j−r

[

Fj

(

g

(

∑j
i=0 µi∆

t
(s)xi

ρ1(j + 1)

))]

≤ 1 and

∞
∑

j=0

j−r

[

Fj

(

g

(

∑j
i=0 µi∆

t
(s)yi

ρ2(j + 1)

))]

≤ 1.

For ρ = ρ1 + ρ2, we obtain

∞
∑

j=0

j−r

[

Fj

(

g

(

∑j
i=0 µi∆

t
(s)(xi + yi)

ρ(j + 1)

))]

≤
( ρ1
ρ1+ρ2

)

∞
∑

j=0

j−r

[

Fj

(

g

(

∑j
i=0 µi∆

t
(s)xi

ρ1(j + 1)

))]

+
( ρ2
ρ1+ρ2

)

∞
∑

j=0

j−r

[

Fj

(

g

(

j
∑

i=0
µi∆

t
(s)yi

ρ2(j + 1)

))]

< 1.

Thus,

H∆(x+ y) = inf

{

(ρ1+ρ2)
qt/G :

∞
∑

j=0

j−r

[

Fj

(

g

(

∑j
i=0 µi∆

t
(s)(xi + yi)

(ρ1 + ρ2)(j + 1)

))]

≤ 1, ρ1 > 0, ρ2 > 0

}

≤ inf

{

(ρ1)
qt/G :

∞
∑

j=0

j−r

[

Fj

(

g

(

∑j
i=0 µi∆

t
(s)xi

ρ1(j + 1)

))]

≤ 1, ρ1 > 0, t ∈ N

}

+ inf

{

(ρ2)
qt/G :

∞
∑

j=0

j−r

[

Fj

(

g

(

∑j
i=0 µi∆

t
(s)yi

ρ2(j + 1)

))]

≤ 1, ρ2 > 0, t ∈ N

}

≤ H∆(x) + H∆(y).

Finally, for any scalar γ 6= 0 and r = ρ/|γ|, we have

H∆(γx) = inf

{

ρqt/G :

∞
∑

j=0

j−r

[

Fj

(

g

(

∑j
i=0 µi∆

t
(s)(γxi)

ρ(j + 1)

))]

≤ 1, ρ > 0, t ∈ N

}

= inf

{

(|γ|r)qt/G :
∞
∑

j=0

j−r

[

Fj

(

g

(

∑j
i=0 µi∆

t
(s)xi

r(j + 1)

))]

≤ 1, r > 0, t ∈ N

}

.
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Hence, ℓ(Fj , q, g, r, µ,∆
t
(s), C) is a paranormed sequence space. �

Theorem 3. Let F = (Fj) and T = (Tj) be two sequences of Orlicz functions. Then

ℓ(Fj , q, g, r, µ,∆
t
(s), C) ∩ ℓ(Tj, q, g, r, µ,∆

t
(s), C) ⊂ ℓ(Fj + Tj, q, g, r, µ,∆

t
(s), C).

P r o o f. Let
x ∈ ℓ(Fj , q, g, r, µ,∆

t
(s), C) ∩ ℓ(Tj, q, g, r, µ,∆

t
(s) , C).

Then there exist ρ1, ρ2 > 0 such that

∞
∑

j=0

j−r

[

Fj

(

g

(

∑j
i=0 µi∆

t
(s)xi

ρ1(j + 1)

))]qj

< ∞ and

∞
∑

j=0

j−r

[

Tj

(

g

(

∑j
i=0 µi∆

t
(s)xi

ρ2(j + 1)

))]qj

< ∞.

Taking 1/ρ = min{1/ρ1, 1/ρ2}, we obtain

∞
∑

j=0

j−r

[

(Fj + Tj)

(

g

(

∑j
i=0 µi∆

t
(s)xi

ρ(j + 1)

))]qj

≤ K

[ ∞
∑

j=0

j−r

[

Fj

(

g

(

∑j
i=0 µi∆

t
(s)xi

ρ1(j + 1)

))]qj]

+K

[ ∞
∑

j=0

j−r

[

Tj

(

g

(

∑j
i=0 µi∆

t
(s)xi

ρ2(j + 1)

))]qj]

< ∞.

Therefore,

∞
∑

j=0

j−r

[

(Fj + Tj)

(

g

(

∑j
i=0 µi∆

t
(s)xi

ρ(j + 1)

))]qj

< ∞.

Hence, x ∈ ℓ(Fj + Tj, q, g, r, µ,∆
t
(s), C). �

Theorem 4. For t ≥ 1, the inclusion ℓ(Fj , q, g, r, µ,∆
t−1
(s)

, C) ⊂ ℓ(Fj , q, g, r, µ,∆
t
(s), C) is strict.

P r o o f. Let x ∈ ℓ(Fj , q, g, r, µ,∆
t−1
(s) , C). Then, we have

∞
∑

j=0

j−r

[

Fj

(

g

(

∑j
i=0 µi∆

t−1
(s) xi

ρ(j + 1)

))]qj

< ∞ for some ρ > 0.

Since F = (Fj) is nondecreasing and g is a seminorm, we obtain

∞
∑

j=0

j−r

[

Fj

(

g

(

∑j
i=0 µi∆

t
(s)xi

ρ(j + 1)

))]qj

≤
∞
∑

j=0

j−r

[

Fj

(

g

(

∑j
i=0 µi(∆

t−1
(s) xi −∆t−1

(s) xi+1)

ρ(j + 1)

))]qj

≤ K

[ ∞
∑

j=0

j−r

[

Fj

(

g

(

∑j
i=0 µi∆

t−1
(s) xi

ρ(j + 1)

))]qj]

+K

[ ∞
∑

j=0

j−r

[

Fj

(

g

(

∑j
i=0 µi∆

t−1
(s) xi+1

ρ(j + 1)

))]qj]

< ∞.

Therefore,

∞
∑

j=0

j−r

[

Fj

(

g

(

∑j
i=0 µi∆

t
(s)xi

ρ(j + 1)

))]qj

< ∞.
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Hence, x ∈ ℓ(Fj , q, g, r, µ,∆
t
(s), C). �

In general, ℓ(Fj , q, g, r, µ,∆
i
(s), C) ⊂ ℓ(Fj , q, g, r, µ,∆

t
(s), C) for i = 1, 2, . . . , t− 1, and the inclu-

sion is strict.

Theorem 5. Let (qj) be a sequence of positive real numbers. Then

(a) ℓ(Fj , q, g, r, µ,∆
t
(s), C) ⊂ ℓ(Fj , g, r, µ,∆

t
(s), C) for 0 < infj qj ≤ qj ≤ 1.

(b) ℓ(Fj , g, r, µ,∆
t
(s), C) ⊂ ℓ(Fj , q, g, r, µ,∆

t
(s), C) for 1 ≤ qj ≤ supj qj < ∞.

P r o o f. (a) Let x ∈ ℓ(Fj , q, g, r, µ,∆
t
(s), C). Then

∞
∑

j=0

j−r

[

Fj

(

g

(

∑j
i=0 µi∆

t
(s)xi

ρ(j + 1)

))]qj

< ∞ for some ρ > 0.

Since 0 < infj qj ≤ qj ≤ 1, we have

∞
∑

j=0

j−r

[

Fj

(

g

(

∑j
i=0 µi∆

t
(s)xi

ρ(j + 1)

))]

≤

∞
∑

j=0

j−r

[

Fj

(

g

(

∑j
i=0 µi∆

t
(s)xi

ρ(j + 1)

))]qj

< ∞.

This implies that x ∈ ℓ(Fj , g, r, µ,∆
t
(s), C). Hence, ℓ(Fj , q, g, r, µ,∆

t
(s) , C) ⊂ ℓ(Fj , g, r, µ,∆

t
(s), C).

(b) Let qj ≥ 1 for all j, supj qj < ∞, and x ∈ ℓ(Fj , g, r, µ,∆
t
(s), C).

Then

∞
∑

j=0

j−r

[

Fj

(

g

(

∑j
i=0 µi∆

t
(s)xi

ρ(j + 1)

))]

< ∞ for some ρ > 0. (2.1)

Since 1 ≤ qj ≤ supj qj < ∞, we have

∞
∑

j=0

j−r

[

Fj

(

g

(

∑j
i=0 µi∆

t
(s)xi

ρ(j + 1)

))]qj

≤

∞
∑

j=0

j−r

[

Fj

(

g

(

∑j
i=0 µi∆

t
(s)xi

ρ(j + 1)

))]

< ∞.

Thus, x ∈ ℓ(Fj , q, g, r, µ,∆
t
(s), C). Hence, ℓ(Fj , g, r, µ,∆

t
(s), C) ⊂ ℓ(Fj , q, g, r, µ,∆

t
(s), C). �

Theorem 6. Let (Fj) and (Tj) be two sequences of Orlicz functions satisfying the ∆2-condition,
and let r > 1. Then ℓ(Fj , q, g, r, µ,∆

t
(s), C) ⊂ ℓ(Tj ◦ Fj , q, g, r, µ,∆

t
(s), C).

P r o o f. Let x ∈ ℓ(Fj , q, g, r, µ,∆
t
(s), C) and ε > 0. Choose 0 < δ < 1 such that Fj(v) < ε for

0 ≤ v ≤ δ. Write

yj = Fj

(

g

(

∑j
i=0 µi∆

t
(s)xi

ρ(j + 1)

))

for each j ∈ N.

Consider the equality

sup
j

∞
∑

j=0

j−r [Tj(yj)]
qj = sup

j

∑

1

j−r [Tj(yj)]
qj + sup

j

∑

2

j−r [Tj(yj)]
qj ,
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where yj ≤ δ for the first summation and yj > δ for the second summation. Thus, for r > 1, we
have

sup
j

∑

1

j−r [Tj(yj)]
qj < max(1, εH )

∑

j−r < ∞.

For yj > δ, we get yj < yj/δ ≤ 1 + yj/δ.

Since each Tj is nondecreasing, convex, and satisfies the ∆2-condition, it follows that

Tj(yj) < T

(

1 +
yj
δ

)

<
1

2
Tj(2) +

1

2
Tj

(

2yj
δ

)

<
1

2
K

yj
δ
Tj(2) +

1

2
K

yj
δ
Tj(2) < Kyjδ

−1Tj(2) for each j ∈ N.

Therefore,

sup
j

∑

2

j−r [Tj(yj)]
qj < max(1, (Kδ−1F(2))H )

∑

2

j−r(yj)
qj < ∞.

Thus, (2.1) yields

sup
j

∞
∑

j=0

j−r [Tj(yj)]
qj ≤ max(1, εj)

∞
∑

j=1

j−r +max(1, (Kδ−1F(2))H )
∞
∑

j=2

j−r(yj)
qj < ∞.

Hence, x ∈ ℓ(Tj ◦ Fj , q, g, r, µ,∆
t
(s), C). �

Corollary 1. Let (Fj) be any sequence of Orlicz functions satisfying the ∆2-condition, and

let r > 1. If Fj(x) = x for all x ∈ [0,∞) and for all ∈ N, then ℓ(q, g, r, µ,∆t
(s), C) ⊆

ℓ(Fj , q, g, r, µ,∆
t
(s), C).

Corollary 2. If Fj and Tj are Orlicz functions that are equivalent for each j ∈ N, then

ℓ(Fj , q, g, r, µ,∆
t
(s), C) = ℓ(Tj , q, g, r, µ,∆

t
(s), C).

For r = 0, the space ℓ(Fj , q, g, r, µ,∆
t
(s), C) reduces to a sequence space as follows:

ℓ(Fj , q, g, µ,∆
t
(s), C) =

{

x ∈ ω(X ) :

∞
∑

j=0

[

Fj

(

g

(

∑j
i=0 µi∆

t
(s)xi

ρ(j + 1)

))]qj

< ∞ for some ρ > 0

}

.

Theorem 7. Let (Fj) be a sequence of Orlicz functions, let qj ∈ ℓ∞, and let (X , g) be a

complete seminormed space. Then ℓ(Fj , q, g, µ,∆
t
(s), C) is a complete paranormed endowed with the

paranorm H∆ defined by

H∆(x) = inf

{

ρqt/K :
∞
∑

j=0

[

Fj

(

g

(

∑j
i=0 µi∆

t
(s)xi

ρ(j + 1)

))]

≤ 1, ρ > 0, t ∈ N

}

,

where K = max{1,H = supj∈N qj}.
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P r o o f. Let (xi) be a Cauchy sequence in ℓ(Fj , q, g, µ,∆
t
(s), C). Let δ > 0 be fixed, and let

s > 0 be such that, for given 0 < ε < 1, ε/sδ > 0 and sδ ≥ 1. Then, there exists a positive integer
n0 such that

h(xm − xn) <
ε

sδ
∀m,n ≥ n0.

Thus,

inf

{

ρqt/K :

∞
∑

j=0

[

Fj

(

g

(

∑j
i=0 µi(∆

t
(s)x

m
i −∆t

(s)x
n
i )

ρ(j + 1)

))]

≤ 1, t ∈ N

}

<
ε

sδ
∀m,n ≥ n0.

It implies that

∞
∑

j=0

[

Fj

(

g

(

∑j
i=0 µi(∆

t
(s)x

m
i −∆t

(s)x
n
i )

h(xm − xn)(j + 1)

))]

≤ 1 ∀m,n ≥ n0.

Therefore,

Fj

(

g

(

∑j
i=0 µi(∆

t
(s)x

m
i −∆t

(s)x
t
i)

h(xm − xn)(j + 1)

))

≤ 1 ∀m,n ≥ n0 and j ∈ N.

For s > 0 with Fj(sδ/2) ≥ 1, we obtain

Fj

(

g

(

∑j
i=0 µi(∆

t
(s)x

m
i −∆t

(s)x
n
i )

h(xm − xn)(j + 1)

))

≤ Fj

(

sδ

2

)

∀m,n ≥ n0 and j ∈ N.

Since Fj is nondecreasing for each j ∈ N, we have

g

(

∑j
i=0 µi(∆

t
(s)x

m
i −∆t

(s)x
n
i )

j + 1

)

≤
sδ

2
×

ε

sδ
=

ε

2
.

Hence, (∆t
(s)x

m
i ) is a Cauchy sequence in (X , g) for each i ∈ N. However, (X , g) is complete and so

(∆t
(s)x

m
i ) is convergent in (X , g) for all i ∈ N.

Let lim
m→∞

µi∆
t
(s)x

m
i = xi exists for each i ≥ 1. For i = 1, we obtain

lim
m→∞

µ1∆
t
(s)x

m
1 = lim

m→∞
µ1

t
∑

k=0

(−1)k
(

t

k

)

x1+sk = lim
m→∞

µ1x
m
1 = x1. (2.2)

Similarly,

lim
m→∞

µi∆
t
(s)x

m
i = lim

m→∞
µix

m
i = xi for i = 1, . . . , ts. (2.3)

From (2.2) and (2.3), it follows that lim
m→∞

µix
m
1+ts exists.

Let lim
m→∞

µix
m
1+ts = µi x1+ts. Then, by induction, lim

m→∞
µix

m
i = xi for all i ∈ N.

Now, for each m,n ≥ n0, we have

inf

{

ρqt/K :
∞
∑

j=0

[

Fj

(

g

(

∑j
i=0 µi(∆

t
(s)x

m
i −∆t

(s)x
n
i )

ρ(j + 1)

))]

≤ 1, t ∈ N

}

< ε.
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Thus,

lim
n→∞

{

inf

{

ρqt/K :

∞
∑

j=0

[

Fj

(

g

(

∑j
i=0 µi(∆

t
(s)x

m
i −∆t

(s)x
n
i )

ρ(j + 1)

))]

≤ 1, t ∈ N

}}

< ε ∀m,n ≥ n0.

Using the continuity of Orlicz functions, we obtain

inf

{

ρqt/K :

∞
∑

j=0

[

Fj

(

g

(

∑j
i=0 µi(∆

t
(s)x

m
i −∆t

(s) lim
n→∞

xni )

ρ(j + 1)

))]

≤ 1, t ∈ N

}

< ε ∀m ≥ n0.

This implies that

inf

{

ρqt/K :

∞
∑

j=0

[

Fj

(

g

(

∑j
i=0 µi(∆

t
(s)x

m
i −∆t

(s)xi)

ρ(j + 1)

))]

≤ 1, t ∈ N

}

< ε ∀n ≥ n0.

Hence, (xm − x) ∈ ℓ(Fj , q, g, µ,∆
t
(s), C), and then x = xm − (xm − x) ∈ ℓ(Fj , q, g, µ,∆

t
(s), C). �

For r = 0, qj = q, a constant, the space ℓ(Fj , q, g, r, µ,∆
t
(s), C) reduces to a sequence space as

follows:

ℓ(Fj , g, µ,∆
t
(s), C) =

{

x ∈ ω(X ) :

∞
∑

j=0

[

Fj

(

g

(

∑j
i=0 µi∆

t
(s)xi

ρ(j + 1)

))]

< ∞ for some ρ > 0

}

.

Theorem 8. Let (X , g) be a complete normed space. Then, ℓ(Fj , g, µ,∆
t
(s), C) is a Banach

space with a norm ‖·‖ defined by

‖x‖ = inf

{

ρ :

∞
∑

j=0

[

Fj

(

g

(

∑j
i=0 µi∆

t
(s)xi

ρ(j + 1)

))]

≤ 1

}

. (2.4)

P r o o f. To prove that ‖·‖ is a norm in ℓ(Fj , g, µ,∆
t
(s), C), we can verify the completeness of

ℓ(Fj , g, µ,∆
t
(s), C) as in the proof of Theorem 7.

If x = θ, then clearly ‖x‖ = 0.

Conversely, suppose that ‖x‖ = 0. Then,

inf

{

ρ :

∞
∑

j=0

[

Fj

(

g

(

∑j
i=0 µi∆

t
(s)xi

ρ(j + 1)

))]

≤ 1

}

= 0.

Thus, for given ε > 0, there exists ρε (0 < ρε < ε) such that

∞
∑

j=0

[

Fj

(

g

(

∑j
i=0 µi∆

t
(s)xi

ρε(j + 1)

))]

≤ 1.

This implies that

Fj

(

g

(

∑j
i=0 µi∆

t
(s)xi

ρε(j + 1)

))

≤ 1 ∀ j ∈ N.
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Therefore, we have

Fj

(

g

(

∑j
i=0 µi∆

t
(s)xi

ε(j + 1)

))

≤ Fj

(

g

(

∑j
i=0 µi∆

t
(s)xi

ρε(j + 1)

))

≤ 1 ∀j ∈ N.

Suppose that
∑nj

i=0 µi∆
t
(s)xi

(nj + 1)
6= 0

for some nj. Then,
∑nj

i=0 µi∆
t
(s)xi

ε(nj + 1)
→ ∞

as ε → 0. This implies that

Fj

(

g

(

∑j
i=0 µi∆

t
(s)xi

ǫ(j + 1)

))

→ ∞ as ε → 0 for some nj ∈ N,

which leads to a contradiction. Therefore,

∑j
i=0 µi∆

t
(s)xi

(j + 1)
= 0 ∀j ∈ N.

If j = 0, then µ0∆
t
(s)x0 = 0 and µ0x0 = 0; µ1x1 = 0 for j = 1.

Similarly, xj = 0 for all j ≥ 1. Hence, x = θ.

Further, the properties ‖x+ y‖ ≤ ‖x‖+ ‖y‖ and ‖αx‖ = |α| ‖x‖ for any scalar α can be proved
as in the proof of Theorem 2. �

The above proof makes it easy to prove that ‖xn‖ → 0 implies that xni → 0 for each n ≥ 1.
Now, we state the following result.

Proposition 1. The space ℓ(Fj , g, µ,∆
t
(s), C) is a BK-space.

To prove the AK-property of the space ℓ(Fj , g, µ,∆
t
(s), C), we give the following definition and

prove some related results.

Definition 1. Let F = (Fj) be any sequence of Orlicz functions. Define

ℓ′(Fj , g, µ,∆
t
(s), C) =

{

x ∈ ω(X ) :
∞
∑

j=0

[

Fj

(

g

(

∑j
i=0 µi∆

t
(s)xi

ρ(j + 1)

))]

< ∞ for every ρ > 0

}

.

Evidently, ℓ′(Fj , g, µ,∆
t
(s), C) is a subspace of ℓ(Fj , g, µ,∆

t
(s), C), and its topology is inherited

from ‖·‖.

Theorem 9. Let (Fj) be a sequence of Orlicz functions satisfying the ∆2-condition. Then

ℓ(Fj , g, µ,∆
t
(s), C) = ℓ′(Fj , g, µ,∆

t
(s), C).
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P r o o f. Let x ∈ ℓ(Fj , g, µ,∆
t
(s), C). Then, for some ρ > 0, we have

∞
∑

j=0

[

Fj

(

g

(

∑j
i=0 µi∆

t
(s)xi

ρ(j + 1)

))]

< ∞.

Consider any arbitrary η > 0. If ρ ≤ η, then

Fj

(

g

(

∑j
i=0 µi∆

t
(s)xi

η(j + 1)

))

< Fj

(

g

(

∑j
i=0 µi∆

t
(s)xi

ρ(j + 1)

))

< ∞ for each j ∈ N.

Let η < ρ. Since Fj satisfies the ∆2-condition, there exists a constant Kj > 0 such that

Fj

(

g

(

j
∑

i=0
µi∆

t
(s)xi

η(j + 1)

))

≤ Kj

(

ρ

η

)log2 Kj

Fj

(

g

(

∑j
i=0 µi∆

t
(s)xi

ρ(j + 1)

))

for each j ∈ N.

Now, we can find Rj > 0 such that

Rj = sup
j

Kj

(

ρ

η

)log2 Kj

.

Then, for fixed η > 0 and for each j ∈ N, we have

Fj

(

g

(

∑j
i=0 µi∆

t
(s)xi

η(j + 1)

))

≤ RjFj

(

g

(

∑j
i=0 µi∆

t
(s)xi

ρ(j + 1)

))

< ∞.

It follows the result. �

Theorem 10. Let (X , g) be a complete normed space. Then ℓ′(Fj , g, µ,∆
t
(s), C) is an

AK-space.

P r o o f. Let x ∈ ℓ′(Fj , g, µ,∆
t
(s), C). Then, for each ε (0 < ε < 1), we can find r0 such that

∑

j≥r0

[

Fj

(

g

(

∑j
i=0 µi∆

t
(s)xi

ǫ(j + 1)

))]

≤ 1.

Therefore, for r ≥ r0, we have

‖x− x[r]‖ = inf

{

ρ :
∞
∑

j≥r+1

[

Fj

(

g

(

∑j
i=0 µi∆

t
(s)xi

ρ(j + 1)

))]

≤ 1

}

≤ inf

{

ρ :
∑

j≥r

[

Fj

(

g

(

∑j
i=0 µi∆

t
(s)xi

ρ(j + 1)

))]

≤ 1

}

< ε.

Hence, ℓ′(Fj , g, µ,∆
t
(µs), C) is an AK-space. �

Now, using Proposition 1 and Theorem 9, we establish the following result.
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Corollary 3. Let (Fj) be a sequence of Orlicz functions satisfying the ∆2-condition. Then

ℓ(Fj , g, µ,∆
t
(s), C) is an AK-space.

Theorem 11. The space ℓ′(Fj , g, µ,∆
t
(s), C) is a closed subspace of ℓ(Fj , g, µ,∆

t
(s), C).

P r o o f. Let (xr) be a sequence in ℓ′(Fj , g, µ,∆
t
(s), C) such that ‖xr − x‖ → 0.

It suffices to show that x ∈ ℓ′(Fj , g, µ,∆
t
(s), C), i.e.,

∑

j≥0

[

Fj

(

g

(

∑j
i=0 µi∆

t
(s)xi

ρ(j + 1)

))]

< ∞ for every ρ > 0.

For ρ > 0, there exists m such that ‖xm − x‖ ≤ ρ/2. Since Fj is a convex function for each
j ∈ N, we have

∑

j≥0

Fj

[

g

(

∑j
i=0 µi∆

t
(s)xi

ρ(j + 1)

)]

=
∑

j≥0

Fj

[

g

(2
(
∣

∣

∑j
i=0 µi∆

t
(s)x

m
i

∣

∣−
∣

∣

∑j
i=0 µi∆

t
(s)x

m
i

∣

∣+
∣

∣

∑j
i=0 µi∆

t
(s)xi

∣

∣

)

ρ(j + 1)

)]

≤
1

2

∑

j≥0

Fj

[

g

(2
∣

∣

∑j
i=0 µi∆

t
(s)x

m
i

∣

∣

ρ(j + 1)

)]

+
1

2

∑

j≥0

Fj

[

g

(2
∣

∣

∑j
i=0 µi∆

t
(s)(x

m
i − xi)

∣

∣

ρ(j + 1)

)]

≤
1

2

∑

j≥0

Fj

[

g

(2
∣

∣

∑j
i=0 µi∆

t
(s)x

m
i

∣

∣

ρ(j + 1)

)]

+
1

2

∑

j≥0

Fj

[

g

(2
∣

∣

∑j
i=0 µi∆

t
(s)(x

m
i − xi)

∣

∣

‖xm − x‖(j + 1)

)]

.

From (2.4), we get

∑

j≥0

Fj

[

g

(2
∣

∣

∑j
i=0 µi∆

t
(s)(x

m
i − xi)

∣

∣

‖xm − x‖(j + 1)

)]

≤ 1.

Thus,
∑

j≥0

Fj

[

g

(

∑j
i=0 µi∆

t
(s)xi

ρ(j + 1)

)]

< ∞ for every ρ > 0.

Hence, x ∈ ℓ′(Fj , g, µ,∆
t
(s), C). �

Corollary 4. The space ℓ′(Fj , g, µ,∆
t
(s), C) is a BK-space.

3. Conclusion

We have investigated the convergence of the difference sequence for the Cesàro mean of order 1,
along with the generalized Orlicz function, using the technique of seminorm. In our study, we
established that the newly defined sequence space ℓ(Fj , q, g, r, µ,∆

t
(s), C) is a paranormed sequence

space. We examined both the algebraic and topological properties of this sequence space. Addition-
ally, we verified that ℓ(Fj , q, g, r, µ,∆

t
(s) , C) is indeed a separable sequence space. In our upcoming

research, we aim to extend this concept to the case of statistical convergence and the Cesàro mean
of higher order.
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