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Abstract: In finite-dimensional Euclidean space, we study the problem of a simple pursuit of two evaders by
a group of pursuers in a given time scale. It is assumed that the evaders use the same control and do not move
out of a convex polyhedral set. The pursuers use counterstrategies based on information on the initial positions
and on the prehistory of the control of evaders. The set of admissible controls of each of the participants is a
sphere of unit radius with its center at the origin, and the goal sets are the origin. The goal of the group of
pursuers is the capture of at least one evader by two pursuers. In terms of the initial positions and parameters
of the game, a sufficient condition for capture is obtained. The study is based on the method of resolving
functions, which makes it possible to obtain sufficient conditions for solvability of the pursuit problem in some
guaranteed time.
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1. Introduction

The modern theory of differential pursuit-evasion games involves the development of methods
for solving problems of conflict interaction of groups of pursuers and evaders [3, 6, 7, 10]. In
particular, it is concerned with searching for new classes of problems which can be analyzed using
the previously developed methods, for example, the method of resolving functions. It was pointed
out in [1, 9] that some results obtained separately for the theories of differential and difference
equations may be considered from a unified point of view if one admits the possibility of specifying
dynamical systems on arbitrary closed subsets R1 called time scales. Time scales find applications
in constructing various mathematical models [2, 4]. A nonantagonistic game of N persons in a time
scale was considered in [11]. Sufficient conditions for the capture of one evader in the problem of
a simple group pursuit in a given time scale were obtained in [15].

Ref. [14] addressed the problem of a simple pursuit of a group of rigidly coordinated evaders
by a group of pursuers in a given time scale, where sufficient conditions for the capture of at least
one evader were obtained. The problem of a multiple capture of a given number of evaders in time
scales, under the condition that the evaders use programmed strategies, each pursuer catches no
more than one evader and the motions of the players are simple was treated in [13].

Ref. [17] dealt with the problem of a simple pursuit of rigidly coordinated evaders in a given
time scale, under the condition that the evaders do not move out of a convex polyhedral set. The
goal of the pursuers was either the capture of one evader by two pursuers or the capture of two
evaders. Sufficient conditions for capture were obtained.

In this paper we consider, in a given time scale, the problem of a simple pursuit of two evaders
by a group of pursuers who use the same control, under the condition that the evaders do not move
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out of a convex polyhedral set. The goal of the pursuers is the capture of at least one evader by
two different pursuers. Sufficient conditions for capture are obtained.

2. Auxiliary definitions and facts

In this section we will outline the basic facts from time scale theory. All results presented below
can be found, for example, in [5, 8].

Definition 1. A nonempty closed subset T ⊂ R
1 such that sup

t∈T

t = +∞ is called a time scale.

Definition 2. Let T be a time scale. A function σ : T → R
1 of the form

σ(t) = inf
{

s ∈ T | s > t
}

is called a translation function.

Definition 3. A function f : T → R
1 is called ∆-differentiable at point t ∈ T if there exists

a number γ ∈ R
1 such that for any ε > 0 there exists a neighborhood W of point t such that the

inequality

|f(σ(t))− f(s)− γ(σ(t)− s)| < ε|σ(t) − s|

holds for all s ∈ T ∩W.

In this case, the number γ is called the ∆-derivative of the function f at point t. The ∆-
derivative of the function f at point t will be denoted by f∆(t) = γ.

Definition 4. A function f : T → R
n, f(t) = (f1(t), . . . , fn(t)) is called ∆-differentiable at

point t ∈ T if all functions f1, . . . , fn are ∆-differentiable at point t.

Let T be a time scale, E ⊂ T. Denote

R(E) =
{

t ∈ E | σ(t) > t
}

.

Then the set R(E) is no more than countable.

Definition 5. The set E ⊂ T is called ∆-measurable if the set

Ẽ = E ∪
⋃

t∈R(E)

(t, σ(t))

is measurable in the sense of Lebesgue.

Definition 6. A function f : T → R
1 is called ∆-measurable on a ∆-measurable set E if a

function f̃ of the form

f̃(t) =

{

f(t), t ∈ E,
f(ti), t ∈ (ti, σ(ti)), ti ∈ R(E)

is measurable on the set Ẽ.

Definition 7. A function f : E → R
1, E ⊂ T is called ∆-integrable on a ∆-measurable set E

if the function f̃ is integrable in the sense of Lebesgue on the set Ẽ. If f is ∆-integrable on the
set E, then we define

∫

E
f(s)∆s, assuming

∫

E

f(s)∆s =

∫

Ẽ

fdµ,

where µ is the Lebesgue measure.



114 Elena S. Mozhegova and Nikolai N. Petrov

3. Formulation of the problem

Let a time scale T, t0 ∈ T be given.

In the space R
k(k > 2) we consider the differential game Γ(n, 2) of n + 2 persons: n pursuers

P1, . . . , Pn and two evaders E1, E2 with laws of motion of the form

x∆i = ui, xi(t0) = x0i , ui ∈ V, (3.1)

y∆j = v, yj(t0) = y0j , v ∈ V. (3.2)

Here xi, yj , x
0
i , y

0
j , ui, v ∈ R

k, i ∈ I = {1, . . . , n}, j ∈ J = {1, 2}, V = {v ∈ R
k | ‖v‖ 6 1}. We

assume that x0i 6= y0j for all i ∈ I, j ∈ J. Additionally, we assume that in the process of the game
evaders E1 and E2 do not move out of a convex set D with a nonempty interior of the form

D =
{

y ∈ R
k | (pl, y) 6 µl, l = 1, . . . , r

}

,

where p1, . . . , pr are unit vectors R
k, µ1, . . . , µr are real numbers, and (a, b) is a scalar product. We

also assume that D = R
k with r = 0.

Introduce new variables zij = xi − yj. Then instead of the systems (3.1) and (3.2) we obtain
the system

z∆ij = ui − v, zij(t0) = z0ij = x0i − y0j , ui, v ∈ V. (3.3)

We will say the ∆-measurable function v : T → R
k is ∆-admissible if v(t) ∈ V, yj(t) ∈ D for all

t ∈ T, j ∈ J. Here yj(t) is a solution to the Cauchy problem (3.2) with a given function v(·).
We will say that the prehistory vt(·) of the function v at time t ∈ T is a restriction of the

function v to [t0, t) ∩ T. Let

z0 =
{

z0ij | i ∈ I, j ∈ J
}

denote the vector of initial positions.

The actions of the evaders can be interpreted as follows: there is a center which for all evaders
E1 and E2 chooses the same control v(t).

Definition 8. We will say that a quasi-strategy Ui of pursuer Pi is given if a map U0
i is defined

which associates the ∆-measurable function ui(t) = Ui(z
0, t, vt(·)) with values in V to the initial

positions z0, time t ∈ T and an arbitrary prehistory of the control vt(·) of evaders E1 and E2.

Definition 9. A two-fold capture occurs in the game Γ(n, 2) if there exist time T0 = T (z0)
and quasi-strategies U1, . . . ,Un of pursuers P1, . . . , Pn such that, for any measurable function v(·),
v(t) ∈ V , y(t) ∈ D, t ∈ [t0, T0] ∩ T, there are numbers l,m ∈ I, (m 6= l), j ∈ {1, 2} and times
τ1, τ2 ∈ [t0, T0] ∩ T such that zlj(τ1) = 0, zmj(τ2) = 0.

4. Sufficient conditions for capture

Definition 10 [12]. The vectors a1, a2, . . . , am form a positive basis in R
k if for any x ∈ R

k

there exist nonnegative real numbers α1, α2, . . . , αm such that

x = α1a1 + α2a2 + . . .+ αmam.

Let IntX, coX denote, respectively, the interior and the convex hull of the set X ⊂ R
k.
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Theorem 1 [12]. The vectors a1, a2, . . . , am form a positive basis in R
k if and only if

0 ∈ Intco {a1, . . . , am}.

Lemma 1. Let m > 3, a1, . . . , am, b1, b2, p1, . . . , pr ∈ R
k be such that

1) for each q ∈ J0 = {1, . . . ,m− 2}

0 ∈ Intco
{

ai − b1, ai − b2, i ∈ J0 \ {q}, p1, . . . , pr
}

,

2) am−1 − b2 = t1(b1 − b2), am − b2 = t2(b1 − b2) for some t1 < 0, t2 < 0.

Then for each l ∈ J = {1, . . . ,m} the following inclusion holds:

0 ∈ Intco
{

ai − b2, i ∈ J \ {l}, p1, . . . , pr
}

. (4.1)

P r o o f. If m = 3, then it follows from condition 1) of the lemma that

0 ∈ Intco{p1, . . . , pr}.

Therefore, the condition (4.1) is satisfied automatically.
Let m > 4. Assume that there exists q ∈ J for which

0 /∈ Intco
{

ai − b2, i ∈ J \ {q}, p1, . . . , pr
}

.

Then, by the separability theorem, there exists a unit vector x ∈ R
k such that

(ai − b2, x) 6 0 for all i ∈ J \ {q}, (pj , x) 6 0, for all j = 1, . . . , r. (4.2)

It follows from condition 2) of the lemma that (b1 − b2, x) > 0. Then

(ai − b1, x) = (ai − b2, x) + (b2 − b1, x) 6 0 for all i ∈ J \ {q}. (4.3)

Inequalities (4.2) and (4.3) contradict condition 1) of the lemma. This proves the lemma. �

Let us introduce the following notation:

λ(h, v) = sup
{

λ > 0 | − λh ∈ V − v
}

,

K(t) =

∫ t

t0

∆s, Ω(J) =
{

(i1, i2)
∣

∣i1, i2 ∈ J, i1 6= i2
}

,

where J is a finite set of natural numbers.

Lemma 2. Let m > 4, a1, . . . , am−2, c, p1 ∈ R
k be such that for each q ∈ J0 = {1, . . . ,m− 2}

the vectors {ai, i ∈ J0 \ {q}, c, p1} form a positive basis R
k. Then for any b1, b2 ∈ R

k there exists
ρ0 > 0 such that for all ρ > ρ0 the following inequality holds:

δ(ρ) = min
v∈V

max
{

max
Λ∈Ω0(J)

min
i∈Λ

λ(wi, v), (p1, v)
}

> 0,

where J = {1, . . . ,m}, Ω0(J) = Ω(J0) ∪ {(m− 1,m)},

wi =







ai, i ∈ J0,
b1 + ρc, i = m− 1,
b2 + ρc, i = m.
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P r o o f. Assume that the statement of the lemma is false. Then there exist b1, b2 ∈ R
k such

that for any ρ0 > 0 there is ρ > ρ0 for which δ(ρ) = 0. It follows from the definition of δ(ρ) that
there exists vρ ∈ V such that (p1, vρ) 6 0 and for all Λ ∈ Ω0(J)

min
i∈Λ

λ(wi, vρ) = 0, with ‖vρ‖ = 1.

From the last condition it follows that there exist J(ρ) ⊂ J0, |J(ρ)| = m− 3 and j(ρ) ∈ {m− 1,m}
such that λ(wi, vρ) = 0 for all i ∈ J(ρ) ∪ {j(ρ)}.

Let ρ0 = 1. Then there are ρ1 > ρ0, v1 ∈ V , J(ρ1) for which

(p1, v1) 6 0, (wi, v1) 6 0 for all i ∈ J(ρ1) ∪ {j(ρ1)}, and ‖v1‖ = 1.

For ρ0 = ρ1 + 1 there are ρ2 > ρ0, v2 ∈ V , J(ρ2) for which

(p1, v2) 6 0, (wi, v2) 6 0 for all i ∈ J(ρ2) ∪ {j(ρ2)}, and ‖v2‖ = 1.

Continuing this process further, we find that there exist sequences {ρs}
∞
s=1,

lim
s→+∞

ρs = +∞,

{vs}, {J(ρs)}, {j(ρs)} for which

(p1, vs) 6 0, (wi, vs) 6 0 for all i ∈ J(ρs) ∪ {j(ρs)}, and ‖vs‖ = 1.

Consequently, there exists a subsequence {ρsi}, lim
i→+∞

ρsi = +∞ for which there are a subsequence

{vsi}, a set J0, J0 ⊂ J0, |J
0| = m−3, and an index ĵ ∈ {m−1,m} such that for all j the following

inequalities hold:

(p1, vsj) 6 0, (wi, vsj ) 6 0 for all i ∈ J0 ∪ {ĵ}, and ‖vsj‖ = 1.

From the sequence {vsj} one can single out a subsequence {vl} converging to v0, with ‖v0‖ = 1.
Therefore, we have

(p1, vl) 6 0, (wi, vl) 6 0 for all i ∈ J0,
(wĵ

ρl
+ c, vl

)

6 0.

Passing in the last inequalities to the limit as l → +∞, we obtain

(p1, v0) 6 0, (wi, v0) 6 0 for all i ∈ J0, (c, v0) 6 0.

Therefore, by virtue of Theorem 1 the set of vectors {wi, i ∈ J0, c, p1} does not form the positive
basis Rk, which contradicts the condition of the lemma. This proves the lemma. �

Lemma 3. Let a1, . . . , am, p1 ∈ R
k be such that

δ = min
v∈V

max
{

max
Λ∈Ω0(J)

min
j∈Λ

λ(aj , v), (p1, v)
}

> 0,

where J0 = {1, . . . ,m− 2}, Ω0(J) = Ω(J0) ∪ {m− 1,m}.
Then there exists T0 > t0, T0 ∈ T such that for any admissible control v(·) of evaders there is

Λ = (α, β) ∈ Ω0(J) such that

T0
∫

t0

λ(aα, v(s))∆s > 1,

T0
∫

t0

λ(aβ , v(s))∆s > 1.
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P r o o f. Let v(·) be an admissible control of evaders. From [5] it follows that the functions
λ(aj , v(t)) are ∆-measurable and ∆-integrable. For each t ∈ T we define the sets

T1(t) = {t ∈ T | (p1, v(t)) > δ}, T2(t) = {t ∈ T | (p1, v(t)) < δ}.

Since (yj(t), p1) 6 µ1 for all t ∈ T, j = 1, 2, the following inequality holds:

t
∫

t0

(p1, v(s))∆s 6 µ0 = min{µ1 − (p1, y
0
1), µ1 − (p1, y

0
2)}.

Therefore,

µ0 >

t
∫

t0

(p1, v(s))∆s > δ

∫

T1(t)

∆s−

∫

T2(t)

∆s, K(t) =

∫

T1(t)

∆s+

∫

T2(t)

∆s.

The last two relations imply the validity of the inequality

∫

T2(t)

∆s >
δK(t) − µ0

1 + δ
. (4.4)

Next, we have

max
Λ∈Ω0(J)

min
j∈Λ

t
∫

t0

λ(aj , v(s))∆s > max
Λ∈Ω0(J)

t
∫

t0

min
j∈Λ

λ(aj , v(s))∆s. (4.5)

For any nonnegative numbers γΛ(Λ ∈ Ω0(J)) we have

max
Λ∈Ω0(J)

γΛ >
1

N0

∑

Λ∈Ω0(J)

γλ, where N0 = 1 +
(m− 2)(m− 3)

2
.

Therefore,

max
Λ∈Ω0(J)

t
∫

t0

min
j∈Λ

λ(aj , v(s))∆s >
1

N0

t
∫

t0

∑

Λ∈Ω0(J)

min
j∈Λ

λ(aj , v(s))∆s

>
1

N0

t
∫

t0

max
Λ∈Ω0(J)

min
j∈Λ

λ(aj , v(s))∆s >
1

N0

∫

T2(t)

max
Λ∈Ω0(J)

min
j∈Λ

λ(aj , v(s))∆s.

Hence, from (4.4) and (4.5) we obtain

max
Λ∈Ω0(J)

min
j∈Λ

t
∫

t0

λ(aj , v(s))∆s >
δ

N0

∫

T2(t)

∆s >
δ

N0
·
δK(t)− µ0

1 + δ
.

Since

lim
t∈T,t→+∞

K(t) = +∞,
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it follows from the last inequality that there exists T0 ∈ T for which the following inequality holds:

max
Λ∈Ω0(J)

min
j∈Λ

T0
∫

t0

λ(aj, v(s))∆s > 1,

which implies the validity of the statement of the lemma. This proves the lemma. �

Lemma 4 [17]. Let a1, . . . , am, p1 ∈ R
k be such that for each q ∈ J = {1, . . . ,m} the vectors

{ai, i ∈ J \ {q}, p1} form a positive basis R
k. Then

δ = min
v∈V

max
{

max
Λ∈Ω(J)

min
i∈Λ

λ(ai, v), (p1, v)
}

> 0.

Lemma 5 [17]. Let a1, . . . am, p1 ∈ R
k be such that for each q ∈ J = {1, . . . ,m} the vectors

{ai, i ∈ J \ {q}, p1} form a positive basis R
k. Then there exists T0 > t0, T0 ∈ T such that for any

admissible control v(·) of evaders there is Λ = (α, β) ∈ Ω(J),

T0
∫

t0

λ(aα, v(s))∆s > 1,

T0
∫

t0

λ(aβ , v(s))∆s > 1.

Theorem 2. Let r = 1 and suppose that there exists j ∈ {1, 2} such that for any q ∈ I

0 ∈ Intco
{

z0ij , i ∈ I \ {q}, p1
}

.

Then a two-fold capture occurs in the game Γ(n, 2).

P r o o f. By virtue of Lemma 5

T 0 = min
{

t ∈ T | t > t0, inf
v(·)

max
Λ∈Ω(J)

min
i∈Λ

t
∫

t0

λ(z0ij , v(s))∆s > 1
}

is finite. Let v(·) be an admissible control of evaders. Define the functions

hi(t) = 1−

∫ t

t0

λ(z0ij , v(s))∆s.

Let pursuer Pi construct a control as follows. If the inequality hi(t) > 0 is satisfied at time t ∈ T,
then we assume

ui(t) = v(t)− λ(z0ij , v(t))z
0
ij .

If τ ∈ T is the first time instant for which hi(τ) = 0, we assume that λ(z0ij , v(t)) = 0 for all t > τ.

Let τ ∈ T be the first time instant for which hi(τ) < 0, and let the inequality hi(t) > 0 be
satisfied for all t ∈ T, t < τ . Define the number

τ∗i = sup{t ∈ T | hi(t) > 0}.
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Then (τ∗i , τ) ∩ T = ∅. Indeed, if there existed a time instant t ∈ (τ∗i , τ) ∩ T, then the inequality
hi(t) > 0 would be satisfied, which is impossible by virtue of the definition of the number τ∗i . In
this case, we assume

ui(τ) = v(τ)− λ∗(z0ij , v(τ))z
0
ij , where λ∗(z0ij , v(τ)) =

hi(τ
∗
i )

σ(τ∗i )− τ∗i
=

hi(τ
∗
i )

τ − τ∗i
.

We note that in this case λ∗(z0ij , v(τ)) 6 λ(z0ij , v(τ)) and therefore ui(τ) ∈ V. Then

1−

∫ τ∗i

t0

λ(z0ij , v(s))∆s−

∫ τ

τ∗
i

λ∗(z0ij , v(s))∆s = hi(τ
∗
i )−

∫ τ

τ∗
i

hi(τ
∗
i )

τ − τ∗i
∆s = 0.

Then from the definition of the controls of the pursuers and the system (3.3) it follows that for
all t ∈ [t0, T

0] ∩ T the equalities zij(t) = z0ijhi(t), i ∈ I, hold.
From Lemma 5 and the definition of the controls of the pursuers it follows that there exist

numbers l,m ∈ I such that hl(T
0) = 0, hm(T 0) = 0. This implies that pursuers Pl and Pm perform

a capture of evader Ej. Consequently, a two-fold capture occurs in the game Γ(n, 2). This proves
the theorem. �

Theorem 3. Let r = 1 and suppose that there exists a set I0 ⊂ I, |I0| = n − 2 such that for
all l ∈ I0

0 ∈ Intco
{

z0i1, z
0
i2, i ∈ I0 \ {l}, p1

}

. (4.6)

Then a two-fold capture occurs in the game Γ(n, 2).

P r o o f. By virtue of Theorem 1, it follows from condition (4.6) that for all l ∈ I0 the set
{z0i1, z

0
i2, i ∈ I0 \ {l}, p1} forms a positive basis Rk. Denote c = y01 − y02 . Since

z0i2 = x0i − y02 = x0i − y01 + c = z0i1 + c,

for all l ∈ I0 the positive basis Rk forms a set {z0i1, i ∈ I0 \ {l}, c, p1}.
We assume that I0 = {1, . . . , n− 2}. It follows from Lemma 2 that there exists a number ρ > 0

such that for all l ∈ I the vectors {w0
i , i ∈ I \ {l}, p1} form a positive basis Rk, where

w0
i =











z0i1, if i ∈ I0,

z0n−12 + ρc, if i = n− 1,

z0n2 + ρc, if i = n.

Hence, by virtue of Theorem 1, we find that for all l ∈ I

0 ∈ Intco
{

w0
i , i ∈ I \ {l}, p1

}

.

It follows from Lemmas 2 and 3 that the number

T0 = min
{

t
∣

∣ t > t0, t ∈ T, inf
v(·)

max
Λ∈Ω0(I)

min
j∈Λ

∫ t

t0

λ(w0
j , v(s))∆s > 1

}

is finite. Let v(·) be an admissible control of the evaders. Define the functions

hi(t) = 1−

∫ t

t0

λ(w0
j , v(s))∆s.
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Let pursuer Pi construct a control as follows. If the inequality hi(t) > 0 is satisfied at time t ∈ T,
then we assume

ui(t) = v(t)− λ(w0
i , v(t))w

0
i .

If τ ∈ T is the first time instant for which hi(τ) = 0, then we assume that λ(w0
i , v(t)) = 0 for all

t > τ.

Let τ ∈ T be the first time instant for which hi(τ) < 0, and let the inequality hi(t) > 0 be
satisfied for all t ∈ T, t < τ . Define the number

τ∗i = sup
{

t ∈ T | hi(t) > 0
}

.

Then (τ∗i , τ) ∩ T = ∅. Indeed, if there existed a time instant t ∈ (τ∗i , τ) ∩ T, then the inequality
hi(t) > 0 would be satisfied, which is impossible by virtue of the definition of the number τ∗i . In
this case, we assume

ui(τ) = v(τ)− λ∗(w0
i , v(τ))w

0
i , where λ∗(w0

i , v(τ)) =
hi(τ

∗
i )

σ(τ∗i )− τ∗i
=

hi(τ
∗
i )

τ − τ∗i
.

We note that in this case λ∗(w0
i , v(τ)) 6 λ(w0

i , v(τ)) and therefore ui(τ) ∈ V. Then

1−

∫ τ∗i

t0

λ(w0
i , v(s))∆s−

∫ τ

τ∗
i

λ∗(w0
i , v(s))∆s = hi(τ

∗
i )−

∫ τ

τ∗
i

hi(τ
∗
i )

τ − τ∗i
∆s = 0.

Then from the definition of the controls of the pursuers and the system (3.3) it follows that for
all t ∈ [t0, T̂ ] ∩ T the following equalities hold:

zi1(t) = z0i1hi(t), i ∈ I0,

zn−12(t) = z0n−12hn−1(t)− ρc(1− hn−1(t)),

zn2(t) = z0n2hn(t)− ρc(1− hn(t)).

From Lemma 3 and the definition of the controls of the pursuers it follows that there exist numbers
l,m ∈ I such that

hl(T0) = 0, hm(T0) = 0. (4.7)

Also, the following cases are possible.

1. l,m ∈ I0. In this case, pursuers Pl and Pm perform a capture of evader E1, which implies
that a two-fold capture occurs in the game Γ(n, 2).

2. Condition (4.7) is satisfied for Λ = {n− 1, n}. Then

zn−12(T0) = −ρc, zn2(T0) = −ρc. (4.8)

We prove that in this case the following inclusion holds for any l ∈ I0:

0 ∈ Intco
{

zi1(T0), zi2(T0), i ∈ I0 \ {l}, p1
}

. (4.9)

Let l ∈ I0. We have

zi1(T0) = z0i1hi(T0), zi2(T0) = zi1(T0) + c = zi1(T0)hi(T0) + z0i2 − z0i1.
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Therefore,

z0i1 =
zi1(T0)

hi(T0)
, z0i2 = zi2(T0) +

zi1(T0)(1− hi(T0))

hi(T0)
.

Since the set {z0i1, z
0
i2, i ∈ I0 \ {l}, p1} forms a positive basis Rk, the positive basis Rk is formed

by the vectors
{

zi1(T0)

hi(T0)
, zi2(T0) +

zi1(T0)(1 − hi(T0))

hi(T0)
, i ∈ I0 \ {l}, p1

}

.

From the condition hi(T0) ∈ (0, 1], for all i ∈ I0 we find that the positive basis Rk forms a set
{

zi1(T0), zi2(T0), i ∈ I0 \ {l}, p1
}

.

By virtue of Theorem 1, the last relation implies the validity of (4.9).
From equations (4.8) we obtain

zn−12(T0) = −ρ(y1(T0)− y2(T0)), zn2(T0) = −ρ(y1(T0)− y2(T0)).

By virtue of Lemma 1, we find that

0 ∈ Intco
{

zi2(T0), i ∈ I0 \ {l}, p1
}

.

Taking T0 to be the initial time and using Theorem 2, we find that there are pursuers Pr and Pq,
r 6= q, that perform a capture of evader E2. This proves the theorem. �

Example 1. Let k = 2, x01 = (3; 1), x02 = (1;−2), x03 = (5;−2), x04 = (1; 3), x05 = (2;−3),
y01 = (0; 0), y02 = (6; 0), p1 = (0; 1), µ1 = 100.

Then the condition for capture from Theorem 2 is not satisfied, and the condition for capture
from Theorem 3 is satisfied for I0 = {1, 2, 3}.

Theorem 4. Let D = R
k and suppose that there exists j ∈ {1, 2} such that for any q ∈ I

0 ∈ Intco
{

z0ij , i ∈ I \ {q}
}

.

Then a two-fold capture occurs in the game Γ(n, 2).

This theorem is proved along the same lines as Theorem 2 using the results of [16].

Theorem 5. Let D = R
k and suppose that there exists a set I0 ⊂ I, |I0| = n− 2 such that for

all l ∈ I0

0 ∈ Intco
{

z0i1, z
0
i2, i ∈ I0 \ {l}

}

.

Then a two-fold capture occurs in the game Γ(n, 2).

This theorem is proved along the same lines as Theorem 3 using the results of [16].

Theorem 6. Let r > 1 and suppose that there exist p ∈ R
k, µ ∈ R

1, I0 ⊂ I, |I0| = n− 2 such
that D ⊂ {x ∈ R

k | (p, x) 6 µ} and

0 ∈ Intco
{

z0i1, z
0
i2, i ∈ I0 \ {l}, p

}

.

Then a two-fold capture occurs in the game Γ(n, 2).

The validity of this theorem immediately follows from Theorem 3.
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5. Conclusion

In the problem of a simple pursuit by a group of pursuers of two coordinated evaders on a
given time scale, we obtained sufficient conditions for a two-fold capture, provided that the evaders
didn’t move out of a convex polyhedral set. To solve the problem, we used the method of resolving
functions. The results obtained can be used in the study of new problems of conflict interaction
between groups of pursuers and evaders on time scales.
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