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1. Introduction

In 1951, Fast [12] and Steinhaus [29] independently extended the concept of usual convergence
of real sequences to statistical convergence of real sequences based on the natural density of a set.
Later on, this idea has been studied in different directions and various spaces by many authors
such as [8–10, 13, 14, 25, 26, 28, 31, 35], and many others.

After the introduction of the fuzzy set theory by Zadeh [37], there has been an extensive effort
to find applications and fuzzy analogs of the classical theories and it is being applied in various
branches of engineering and science [4, 15, 17, 19, 24]. Later on, the notion of the fuzzy set theory
was developed effectively and generalized into new notions as its extensions like intuitionistic fuzzy
set [1], interval-valued fuzzy set [36], interval-valued intuitionistic fuzzy set [2], and vague fuzzy
set [3]. As a generalization of a crisp set, fuzzy set, intuitionistic fuzzy set, and Pythagorean
fuzzy set, Smarandache [32] studied the concept of neutrosophic set. Later, Bera and Mahapatra
introduced the notion of neutrosophic soft linear space [5] and neutrosophic soft normed linear
space [6]. Recently, Kirişci and Şimşek [21] defined neutrosophic normed space and, in this space,
many summability methods such as statistical convergence [21], statistical convergence of double
sequences [18], ideal convergence [22], lacunary statistical convergence [23], deferred statistical
convergence [11] etc.

Mursaleen and Edely [26] defined and studied statistical convergence and statistically Cauchy
double sequences in R. Sarabadan and Talebi [35] studied the notion of statistical convergence of
double sequences in 2-normed spaces. Granados and Dhital [18] discussed statistical convergence
and statistical Cauchy property for double sequences in neutrosophic normed spaces. Recently,
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Murtaza et al. [27] introduced neutrosophic 2-normed space and studied statistical convergence for
single sequences. In the present paper, we study statistical convergence and statistically Cauchy
double sequences in neutrosophic 2-normed spaces and prove some associated results in the line of
investigations of them with respect to neutrosophic 2-norm.

2. Preliminaries

Throughout the paper, N and R indicate the set of natural numbers and the set of reals,
respectively; |A| denotes the cardinality of the set A. First, we recall some basic definitions and
notations.

Definition 1 [26]. Let K ⊆ N×N be a two-dimensional set of positive integers, and let K(m,n)
be the number of (j, k) in K such that j ≤ m and k ≤ n. Then, the two-dimensional analog of

natural density can be defined as follows.

The lower asymptotic density of the set K ⊆ N× N is defined as

δ2(K) = lim
m,n

inf
K(m,n)

mn
.

In case the sequence (K(m,n)/(mn)) has a limit in Pringsheim’s sense, we say that K has double

natural density defined as

lim
m,n

K(m,n)

mn
= δ2(K).

Example 1. [26] Let
K = {(i2, j2) : i, j ∈ N}.

Then,

δ2(K) = lim
m,n

K(m,n)

mn
≤ lim

m,n

√
m
√
n

mn
= 0;

i.e., the set K has double natural density zero, while the set {(i, 2j) : i, j ∈ N} has double natural
density 1/2.

Note that, setting m = n, we obtain the two-dimensional natural density due to Christopher [7].

Definition 2 [26]. A real double sequence {lmn} is said to be statistically convergent to a num-

ber ξ if the set

{(m,n),m ≤ i, n ≤ j : |lmn − ξ| ≥ ε}
has double natural density zero for all ε > 0.

Definition 3 [16]. Let Z be a real vector space of dimension d, where 2 ≤ d < ∞. A 2-norm
on Z is a function ‖., .‖ : Z× Z → R which satisfies the following conditions:

(1) ‖x, y‖ = 0 if and only if x and y are linearly dependent in Z;
(2) ‖x, y‖ = ‖y, x‖ for all x and y in Z;
(3) ‖αx, y‖ = |α| ‖x, y‖ for all α in R and for all x and y in Z;
(4) ‖x+ y, z‖ ≤ ‖x, z‖+ ‖y, z‖ for all x, y, and z in Z.

Example 2. [34] Let Z = R
2. Define ‖·, ·‖ on R

2 by ‖x, y‖ = |x1y2 − x2y1|, where x = (x1, x2)
and y = (y1, y2) ∈ R

2. Then, (Z, ‖·, ·‖) is a 2-normed space.
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Definition 4 [35]. A double sequence {lmn} in a 2-normed space (Z, ‖., .‖) is called statistically

convergent to ξ ∈ Z if, for all ε > 0 and all nonzero z ∈ Z, the set

{

(m,n) ∈ N×N : ‖lmn − ξ, z‖ ≥ ε
}

has double natural density zero; i.e.,

lim
i,j

1

ij

∣

∣

{

(m,n),m ≤ i, n ≤ j : ‖lmn − ξ, z‖ ≥ ε
}∣

∣ = 0.

Definition 5 [35]. A double sequence {lmn} in a 2-normed space (Z, ‖., .‖) is called a statisti-

cally Cauchy double sequence if, for all ε > 0 and all z ∈ Z, there exist n0,m0 ∈ N such that, for
all m, p ≥ n0 and n, q ≥ m0, the set

{

(m,n),m ≤ i, n ≤ j : ‖lmn − lpq, z‖ ≥ ε
}

has double natural density zero.

Definition 6 [30]. A binary operation ⊡ : [0, 1] × [0, 1] → [0, 1] is called a continuous t-norm
if the following conditions hold :

(1) ⊡ is associative and commutative;
(2) ⊡ is continuous;
(3) x⊡ 1 = x for all x ∈ [0, 1];
(4) x⊡ y ≤ z ⊡ w whenever x ≤ z and y ≤ w for all x, y, z, w ∈ [0, 1].

Definition 7 [30]. A binary operation ∗ : [0, 1]× [0, 1] → [0, 1] is called a continuous t-conorm
if the following conditions are satisfied :

(1) ∗ is associative and commutative;
(2) ∗ is continuous;
(3) x ∗ 0 = x for all x ∈ [0, 1];
(4) x ∗ y ≤ z ∗ w whenever x ≤ z and y ≤ w for all x, y, z, w ∈ [0, 1].

Example 3. [20] Here are examples of t-norms:

(1) x⊡ y = min{x, y};
(2) x⊡ y = x.y;
(3) x⊡ y = max{x+ y − 1, 0}. This t-norm is known as Lukasiewicz t-norm.

Example 4. [20] Here are examples of t-conorms:

(1) x ∗ y = max{x, y};
(2) x ∗ y = x+ y − x.y;
(3) x ∗ y = min{x+ y, 1}. This is known as the Lukasiewicz t-conorm.

Lemma 1 [33]. If ⊡ is a continuous t-norm, ∗ is a continuous t-conorm, and ri ∈ (0, 1) for

1 ≤ i ≤ 7, then the following statements hold :

(1) if r1 > r2, then there are r3, r4 ∈ (0, 1) such that r1 ⊡ r3 ≥ r2 and r1 ≥ r2 ∗ r4;
(2) if r5 ∈ (0, 1), then there are r6, r7 ∈ (0, 1) such that r6 ⊡ r6 ≥ r5 and r5 ≥ r7 ∗ r7.

Now we recall the notion of neutrosophic 2-normed space.
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Definition 8 [27]. Let Y be a vector space, and let

N2 = {< (e, f),Θ(e, f), ϑ(e, f), ψ(e, f) >: (e, f) ∈ Y× Y}

be a 2-normed space such that

N2 : Y× Y× R
+ → [0, 1].

Suppose that ⊡ and ∗ are continuous t-norm and t-conorm, respectively. Then, the quadruple

Z = (Y,N2,⊡, ∗) is called a neutrosophic 2-normed space (N2-NS ) if the following conditions hold

for all e, f, g ∈ Z, η, ζ > 0, and β 6= 0:

(1) 0 ≤ Θ(e, f ; η) ≤ 1, 0 ≤ ϑ(e, f ; η) ≤ 1, and 0 ≤ ψ(e, f ; η) ≤ 1 for every η > 0;
(2) Θ(e, f ; η) + ϑ(e, f ; η) + ψ(e, f ; η) ≤ 3;
(3) Θ(e, f ; η) = 1 iff e and f are linearly dependent ;
(4) Θ(βe, f ; η) = Θ(e, f ; η/|β|) for all β 6= 0;
(5) Θ(e, f ; η)⊡Θ(e, g; ζ) ≤ Θ(e, f + g; η + ζ);
(6) Θ(e, f ; ·) : (0,∞) → [0, 1] is a continuous nonincreasing function;
(7) limη→∞Θ(e, f ; η) = 1;
(8) Θ(e, f ; η) = Θ(f, e; η);
(9) ϑ(e, f ; η) = 0 iff e and f are linearly dependent ;

(10) ϑ(βe, f ; η) = ϑ(e, f ; η/|β|) for all β 6= 0;
(11) ϑ(e, f ; η) ∗ ϑ(e, g; ζ) ≥ ϑ(e, f + g; η + ζ);
(12) ϑ(e, f ; ·) : (0,∞) → [0, 1] is a continuous nonincreasing function;
(13) limη→∞ ϑ(e, f ; η) = 0;
(14) ϑ(e, f ; η) = ϑ(f, e; η);
(15) ψ(e, f ; η) = 0 iff e and f are linearly dependent ;
(16) ψ(βe, f ; η) = ψ(e, f ; η/|β|) for each β 6= 0;
(17) ψ(e, f ; η) ∗ ψ(e, g; ζ) ≥ ψ(e, f + g; η + ζ);
(18) ψ(e, f ; ·) : (0,∞) → [0, 1] is a continuous nonincreasing function;
(19) limη→∞ ψ(e, f ; η) = 0;
(20) ψ(e, f ; η) = ψ(f, e; η);
(21) If η ≤ 0, Θ(e, f ; η) = 0, ϑ(e, f ; η) = 1, and ψ(e, f ; η) = 1.

In this case, N2 = (Θ, ϑ, ψ) is called neutrosophic 2-norm on Y.

Definition 9 [27]. Let {ln}n∈N be a sequence in an N2-NS Z = (Y,N2,⊡, ∗). Choose ε ∈ (0, 1)
and η > 0. Then, {ln}n∈N is called convergent if there exist n0 ∈ N and l0 ∈ Y such that

Θ(ln − l0, z; η) > 1− ε, ϑ(ln − l0, z; η) < ε, ψ(ln − l0, z; η) < ε

for all n ≥ n0 and z ∈ Z; i.e.,

lim
n→∞

Θ(ln − l0, z; η) = 1, lim
n→∞

ϑ(ln − l0, z; η) = 0, lim
n→∞

ψ(ln − l0, z; η) = 0.

In this case, we write

N2 − lim
n→∞

ln = l0 or ln
N2−→ l0

and l0 is called an N2-limit of {ln}n∈N.

Definition 10 [27]. Let {lk}k∈N be a sequence in an N2-NS Z = (Y,N2,⊡, ∗). Choose ε ∈ (0, 1)
and η > 0. Then, {lk}k∈N is called statistically convergent to ξ if the natural density of the set

A(ε, η) =
{

k ≤ n : Θ(lk − ξ, z; η) ≤ 1− ε or ϑ(lk − ξ, z; η) ≥ ε and ψ(lk − ξ, z; η) ≥ ε
}

is zero for all z ∈ Z, i.e., δ(A(ε, η)) = 0.
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Definition 11 [27]. Let {ln}n∈N be a sequence in an N2-NS Z = (Y,N2,⊡, ∗). Choose ε ∈
(0, 1) and η > 0. Then, {ln}n∈N is called a Cauchy sequence if there exists m0 ∈ N such that

Θ(ln − lm, z; η) > 1− ε, ϑ(ln − lm, z; η) < ε, ψ(ln − lm, z; η) < ε

for all n,m ≥ m0 and z ∈ Z.

Definition 12 [27]. Let {lk}k∈N be a sequence in an N2-NS Z = (Y,N2,⊡, ∗), ε > 0, and η > 0.
Then, {lk}k∈N is called a statistical Cauchy sequence if there exists n0 ∈ N such that

lim
n

1

n

∣

∣

{

k ≤ n : Θ(lk − ln0
, z; η) ≤ 1− ε or ϑ(lk − ln0

, z; η) ≥ ε and ψ(lk − ln0
, z; η) ≥ ε

}
∣

∣ = 0

for every z ∈ Z or, equivalently, the natural density of the set

A(ε, η) = {k ≤ n : Θ(lk − ln0
, z; η) ≤ 1− ε or ϑ(lk − ln0

, z; η) ≥ ε and ψ(lk − ln0
, z; η) ≥ ε}

is zero; i.e., δ(A(ε, η)) = 0.

3. Main results

Throughout this section, Z and δ2(A) stand for neutrosophic 2-normed space and double natural
density of the set A respectively unless otherwise stated. First, We define the following:

Definition 13. A double sequence {lmn} in an N2-NS Z is said to be convergent to ξ ∈ Z with

respect to N2 if, for all σ ∈ (0, 1) and u > 0, there exists n0 ∈ N such that

Θ(lmn − ξ, z;u) > 1− σ, ϑ(lmn − ξ, z;u) < σ, ψ(lmn − ξ, z;u) < σ

for all m,n ≥ n0 and nonzero z ∈ Z; i.e.,

lim
m,n→∞

Θ(lmn − ξ, z;u) = 1, lim
m,n→∞

ϑ(lmn − ξ, z;u) = 0, lim
m,n→∞

ψ(lmn − ξ, z;u) = 0.

In this case, we write

N2 − lim
m,n→∞

lmn = ξ or lmn
N2−→ ξ.

Definition 14. A double sequence {lmn} in an N2-NS Z is said to be statistically convergent

to ξ ∈ Z with respect to N2 if, for all σ ∈ (0, 1), u > 0, and nonzero z ∈ Z,

δ2
({

(m,n) ∈ N× N : Θ(lmn−ξ, z;u) ≤ 1−σ or ϑ(lmn−ξ, z;u) ≥ σ and ψ(lmn−ξ, z;u) ≥ σ
})

= 0

or, equivalently,

lim
i,j

1

ij

∣

∣

{

m ≤ i, n ≤ j : Θ(lmn−ξ, z;u) ≤ 1−σ or ϑ(lmn−ξ, z;u) ≥ σ and ψ(lmn−ξ, z;u) ≥ σ
}∣

∣ = 0.

In this case, we write

st2(N2)− lim
m,n→∞

lmn = ξ or lmn
st2(N2)−−−−→ ξ

and ξ is called an st2(N2)-limit of {lmn}.

Lemma 2. Let {lmn} be a double sequence in an N2-NS Z. Then, for all σ ∈ (0, 1), u > 0,
and nonzero z ∈ Z, the following statements are equivalent :
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(1) st2(N2)− limm,n→∞ lmn = ξ;
(2) δ2({(m,n) ∈ N × N : Θ(lmn−ξ, z;u) ≤ 1−σ}) = δ2({(m,n) ∈ N × N : ϑ(lmn−ξ, z;u)≥σ}) =

δ2({(m,n) ∈ N× N : ψ(lmn − ξ, z;u) ≥ σ}) = 0;
(3) δ2({(m,n) ∈ N×N : Θ(lmn− ξ, z;u) > 1−σ, ϑ(lmn− ξ, z;u) < σ, ψ(lmn− ξ, z;u) < σ}) = 1;
(4) δ2({(m,n) ∈ N × N : Θ(lmn−ξ, z;u)>1−σ}) = δ2({(m,n) ∈ N × N : ϑ(lmn−ξ, z;u) < σ}) =

δ2({(m,n) ∈ N× N : ψ(lmn − ξ, z;u) < σ}) = 1;
(5) st2(N2) − limm,n→∞Θ(lmn − ξ, z;u) = 1, st2(N2) − limm,n→∞ ϑ(lmn − ξ, z;u) = 0, and

st2(N2)− limm,n→∞ ψ(lmn − ξ, z;u) = 0.

Theorem 1. Let {lmn} be a double sequence in an N2-NS Z. If

N2 − lim
m,n→∞

lmn = ξ,

then

st2(N2)− lim
m,n→∞

lmn = ξ.

P r o o f. Let

N2 − lim
m,n→∞

lmn = ξ.

Then, for all σ ∈ (0, 1) and u > 0, there exists n0 ∈ N such that

Θ(lmn − ξ, z;u) > 1− σ, ϑ(lmn − ξ, z;u) < σ, and ψ(lmn − ξ, z;u) < σ

for all m,n ≥ n0 and nonzero z ∈ Z. So, the set

{

(m,n) ∈ N× N : Θ(lmn − ξ, z;u) ≤ 1− σ or ϑ(lmn − ξ, z;u) ≥ σ and ψ(lmn − ξ, z;u) ≥ σ
}

has at most finitely many terms. Since double natural density of a finite set is zero,

δ2
({

(m,n) ∈ N× N : Θ(lmn−ξ, z;u) ≤ 1−σ or ϑ(lmn−ξ, z;u) ≥ σ and ψ(lmn−ξ, z;u) ≥ σ
})

= 0.

Therefore,

st2(N2)− lim
m,n→∞

lmn = ξ.

This completes the proof. �

But in the general case, the converse to Theorem 1 does not have to be true, as shown in the
following example.

Example 5. Let Y = R
2 with ‖x, y‖ = |x1y2 − x2y1|, where x = (x1, x2), y = (y1, y2) ∈ R

2.
Define a continuous t-norm ⊡ and a continuous t-conorm ∗ as a⊡ b = ab and a ∗ b = min{a+ b, 1}
for a, b ∈ [0, 1], respectively. Take σ ∈ (0, 1), x, y ∈ Y, and u > 0 such that u > ‖x, y‖. Consider

Θ(x, y;u) =
u

u+ ‖x, y‖ , ϑ(x, y;u) =
‖x, y‖

u+ ‖x, y‖ , ψ(x, y;u) =
‖x, y‖
u

.

Then, N2 = (Θ, ϑ, ψ) is a neutrosophic 2-norm on Y and the quadruple Z = (Y,N2,⊡, ∗) becomes
a neutrosophic 2-normed space. Define a double sequence {lmn} ∈ Z by

lmn =

{

(mn, 0), m = s2, n = t2, s, t ∈ N;

(0, 0), otherwise.
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Then, for nonzero z ∈ Z, we have

Ks,t(σ, u) =
{

m ≤ s, n ≤ t : Θ(lmn, z;u) ≤ 1− σ or ϑ(lmn, z;u) ≥ σ and ψ(lmn, z;u) ≥ σ
}

=
{

m ≤ s, n ≤ t :
u

u+ ‖lmn, z‖
≤ 1− σ or

‖lmn, z‖
u+ ‖lmn, z‖

≥ σ and
‖lmn, z‖

u
≥ σ

}

=
{

m ≤ s, n ≤ t : ‖lmn, z‖ ≥ uσ

1− σ
or ‖lmn, z‖ ≥ uσ

}

=
{

m ≤ s, n ≤ t : lmn = (mn, 0)
}

=
{

m ≤ s, n ≤ t : m = s2, n = t2, s, t ∈ N
}

and

1

st
|Ks,t(σ, u)| ≤

1

st

∣

∣

{

m ≤ s, n ≤ t : m = s2, n = t2, s, t ∈ N
}
∣

∣ ≤
√
s
√
t

st
→ 0 as s, t → ∞;

i.e.,

st2(N2)− lim
m,n→∞

lmn = 0.

But {lmn} is not convergent with respect to N2.

Theorem 2. Let {lmn} be a double sequence in an N2-NS Z. If {lmn} is statistically convergent

with respect to N2, then an st2(N2)-limit of {lmn} is unique.

P r o o f. Suppose that

st2(N2)− lim
m,n→∞

lmn = ξ1, st2(N2)− lim
m,n→∞

lmn = ξ2,

where ξ1 6= ξ2. Given σ ∈ (0, 1), choose λ ∈ (0, 1) such that

(1− λ)⊡ (1− λ) > 1− σ, λ ∗ λ < σ.

Now, for all u > 0 and z ∈ Z, we define the sets

AΘ1(λ, u) =
{

(m,n) ∈ N× N : Θ(lmn − ξ1, z;u/2) ≤ 1− λ
}

,

AΘ2(λ, u) =
{

(m,n) ∈ N× N : Θ(lmn − ξ2, z;u/2) ≤ 1− λ
}

,

Aϑ1(λ, u) =
{

(m,n) ∈ N× N : ϑ(lmn − ξ1, z;u/2) ≥ λ
}

,

Aϑ2(λ, u) =
{

(m,n) ∈ N× N : ϑ(lmn − ξ2, z;u/2) ≥ λ
}

,

Aψ1(λ, u) =
{

(m,n) ∈ N× N : ψ(lmn − ξ1, z;u/2) ≥ λ
}

,

Aψ2(λ, u) =
{

(m,n) ∈ N× N : ψ(lmn − ξ2, z;u/2) ≥ λ
}

.

Since

st2(N2)− lim
m,n→∞

lmn = ξ1, st2(N2)− lim
m,n→∞

lmn = ξ2,

using Lemma 2, we get

δ2(AΘ1(λ, u)) = δ2(Aϑ1(λ, u)) = δ2(Aψ1(λ, u)) = 0

and

δ2(AΘ2(λ, u)) = δ2(Aϑ2(λ, u)) = δ2(Aψ2(λ, u)) = 0.
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Now, let

AΘ,ϑ,ψ(λ, u) = [AΘ1(λ, u) ∪AΘ2(λ, u)] ∩ [Aϑ1(λ, u) ∪Aϑ2(λ, u)] ∩ [Aψ1(λ, u) ∪Aψ2(λ, u)].

Then, clearly, δ2(AΘ,ϑ,ψ(λ, u)) = 0; i.e., δ2(A
c
Θ,ϑ,ψ(λ, u)) = 1.

Let (p, q) ∈ Ac
Θ,ϑ,ψ(λ, u). Then, the following three cases are possible.

Case i. If (p, q) ∈ Ac
Θ1(λ, u) ∩Ac

Θ2(λ, u), then

Θ(ξ1 − ξ2, z;u) ≥ Θ(lpq − ξ1, z;u/2) ⊡Θ(lpq − ξ2, z;u/2) > (1− λ)⊡ (1− λ) > 1− σ.

Since σ ∈ (0, 1) is arbitrary, we have Θ(ξ1 − ξ2, z;u) = 1, which yields ξ1 = ξ2.

Case ii. If (p, q) ∈ Ac
ϑ1(λ, u) ∩Ac

ϑ2(λ, u), then

ϑ(ξ1 − ξ2, z;u) ≤ ϑ(lpq − ξ1, z;u/2) ∗ ϑ(lpq − ξ2, z;u/2) < λ ∗ λ < σ.

Since σ ∈ (0, 1) is arbitrary, we have ϑ(ξ1 − ξ2, z;u) = 0, which yields ξ1 = ξ2.

Case iii. If (p, q) ∈ Ac
ψ1(λ, u) ∩Ac

ψ2(λ, u), then, similarly to Case ii, we get ξ1 = ξ2.

Hence, an st2(N2)-limit of {lmn} is unique. This completes the proof. �

Theorem 3. Let Y be a real vector space, and let {lmn} and {wmn} be two double sequences

in an N2-NS Z. Then, the following statements hold :

(1) if st2(N2)− limm,n→∞ lmn = ξ1 and st2(N2)− limm,n→∞wmn = ξ2, then

st2(N2)− lim
m,n→∞

lmn + wmn = ξ1 + ξ2;

(2) if st2(N2)− limm,n→∞ lmn = ξ1 and c 6= 0, then st2(N2)− limm,n→∞ clmn = cξ1.

P r o o f. It is easy. So, we omit the details. �

Theorem 4. Let {lmn} be a double sequence in an N2-NS Z. Then,

st2(N2)− lim
m,n→∞

lmn = ξ

if and only if there exists a subset

K = {m1 < m2 < · · · < mp < · · · ;n1 < n2 < · · · < nq < · · · } ⊂ N× N

such that δ2(K) = 1 and N2 − limp,q→∞ lmpnq
= ξ.

P r o o f. First, suppose that st2(N2) − limm,n→∞ lmn = ξ. Now, for all u > 0, k ∈ N, and
nonzero z ∈ Z, define

AN2
(k, u) =

{

(m,n)∈N×N : Θ(lmn−ξ, z;u)>1−1

k
, ϑ(lmn−ξ, z;u)<

1

k
, ψ(lmn−ξ, z;u)<

1

k

}

, (3.1)

and

BN2
(k, u) =

{

(m,n)∈N×N : Θ(lmn−ξ, z;u) ≤ 1−1

k
or ϑ(lmn−ξ, z;u)≥

1

k
and ψ(lmn − ξ, z;u)≥1

k

}

.
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Then, clearly, AN2
(k + 1, u) ⊂ AN2

(k, u) and, by our assumption, we have δ2(BN2
(k, u)) = 0.

Also, from (3.1), we get δ2(AN2
(k, u)) = 1. Now, let us show that, for (m,n) ∈ AN2

(k, u),

N2 − lim
m,n→∞

lmn = ξ.

Suppose that {lmn}(m,n)∈AN2
(k,u) is not convergent with respect to N2. Then, for some σ ∈ (0, 1),

we have

Θ(lmn − ξ, z;u) ≤ 1− σ, ϑ(lmn − ξ, z;u) ≥ σ, ψ(lmn − ξ, z;u) ≥ σ

except for at most finite number of terms (m,n) ∈ AN2
(k, u) and nonzero z ∈ Z.

Define

CN2
(σ, u) =

{

(m,n)∈N×N : Θ(lmn−ξ, z;u) > 1−σ and ϑ(lmn−ξ, z;u) < σ, ψ(lmn−ξ, z;u) < σ
}

,

where σ > 1/k. Clearly, δ2(CN2
(σ, u)) = 0. Since σ > 1/k, we have AN2

(k, u) ⊂ CN2
(σ, u) and,

hence, δ2(AN2
(k, u)) = 0, which contradicts δ2(AN2

(k, u)) = 1. Therefore, for (m,n) ∈ AN2
(k, u),

we have

N2 − lim
m,n→∞

lmn = ξ.

Conversely, suppose that there exists a subset

K = {m1 < m2 < · · · < mp < · · · ;n1 < n2 < · · · < nq < · · · } ⊂ N× N

such that

δ2(K) = 1, N2 − lim
p,q→∞

lmpnq
= ξ.

Then, for all σ ∈ (0, 1) and u > 0, there exists p0 ∈ N such that

Θ(lmpnq
− ξ, z;u) > 1− σ, ϑ(lmpnq

− ξ, z;u) < σ, ψ(lmpnq
− ξ, z;u) < σ

for all p, q ≥ p0 and nonzero z ∈ Z. Therefore,

{

(m,n) ∈ N× N : Θ(lmn − ξ, z;u) ≤ 1− σ or ϑ(lmn − ξ, z;u) ≥ σ and ψ(lmn − ξ, z;u) ≥ σ
}

⊂ N× N \ {mp0+1 < mp0+2, . . . ;np0+1 < np0+2, . . .}.

Hence,

δ2
({

(m,n)∈N×N : Θ(lmn−ξ, z;u) ≤ 1−σ or ϑ(lmn−ξ, z;u) ≥ σ and ψ(lmn−ξ, z;u) ≥ σ
})

= 0;

i.e., st2(N2)− limm,n→∞ lmn = ξ. �

Definition 15. Let {lmn} be a double sequence in an N2-NS Z, σ ∈ (0, 1), and let u > 0. Then,
{lmn} is called statistically Cauchy with respect to N2 if there exist m0 = m0(σ) and n0 = n0(σ) ∈ N

such that

δ2
({

(m,n) ∈ N× N : Θ(lmn − lm0n0
, z;u) ≤ 1− σ or ϑ(lmn − lm0n0

, z;u) ≥ σ

and ψ(lmn − lm0n0
, z;u) ≥ σ

})

= 0

for nonzero z ∈ Z.
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Theorem 5. Let {lmn} be a double sequence in an N2-NS Z. If

st2(N2)− lim
m,n→∞

lmn = ξ,

then {lmn} is statistically Cauchy with respect to N2.

P r o o f. Let
st2(N2)− lim

m,n→∞

lmn = ξ

and σ ∈ (0, 1) be given. Choose λ ∈ (0, 1) such that

(1− λ)⊡ (1− λ) > 1− σ, λ ∗ λ < σ.

Then, for λ ∈ (0, 1), u > 0, and nonzero z ∈ Z, we have δ2(AN2
(λ, u)) = 0, where

AN2
(λ, u) =

{

(m,n) ∈ N× N : Θ(lmn − ξ, z;u/2) ≤ 1− λ or ϑ(lmn − ξ, z;u/2) ≥ λ

and ψ(lmn − ξ, z;u/2) ≥ λ
}

.

Then, δ2(N × N \AN2
(λ, u)) = 1. Let (m0, n0) ∈ Ac

N2
(σ, u). So,

Θ(lm0n0
− ξ, z;u/2) > 1− λ, ϑ(lm0n0

− ξ, z;u/2) < λ and ψ(lm0n0
− ξ, z;u/2) < λ.

Now, we define

BN2
(σ, u) =

{

(m,n) ∈ N× N : Θ(lmn − lm0n0
, z;u) ≤ 1− σ or ϑ(lmn − lm0n0

, z;u) ≥ σ

and ψ(lmn − lm0n0
, z;u) ≥ σ

}

for every nonzero z ∈ Z. Let us show that BN2
(σ, u) ⊂ AN2

(λ, u). Let (p, q) ∈ BN2
(σ, u). Then, we

get
Θ(lpq − lm0n0

, z;u) ≤ 1− σ, ϑ(lpq − lm0n0
, z;u) ≥ σ and ψ(lpq − lm0n0

, z;u) ≥ σ.

Case i. Consider Θ(lpq − lm0n0
, z;u) ≤ 1− σ. Let us show that

Θ(lpq − ξ, z;u/2) ≤ 1− λ.

Suppose that
Θ(lpq − ξ, z;u/2) > 1− λ.

Then, we have

1− σ ≥ Θ(lpq − lm0n0
, z;u) ≥ Θ(lpq−ξ, z;u/2) ⊡Θ(lm0n0

−ξ, z;u/2) > (1− λ)⊡ (1− λ) > 1− σ,

which is impossible. Therefore,
Θ(lpq − ξ, z;u/2) ≤ 1− λ.

Case ii. Consider ϑ(lpq − lm0n0
, z;u) ≥ σ. Let us show that

ϑ(lpq − ξ, z;u/2) ≥ λ.

Suppose that
ϑ(lpq − ξ, z;u/2) < λ.

Then, we have

σ ≤ ϑ(lpq − lm0n0
, z;u) ≤ ϑ(lpq − ξ, z;u/2) ⊡ ϑ(lm0n0

− ξ, z;u/2) < λ ∗ λ < σ,
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which is impossible. Therefore, we have

ϑ(lpq − ξ, z;u/2) ≥ λ.

Case iii. If we consider ψ(lpq − lm0n0
, z;u) ≥ σ, then, similarly to Case ii, we can show that

ψ(lpq − ξ, z;u/2) ≥ λ.

Therefore, (p, q) ∈ AN2
(λ, u). Hence, BN2

(σ, u) ⊂ AN2
(λ, u). Since δ2(AN2

(λ, u)) = 0, we have
δ2(BN2

(σ, u)) = 0. So, {lmn} is statistically Cauchy with respect to N2. �

Theorem 6. Let {lmn} be a double sequence in an N2-NS Z. If {lmn} is statistically Cauchy

with respect to N2, then it is statistically convergent with respect to N2.

P r o o f. Suppose that {lmn} is statistically Cauchy with respect to N2 but not statistically
convergent to any ξ ∈ Z with respect to N2. Then, for σ ∈ (0, 1), u > 0, and nonzero z ∈ Z, there
exist m0 = m0(σ) and n0 = n0(σ) ∈ N such that δ2(K) = 0, where

K =
{

(m,n) ∈ N× N : Θ(lmn − lm0n0
, z;u) ≤ 1− σ or ϑ(lmn − lm0n0

, z;u) ≥ σ

and ψ(lmn − lm0n0
, z;u) ≥ σ

}

,

and δ2(M) = 0, where

M =
{

(m,n) ∈ N×N : Θ(lmn − ξ, z;u/2) > 1− σ or ϑ(lmn − ξ, z;u/2) < σ

and ψ(lmn − ξ, z;u/2) < σ
}

.

Since
Θ(lmn − lm0n0

, z;u) ≥ 2Θ(lmn − ξ, z;u/2) > 1− σ

and

ϑ(lmn − lm0n0
, z;u) ≤ 2ϑ(lmn − ξ, z;u/2) < σ,

ψ(lmn − lm0n0
, z;u) ≤ 2ψ(lmn − ξ, z;u/2) < σ,

if

Θ(lmn − ξ, z;
u

2
) >

1− σ

2

and

ϑ(lmn − ξ, z;
u

2
) <

σ

2
, ψ(lmn − ξ, z;u) <

σ

2
,

we have

δ2
({

(m,n) ∈ N× N : Θ(lmn − lm0n0
, z;u) > 1− σ

and ϑ(lmn − lm0n0
, z;u) < σ, ψ(lmn − lm0n0

, z;u) < σ
})

= 0.

This gives δ2(K
c) = 0 and so δ2(K) = 1, a contradiction. Therefore, {lmn} is statistically

convergent to some ξ. �

Definition 16. An N2-NS Z is called statistically complete with respect to N2 if every statis-

tically Cauchy sequence is statistically convergent with respect to N2.

Remark 1. In the light of Theorems 5 and 6, we see that every N2-NS is statistically complete
for double sequences.
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Conclusion and future developments

In this paper, we have dealt with statistical convergent double sequences in an N2-NS and have
shown that every N2-NS is statistically complete. Later on, these results may be the opening of new
tools to generalize this notion in various directions such as I2-statistical and I2-lacunary statistical
convergence with respect to N2. Also, this idea can be used in convergence-related problems in
many branches of science and engineering.
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22. Kişi Ö. Ideal convergence of sequences in neutrosophic normed spaces. J. Intell. Fuzzy Syst., 2021.
Vol. 41, No. 3. P. 2581–2590. DOI: 10.3233/JIFS-201568

23. Khan V.A., Khan M.D., Ahmad M. Some new type of lacunary statistically convergent se-
quences in neutrosophic normed space. Neutrosophic Sets Syst., 2021. Vol. 42, No. 1. P. 241–252.
URL: https://digitalrepository.unm.edu/nss journal/vol42/iss1/15

24. Madore J. Fuzzy physics. Ann. Physics, 1992. Vol. 219, No. 1. P. 187–198.
DOI: 10.1016/0003-4916(92)90316-E

25. Mursaleen M. λ-statistical convergence. Math. Slovaca, 2000. Vol. 50, No. 1. P. 111–115.
URL: https://dml.cz/handle/10338.dmlcz/136769

26. Mursaleen M., Edely O.H. H. Statistical convergence of double sequences. J. Math. Anal. Appl., 2003.
Vol. 288, No. 1. P. 223–231. DOI: 10.1016/j.jmaa.2003.08.004

27. Murtaza S., Sharma A., Kumar V. Neutrosophic 2-normed spaces and generalized
summability. Neutrosophic Sets Syst., 2023. Vol. 55, No. 1. Art. no. 25. P. 415–426.
URL: https://digitalrepository.unm.edu/nss journal/vol55/iss1/25
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