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Abstract: The paper is devoted to a new unidirectional mean value inequality for the Fréchet subdifferential
of a continuous function. This mean value inequality finds an intermediate point and localizes its value both
from above and from below; for this reason, the inequality is called two-sided. The inequality is considered for
a continuous function defined on a Fréchet smooth space. This class of Banach spaces includes the case of a
reflexive space and the case of a separable Asplund space. As some application of these inequalities, we give an
upper estimate for the Fréchet subdifferential of the upper limit of continuous functions defined on a reflexive
space.
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1. Introduction

Consider the following mean value inequalities.

Proposition 1 [12, Theorems 2.1 and 2.2]. Let a scalar function f be defined and lower semi-

continuous on a Fréchet smooth Banach space X. Let points ǔ and v̌ in X be given. Then, for

arbitrary numbers š < f(v̌) − f(ǔ) and κ̌ > 0, there exist a point z− ∈ [ǔ; v̌] + κ̌B and a Fréchet

subgradient ζ− ∈ ∂̂f(z−) such that

š < ζ−(v̌ − ǔ) and f(z−) < f(ǔ) + max(0, š) + κ̌. (1.1)

Furthermore, if f is continuous, there are a point z+ ∈ [ǔ; v̌] + κ̌B and a Fréchet subgradient

ζ+ ∈ ∂̂f(z+) such that

š < ζ+(v̌ − ǔ) and f(z+) > f(v̌)−max(0, š)− κ̌. (1.2)

Note that inequalities (1.1) and (1.2) are similar. This suggests that, in the case of continuity of f ,
it is possible to get a common point z+ = z− such that the value f(z) is localized from both above
and below. Proving the corresponding two-sided unidirectional mean inequality is the primary goal
of this paper.

As part of the historical background, note that the existence of a pair (z−, ζ−) satisfying inequal-
ities like (1.1) has been widely studied (see, for example, [13, Subsect. 3.4.8] and [14, Sect. 4.4]).
Unlike different variants of Lagrange’s mean value theorem for certain classes of Lipschitz contin-
uous functions, they ensure an upper bound of f(v) − f(u) through some subgradient ζ. These
inequalities apply to any lower semicontinuous function. Furthermore, the corresponding to the
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Fréchet subdifferentials unidirectional mean value inequality is equivalent to the Asplund property
of a Banach space [14, 17], and therefore is equivalent to several basic principles of variational
analysis [1, 18], for example, to the inspired by [16] and [5] multidirectional mean value inequality
[4, Subsection 3.6.1]; for more recent references, see [10] and [8]. However, the multidirectional
mean value theorem as well as the previous unidirectional mean value inequality also localizes f(ẑ)
on one side only.

The rest of the paper is organized as follows. In Section 3, we will prove the desired two-
sided unidirectional mean value inequality for continuous functions. Then, applying this result,
in Section 4, we will show an upper estimate for the Fréchet subdifferential of the upper limit of
continuous functions. But first, we will recall several elementary definitions and notions.

2. Definitions and notation

We will use elementary notions from the set-valued and variational analyses [4, 13, 15].
For a nonempty set X of some real Banach space X, denote by clX and coX the closure and

the convex hull of X . For a point x ∈ X , the contingent (Bouligand tangent) cone to X at x is
the set T (x;X ) of all v ∈ X such that one finds a decreasing to 0 sequence of positive tn and a
converging to v sequence of vn ∈ X such that x+ tnvn ∈ X for all positive integers n. For a point
x ∈ X, we say that ζ ∈ X

∗ is a Fréchet normal to X at x if one has x ∈ X and

lim sup
n→∞

ζ(zn − x)

‖zn − x‖
= 0

for all converging to x sequences of zn ∈ X . Denote by N̂(x;X ) the set of all Fréchet normals to
X at x.

We call a Banach space X Fréchet smooth if this space has an equivalent norm that is C1-
smooth off the origin. Note that any reflexive Banach space and any separable Asplund space are
Fréchet smooth [4, Theorem 6.1.6]. It is worth mentioning that each Fréchet smooth space has a
C1-smooth Lipschitz function with bounded nonempty support [3, Ex. 4.3.9].

Denote by B and B∗ the unit closed balls in X and X
∗, respectively.

Given an extended-real-valued function g : X → R ∪ {−∞,∞}, define its lower semicontinuous
envelope lsc g by the rule:

lsc g(x)
△
= lim inf

κ↓0
inf

z∈x+κB
g(z) for all x ∈ X.

Note that this function is lower semicontinuous. In addition, a function g is lower semicontinuous
iff its epigraph

epi g
△
= {(x, a) ∈ X× R | a ≥ g(x)}

is closed. In the case of lower semicontinuous function g, define the Fréchet subdifferential of g at
x as

∂̂g(x)
△
= {ζ ∈ X

∗ | (ζ,−1) ∈ N̂(x, g(x); epi g)}

for a point x ∈ X with finite g(x); let also ∂̂g(x) = ∅ if |g(x)| = ∞.

3. Two-sided mean value inequality

Theorem 1. Let X be a Fréchet smooth space. Let a continuous function f : X → R and some

closed interval [u; v] in X be given. Then, for a real number s < f(v) − f(u) and positive ε, there
exist some point ẑ ∈ [u; v] + εB and Fréchet subgradient ζ̂ ∈ ∂̂f(ẑ) such that

s < ζ̂(v − u) and |f(ẑ)− f(u)| ≤ |s|+ ε. (3.1)
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P r o o f. Without loss of generality, we can assume that u = 0 and f(u) = 0. Now, the initial
inequality can be written as s < f(v).

Case s < 0. Let s be negative. Choose a positive number ε < min(|s|, f(v)−s). Define ε̄ = ε/4

and s̄
△
= s+3ε̄. Since s̄ < 0 = f(0) < |s̄| and s̄ < f(v), one finds a positive number t̂ < 1 such that

|s̄| > f(t̂v) > −t̂|s̄| > −|s̄| = s̄ (3.2)

because f is continuous on [0; v]. For the same reason, there is a positive κ < ε̄ such that

|f(z)− f(0)| < ε̄ for all z ∈ [0; v] ∩ κB. (3.3)

We claim that there exist some ẑ ∈ [0; t̂v] + κB and ζ̂ ∈ ∂̂f(ẑ) such that

s < −|s̄| < ζ̂v and |f(ẑ)| < |s̄|+ 2ε̄ < |s|. (3.4)

To this end, consider the continuous map

[0; t̂ ] ∋ τ 7→ h(τ) = f(τv)− τf(t̂v)/t̂.

Since h(t̂) = h(0) = 0 holds, due to the intermediate value theorem, there exists positive τ̂ ≤ t̂ that
satisfies the equality h(τ̂ ) = 0 and at least one of the following conditions:

(i) τ̂ < κ; (ii) h|[0,τ̂ ] is nonpositive; (iii) h|[0,τ̂ ] is nonnegative.

Now, the relations 0 < τ̂ ≤ t̂ < 1, h(τ̂ ) = 0, and (3.2) yield the inequality

−|s̄| ≤ −|s̄|τ̂
(3.2)
< τ̂f(t̂v)/t̂ = f(τ̂v)− f(0). (3.5)

Let us apply Proposition 1 to this inequality with

ǔ−
△
= 0, v̌+

△
= τ̂ v, š

△
= −|s̄|τ̂ , and κn

△
= κ/n

for all positive integers n. This gives some r−, r+ ∈ [0; τ̂ ], z−, z+ ∈ X, ζ− ∈ ∂̂f(z−), and ζ+ ∈ ∂̂f(z+)
such that

−|s̄|τ̂ < τ̂ζ−v, ‖r−v − z−‖ < κn, f(z−)− f(0) < κn,

−|s̄|τ̂ < τ̂ζ+v, ‖r+v − z+‖ < κn, f(z+)− f(τ̂v) > −κn.

Next, taking into account the inequalities τ̂ > 0 and f(0) + κn = κn < ε̄, we have

−|s̄| < ζ±v, z± = r±v + κnB ⊂ [0; v] + κB,

f(z−) < f(0) + κn < ε̄, and f(z+) > −κn + f(τ̂ v)
(3.5)
≥ −κn − |s̄| > −ε̄− |s̄|. (3.6)

Now, in the case of τ̂ < κ (condition (i)) and in the case of nonpositive h|[0;τ̂ ] (condition (ii)),

let us set ẑn
△
= z+, r̂n

△
= r+, and ζ̂n

△
= ζ+ for all positive integers n; and in the case of nonnegative

h|[0;τ̂ ] (condition (iii)), set ẑn
△
= z−, r̂n

△
= r−, and ζ̂n

△
= ζ− for all positive integers n. Then, in all

these cases and for all positive integers n, we have proved the first inequality in (3.4). So, it is
required to check only

|f(ẑn)| ≤ |s̄|+ 2ε̄

for at least one positive integer n.
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Note that all r̂nv lie in the compact set [0; τ̂ v]. Passing to a subsequence, we can assume that
this sequence converges. By ‖ẑn − r̂nv‖ → 0, the both sequences of ẑn and r̂nv has the common
limit. The sequences of f(ẑn) and f(r̂nv) are the same by the continuity of f ; in particular, one
finds a positive integer N such that

|f(ẑN )− f(r̂Nv)| < ε̄. (3.7)

So, it is required to check only the inequality

|f(r̂Nv)| < |s̄|+ ε̄.

Now, in the case of nonnegative h|[0;τ̂ ] (condition (iii)), by the choice of r̂N = r− and ẑN = z−,
we obtain

0 ≤ h(r−) = f(r−v)− r−f(t̂v)/t̂ ≤ f(r−v) + |f(t̂v)|

and

ε̄
(3.6)
> f(ẑN ) = f(z−)

(3.7)
≥ f(r−v)− ε̄ ≥ −|f(t̂v)| − ε̄

(3.2)
≥ −|s| − ε̄.

In the case h|[0;τ̂ ] ≤ 0 (condition (ii)), one has

0 ≥ h(r+) ≥ f(r+v)− |f(t̂v)|

and

−ε̄− |s̄|
(3.6)
< f(ẑN ) = f(z+)

(3.7)
≤ f(r+v) + ε̄ ≤ |f(t̂v)|+ ε̄

(3.2)
≤ |s̄|+ ε̄.

Finally, in the case τ̂ < κ (condition (i)), (3.3) and (3.7) yield

|f(r−v)| < 2ε̄ < |s̄|+ ε̄.

Inequalities (3.4) have been proved.

Case s ≥ 0. Assume that s is nonnegative. Recall that s < f(v). Choose a positive ε such that
s+ ε < f(v). Define

s̄
△
= s+ ε/2.

This entails
0 < s̄ < s+ ε < f(v),

and one can choose positive ε̄ such that

ε̄+ (1 + ε̄)3s̄ < s+ ε.

Consider the map f̄ : X× R → R defined as

f̄(x, r)
△
= f(x)− (1 + ε̄)rs̄ for all x ∈ X, r ∈ R.

Then, we have f̄(0, 0) = 0,

∂̂f̄(x, r) = ∂̂f(x)× {−(1 + ε̄)s̄},

f̄(v, 1) = f̄(v, 1) − f̄(0, 0) = f(v)− (1 + ε̄)s̄ > s̄− (1 + ε̄)s̄ = −ε̄s̄.

Since −ε̄s̄ < 0, we can apply the first case of our theorem to the inequality

−ε̄s̄ < f̄(v, 1) − f̄(0, 0).
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Then, there exist some number r ∈ [0; 1], point

z̄ = (ẑ, r̂) ∈ (rv, r) + ε̄B,

and subgradient
ζ̄ = (ζ̂,−(1 + ε̄)s̄) ∈ ∂̂f̄(ẑ, r̂)

that satisfy (3.4); i.e.,

−ε̄s̄ < ζ̂v − (1 + ε̄)s̄ and |f̄(ẑ, r̂)| ≤ ε̄|s̄|+ ε̄.

Now, the first inequality leads to s < s̄ < ζ̂v by s < s̄; on the other hand, the second inequality
entails

|f(ẑ)| =
∣

∣f̄(ẑ, r̂) + (1 + ε̄)r̂s̄
∣

∣ < ε̄s̄+ ε̄+ (1 + ε̄)|r̂|s̄ < ε̄s̄+ ε̄+ (1 + ε̄)2s̄ < (1 + ε̄)3s̄+ ε̄ < s+ ε

by |r̂| < |r|+ ε̄ ≤ 1 + ε̄ and the choice of ε̄.
The theorem is proved. �

Remark 1. As [12, Example 2.1] has shown, (1.2) can be violated if f : R → R is only lower
semicontinuous. Therefore, the assumption of the continuity of f is essential in this theorem as
well.

Remark 2. In the case of Lipschitz continuous function f , for its G-subdifferential, there exists
a variant of unidirectional mean value inequality that guaranties the inclusion z ∈ [u; v] instead
of z ∈ [u; v] + εB (see [9, Theorem 4.70]). However, this is not true for a Fréchet subdifferential.
Indeed, for the Lipschitz continuous function

R
2 ∋ (x, y) 7→ f(x, y)

△
= −|x|,

its Fréchet subdifferential is empty on the interval [(0, 0); (0, 1)]; in particular, no Fréchet subgra-
dient ζ satisfies (3.1).

Remark 3. It may mistakenly seem that Theorem 1 does not essentially use the asymmetry
of a Fréchet subdifferential and can be directly extended to the symmetric case. Indeed, Lebourg’s
mean value theorem [6, Theorem 2.4] for Clarke subdifferentials, the mean value theorem [2] for
MP-subdifferentials, and the symmetric subdifferential mean value theorem [13, Theorem 3.47],
[14, Theorem 4.11] give the corresponding gradient ζ of f at some ẑ ∈ [u; v] that satisfies the
symmetric bound

|f(v)− f(u)| =
∣

∣ζ̂(v − u)
∣

∣. (3.8)

This bound is exactly the limit of bounds

s+ < ζ̂(v − u) + ε and − s− < (−ζ̂)(v − u) + ε

as s+ ↑ f(v) − f(u), −s− ↑ (−f)(u) − (−f)(v), and ε ↓ 0. Similarly, passing to the limit in
|f(ẑ)− f(u)| < |s|+ ε, we could hope for the eatimate

|f(ẑ)− f(u)| ≤
∣

∣ζ̂(v − u)
∣

∣ (3.9)

together with (3.8). However, in the case

f(x)
△
= x(x− 2) and [u, v]

△
= [0, 2],

inequalities (3.8) and (3.9) should give f ′(ẑ) = ζ = 0 and |f(ẑ)| ≤ 0; i.e., 1 = ẑ ∈ {0, 2}. This
contradiction negates the hope of adding two-side estimate (3.9) to (3.8).
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4. Subdifferentials of the upper limit of continuous functions

Let a family of continuous functions fθ : X → R ∪ {−∞,∞}, θ ∈ [0;∞) be given. Define a
function fsup : X → R ∪ {−∞,∞} by the following rule:

fsup(x)
△
= lim sup

θ↑∞

fθ(x) for all x ∈ X. (4.1)

For every positive δ, denote by Zδ(x̌) the set of all ζ ∈ X
∗ for which there exists a pair

(θ, x) ∈ [0;∞) × X such that ζ ∈ ∂̂fθ(x),

θ > 1/δ, x ∈ x̌+ δB, and |fθ(x)− (lsc fsup)(x̌)| < δ. (4.2)

The following estimate of the subdifferential of the upper limit function is the enlargement of
[11, Lemma 6] on reflexive spaces as well as the refinement of [12, Theorem 6.1(a)] in the case of
continuous functions; its proof is similar to that of [12, Theorem 6.1(a)].

Proposition 2. Assume that X is a reflexive space, a family of scalar functions fθ, θ ∈ [0;+∞),
continuous on X is given, and fsup is defined by (4.1). For all x̌ ∈ X and ξ ∈ ∂̂ lsc fsup(x̌), for every
positive δ, there exist some N ∈ N, α1, α2, . . . , αN ∈ [0; 1], and ζ1, ζ2, . . . , ζN ∈ Zδ

(

x̌, lsc fsup(x̌)
)

such that α1 + · · · + αN = 1 and

ξ ∈

N
∑

k=1

αkζk + δB∗. (4.3)

P r o o f. The special case: x̌ = 0 is a local minimum of lsc fsup. Assume that x̌
△
= 0 and

ξ
△
= 0; furthermore, assume that

(lsc lim sup
θ↑∞

fθ)(0) = inf
x∈δ0B

lim sup
θ↑∞

fθ(x) = 0

for some positive δ0. Then 0 ∈ ∂̂fsup(0) = ∂̂ lsc fsup(0).
Note that fsup(z) = infT>0 E(T, z) for all z ∈ X; here E : [0;+∞) × X → R ∪ {−∞,+∞} is

defined as

E(T, x)
△
= sup

θ≥T

fθ(x) for all T > 0, x ∈ X.

Fix a vector v ∈ B and a positive number δ < min(δ0, 1/3). Define t = δ2. Since 0 is a local
minimum of lsc f , there exists a point ž ∈ tB such that

0 ≤ lsc fsup(ž) ≤ fsup(ž) < δ4.

Then,
‖ž + tv‖ < 2δ2 < δ < δ0 and fsup(ž + tv) ≥ lsc fsup(ž + tv) ≥ 0.

So,
fsup(ž + tv)− fsup(ž) > −δ4 = −δ2t.

Further, we can find positive numbers T̄ ≥ 1/δ and θ̂ > T̄ such that

δ2t > E(T̄ , ž)− fsup(ž) and δ2t+ f
θ̂
(ž + tv) > E(T̄ , ž + tv). (4.4)

By definition of E, we also have

0 ≤ E(T̄ , ž + tv)− fsup(ž + tv) and f
θ̂
(ž) ≤ E(T̄ , ž). (4.5)
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Subtracting the sum of inequalities (4.5) from the sum of inequalities (4.4), we have

2δ2t+ f
θ̂
(ž + tv)− f

θ̂
(ž) > fsup(ž + tv)− fsup(ž).

From fsup(ž + tv)− fsup(ž) > −δ2t and δ < 1/3, it follows that

f
θ̂
(ž + tv)− f

θ̂
(ž) > −δt.

Now, Theorem 1 for f = f
θ̂
with u = ž, v = ž + tv, s = −δt, and ε = δ(δ − t) gives a number

r ∈ [0, t], a point ẑ ∈ X, and a subgradient ζ̂ ∈ ∂̂f
θ̂
(ẑ) such that

−δt < tζ̂v, ‖ẑ− ž‖ < ‖ẑ− rv‖+ r ≤ t+ δ(δ− t) < 2δ2, and |f
θ̂
(ẑ)−f

θ̂
(ž)| < δt+ δ(δ− t) = δ2.

Then, by the choice of ž, we obtain

‖ẑ‖ ≤ ‖ž‖+ 2δ2 < 3δ2 < δ and |f
θ̂
(ẑ)| ≤ |f

θ̂
(ž)− f

θ̂
(u)|+ δ2 ≤ 2δ2 < δ.

So, we show (4.2) for (x̌, y̌) = (0, 0), (θ, x) = (θ̂, ẑ), therefore we obtain ζ̂ ∈ Zδ(0, 0). Hence, for
each v ∈ B, we have found ζ̂ ∈ Zδ(0, 0) such that ζ̂v > −δ. This entails

−δ < inf
v∈B

sup
ζ∈Zδ(0,0)

ζv ≤ inf
v∈B

sup
ζ∈cl coZδ(0,0)

ζv.

The set B is an weak compact subset of X
∗∗ = X and, together with cl coZδ(0, 0), is convex.

In addition, the map (ζ, v) 7→ ζv is continuous and linear in (ζ, v) ∈ X
∗ × X

∗∗. Therefore, the
nonsymmetrical Minimax Theorem [4, Theorem 3.6.14] ensures

−δ < inf
v∈B

sup
ζ∈cl coZδ(0,0)

ζv = sup
ζ∈cl coZδ(0,0)

inf
v∈B

ζv.

Since there exists ζ ∈ cl coZδ such that δ > −ζv for all v ∈ B, we obtain ‖ζ‖ ≤ δ. Therefore, (4.3)
holds in the special case. The special case of this lemma is proved.

The general case. Let a point x̌ ∈ X and a subgradient ξ ∈ ∂̂ lsc fsup(x̌) be given. Define
y̌ = lsc fsup(x̌). Choose a positive number δ < 1/3.

Since X is a Fréchet smooth space, by [7, Theorem 4.6 (i)], there exist a C1-smooth function g
and a positive number δ1 < δ2 such that

ξ = g′(x̌), lsc fsup(x̌) = g(x̌), and lsc fsup(x̌+ tv)− lsc fsup(x̌) ≥ g(x̌+ tv)− g(x̌)

if x ∈ x̌ + δ1B. Further, decreasing δ1 if necessary, we can also ensure ξ ∈ g′(x) + δ2B∗ and
g(x) ∈ g(x̌) + δ2B for all x ∈ x̌+ δ1B. So,

lsc(fsup − g)(0) ≤ (fsup − g)(x) for all x ∈ δ1B.

Using the special case for the maps

X ∋ x 7→ f̄θ(x) = fθ(x− x̌)− g(x− x̌),

and a positive number δ2, we find ζ ∈ cl co Z̄δ2(x̌, y̌) ∩ δ2B∗. Then, in the account of
the fuzzy sum rule, one finds a positive integer N , points x1, . . . , xN ∈ X, subgradients
ζ̄1 ∈ ∂̂fθ1(x̄1)− g′(x̄1), . . . , ζN ∈ ∂̂f̄θN (x̄N ) − g′(x̄N ), and convex coefficients αi ∈ [0, 1] such that
α1 + . . .+ αN = 1,

x̄i ∈ x̌+ 2δ2B, θi ≥ δ−2, |f̄θi(x̄i)− g(x̄i)− lsc fsup(x̌) + g(x̌)| ≤ 2δ2
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for all i and
N
∑

k=1

αkζk ∈ 2δ2B∗.

Define
ζ̄ ′i

△
= ζ̄i + g′(x̄1) ∈ ∂̂fθ1(x̄1).

By the choice of a positive number δ1 and a smooth function g, we obtain

|f̄θi(x̄i)− lsc fsup(x̌)| ≤ |g(x̄i)− g(x̌)|+ 2δ2 < δ,

∥

∥

∥

N
∑

k=1

αkζ
′
k −

N
∑

k=1

αkζ̄k

∥

∥

∥
≤ max

i∈[1 :N ]

∥

∥g′(x̄i)− ξ
∥

∥ < 2δ2 < δ, and ξ ∈

N
∑

k=1

αkζ
′
k + δB∗.

So, the proposition is proved. �

Remark 4. If X
△
= R

d, by the famous Carathéodory theorem [15, Theorem 2.29], any finite
convex sum of a (co)vectors can be represented by some finite convex sum of no more than d + 1
of them. So, we can assume that N ≤ d+ 1.

Remark 5. If every fθ is C1-smooth, we conclude that every ∂̂fγ(x) is a singleton; therefore,
ζi = f ′

γi
(xi) for all i.
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