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Abstract: This paper investigates convexity of reachable sets for quasilinear systems under integral quadratic
constraints. Drawing inspiration from B.T. Polyak’s work on small Hilbert ball image under nonlinear mappings,
the study extends the analysis to scenarios where a small nonlinearity exists on the system’s right-hand side. At
zero value of a small parameter, the quasilinear system turns into a linear system and its reachable set is convex.
The investigation reveals that to maintain convexity of reachable sets of these systems, the nonlinear mapping’s
derivative must be Lipschitz continuous. The proof methodology follows a Polyak’s scheme. The paper’s
structure encompasses problem formulation, exploration of parameter linear mapping and image transformation,
application to quasilinear control systems, and concludes with illustrative examples.
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1. Introduction

This paper focuses on studying the reachable sets of quasilinear systems with integral quadratic
constraints.

The study is based on the work of B.T. Polyak [21, 22], wherein sufficient conditions were derived
for establishing convexity of a nonlinear mapping applied to a small ball in Hilbert space. These
conditions were further applied to problems in control theory, demonstrating that the reachable set
of a nonlinear system exhibits convexity given a sufficient small control resource, provided that the
linearized system is controllable. A series of papers [12–14, 19] used the convexity conditions of the
small ball mapping to investigate the reachable sets of nonlinear systems under integral constraints
over small time intervals. In this case, it is important to note that the controllability of the linearized
system alone does not guarantee convexity of the reachable sets for the nonlinear system. Additional
conditions related to the asymptotic behavior of the eigenvalues of the controllability Gramian of
the linearized system need to be imposed. Once these conditions are fulfilled, the reachable sets
of the nonlinear system not only exhibit convexity but are also asymptotically equivalent to the
reachable sets of the linearized system.

Therefore, the study investigates the convexity of reachable sets of nonlinear systems with a
small control resource and on a small time interval. This paper discusses a variant of convexity of
reachable sets of systems with a small parameter, namely with a small nonlinearity on the right
hand side.

Systems that have small nonlinearity on the right-hand side are commonly called quasilin-
ear systems. The study of such systems in control theory dates back to the 1960s [16, 17, 23].
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E.G. Albrecht solved several problems concerning quasilinear systems [3], including the optimal
motion problem [1] and the game problem of quasilinear objects rendezvous [2]. Control problems
for quasilinear systems are also addressed in the following works [6, 9, 15, 18]. In modern appli-
cations of control theory, quasilinear systems arise after feedback linearization [4] and stochastic
linearization [5, 10].

The paper studies the convexity of the reachable sets of quasilinear systems under integral
constraints. In line with researches [12–14, 19, 21, 22], the study is reduced to the analysis of
a nonlinear mapping from the control space and the small parameter space to the space of the
trajectories endpoints generated by these controls. In this case, the reachable set is the image
of the ball under this mapping. The specific feature of the mapping defined by the solution of a
quasilinear system is the fact that, at zero value of the small parameter, this mapping becomes
linear in control. For the image of the ball to preserve its convexity for small values of the small
parameter, it is necessary for the nonlinear part of the mapping to have a Lipschitz continuous
derivative. The scheme for proving this statement is in many ways similar to the scheme for
proving the mail theorem in [21].

The paper is organized as follows. The problem statement and some remarks are given in the
second section. The third section contains the investigation of parameter linear mapping and image
of a ball. In next section, we apply the results of the third section to the quasilinear control system.
Finally, we provide two illustrative examples in the fifth section.

2. Problem statement and preparatory remarks

Further we use the following notation. By A⊤ we denote the transpose of a real matrix A, I
is an identity matrix, 0 stands for a zero vector or a zero matrix of appropriate dimension. For a
real n × n matrix A a spectral matrix norm induced by the Euclidean vector norm is denoted as
‖A‖. The symbols L1 and L2 stand for the spaces of summable and square summable functions
respectively. The norms in these spaces are denoted as ‖ · ‖L1

and ‖ · ‖L2
. By BX(a, r) we will

denote the closed ball of radius r > 0 centered at a,

BX(a, r) = {x ∈ X : ‖x− a‖X 6 r}.

Here X is some linear space with a norm ‖ · ‖X .

Let us consider the quasilinear control system

ẋ(t) = A(t)x(t) +B(t)u(t) + εf
(
x(t), t

)
, t0 6 t 6 T, x(t0) = x0, (2.1)

where x ∈ R
n is a state vector, u ∈ R

r is a control vector, t0 is a non-negative number, T is a positive
number and ε is a small parameter such that ε ∈ [0, ε], ε > 0. The matrix maps A : [t0, T ] → R

n×n,
B : [t0, T ] → R

n×r are assumed to be continuous. The function f : Rn × [t0, T ] → R
n is assumed

to be continuous in (x, t) and continuously differentiable in x.

The control u(·) will be chosen from BL2
(0, µ) with some µ > 0.

For any control u(·) ∈ L2 and any ε ∈ [0, ε] there exists the unique absolutely continuous
solution x(t, ε, u(·)) of the system (2.1), satisfying the initial condition x(t0, ε, u(·)) = x0, and this
solution is defined on some interval [t0, t0 +∆], where t0 +∆ < T .

Further we will suppose that the conditions of the following assumption are satisfied.

Assumption 1. There exists µ > µ such that for all ε ∈ [0, ε] all solutions x(t, ε, u(·)) gen-
erated by controls u(·) ∈ BL2

(0, µ) belong to some convex compact set D ⊂ R
n. In addition, it



Convexity of Reachable Sets of Quasilinear Systems 143

is assumed that the function f : Rn × [t0, T ] → R
n and its derivative on x satisfy the Lipschitz

condition with constants Lf , lf respectively

‖f(x1, t)− f(x2, t)‖ 6 Lf ‖x1 − x2‖ , t ∈ [t0, T ], x1, x2 ∈ D,
∥∥∥∥
∂f(x1, t)

∂x
− ∂f(x2, t)

∂x

∥∥∥∥ 6 lf ‖x1 − x2‖ , t ∈ [t0, T ], x1, x2 ∈ D.

In particular, first part of Assumption 1 holds if f satisfies one of the following conditions [8]:

∥∥f
(
x, t

)∥∥ 6 l1(t)(1 + ‖x‖),
x · f(x, t) 6 a(t)‖x‖2 + b(t),

(2.2)

where l1(·) ∈ L1[t0, T ] and a(·), b(·) are continuous functions.

Definition 1. The reachable set G(T, µ, ε) of the system (2.1) at time T is the set consisting
of all possible states that can be reached by the system at time T while satisfying the given integral
constraints on the control

G(T, µ, ε) =
{
x̃ ∈ R

n : ∃u(·) ∈ BL2
(0, µ), x(T, ε, u(·)) = x̃

}
.

The question to be studied is under which conditions the reachable set will be convex for small ε.

3. Nonlinear mappings depending on a small parameter

In this section, x (including x0, x1 and others) is not related to the state vector of system (2.1).
Here x is an element of the space X, ε is still a small non-negative parameter.

Consider the mapping

F (x, ε) = a0 +A0x+ εA1(x, ε) : BX(0, r)× R+ → Y,

where X and Y are Hilbert spaces. Here a0 ∈ Y is a constant, it does not depend on either x or ε,
A0 is a linear continuous operator which we assume to be a surjective mapping from X to Y . The
last implies, that there exists ν > 0, such that

‖A∗
0y‖ > ν‖y‖, ∀y ∈ Y. (3.1)

Here A∗
0 is a linear operator adjoint to A0. Let A1 : BX(0, r) × R+ → Y be a nonlinear operator,

which is continuous in x and ε.

Assumption 2. There exists ε > 0, such that for all x ∈ BX(0, r), ε ∈ [0, ε] the mapping
A1(x, ε) has a Frechet derivative

∂A1(x, ε)

∂x
= A′

1(x, ε)

which is continuous in ε and Lipschitz continuous in x: there exists L > 0, such that

‖A′
1(x1, ε)−A′

1(x2, ε)‖ 6 L‖x1 − x2‖, x1, x2 ∈ BX(0, r), ε ∈ [0, ε].

In order to justify this further, it is useful to quote the following result from [20, 21]. In the
formulation of following lemma it is assumed that f : X → Y is a nonlinear Frechet differentiable
map.
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Lemma 1 [20, 21]. Suppose there exist L, ρ, µ > 0 and y0 ∈ Y , such that

‖f ′(x)− f ′(z)‖ 6 L‖x− z‖, ∀x, z ∈ B(x0, ρ),

‖f ′(x)∗y‖ > µ‖y‖, ∀y ∈ Y, ∀x ∈ B(x0, ρ),

‖f(x0)− y0‖ 6 ρµ,

then the equation f(x) = y0 has a solution x∗ ∈ B(x0, ρ) and

‖x∗ − x0‖ 6
1

µ
‖f(x0)− y0‖ .

The following theorem can now be formulated and proven.

Theorem 1. Denote the image of the ball BX(0, r) under the map F (x, ε) by F
(
BX(0, r), ε

)
,

i.e.
F
(
BX(0, r), ε

)
=

{
F (x, ε) : x ∈ BX(0, r)

}
.

Suppose the condition of Assumption 2 to be fulfilled and F
(
BX(0, r), ε

)
is a closed set for each

ε ∈ [0, ε]. There exists ε0 ∈ (0, ε], such that for all positive ε < ε0 the image F
(
BX(0, r), ε

)
is a

convex set in Y .

P r o o f. Note that the constant a0 has no impact on the convexity of the image F
(
BX(0, r), ε

)
.

Therefore, for the proof, we will consider it as zero.
Let us consider two arbitrary points, x1 and x2, in BX(0, r). Let

x0 =
1

2
(x1 + x2), y(ε) =

1

2

(
y1(ε) + y2(ε)

)
,

where y1(ε) = F (x1, ε) and y2(ε) = F (x2, ε).
To prove that the set F

(
BX(0, r), ε

)
is convex we need to show y(ε) ∈ F

(
BX(0, r), ε

)
or,

equivalently, there exists x∗ ∈ BX(0, r), such that F (x∗, ε) = y(ε). Let us write down the expression
for y(ε)

y(ε) =
1

2

(
F (x1, ε) + F (x2, ε)

)
=

1

2

(
A0x1 + εA1(x1, ε) +A0x2 + εA1(x2, ε)

)

= A0x0 +
1

2
ε
(
A1(x1, ε) +A1(x2, ε)

)
.

(3.2)

Let x ∈ X and h ∈ X be chosen such that the inclusions x ∈ BX(0, r) and x+h ∈ BX(0, r) are
valid. Under Assumption 2, we will expand A1 in a series around the point x:

A1(x+ h, ε) = A1(x, ε) +A′
1(x, ε)h +R(ε, x, h). (3.3)

Multiplying both sides of this equality by y∗ ∈ Y ∗, ‖y∗‖ 6 1 we get

〈y∗, R(ε, x, h)〉 = 〈y∗, A1(x+ h, ε)〉 − 〈y∗, A1(x, ε)〉 − 〈y∗, A′
1(x, ε)h〉.

Apply mean value theorem to function 〈y∗, A1(x, ε)〉 to obtain

〈y∗, A1(x+ h, ε)〉 − 〈y∗, A1(x, ε)〉 = 〈y∗, A′
1(x+ θh, ε)h〉, 0 6 θ 6 1.

The last two relations lead to the following estimates

‖〈y∗, R(ε, x, h)〉‖ 6 ‖y∗‖‖A′
1(x+ θh, ε)−A′

1(x, ε)‖‖h‖ 6 Lθ‖h‖2 6 L‖h‖2,
‖R(ε, x, h)‖ 6 L‖h‖2,
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Substituting (3.3) into the expression (3.2), we obtain

y(ε) = A0x0 +
1

2
ε
(
A1(x0, ε) +A′

1(x0, ε)(x1 − x0) +R(ε, x0, x1 − x0)

+A1(x0, ε) +A′
1(x0, ε)(x2 − x0) +R(ε, x0, x2 − x0)

)

= A0x0 + εA1(x0, ε) + ξ(ε, x1, x2),

where the residual term has the form

ξ(ε, x1, x2) =
1

2
ε
(
R(ε, x0, x1 − x0) +R(ε, x0, x2 − x0)

)
,

and it could be estimated as

‖ξ(ε, x1, x2)‖ 6
1

2
εL

(1
4
‖x1 − x2‖2 +

1

4
‖x1 − x2‖2

)
6

1

4
Lε‖x1 − x2‖2.

As a result, we have

y(ε) = A0x0 + εA1(x0, ε) + ξ(ε, x1, x2) = F (x0, ε) + ξ(ε, x1, x2)

for all x1, x2 ∈ B(0, r), x1 6= x2, ε ∈ [0, ε], and we have

‖F (x0, ε)− y(ε)‖ = ‖ξ(ε, x1, x2)‖ 6
1

4
Lε‖x1 − x2‖2.

Now let us study the derivative of the mapping F (x0, ε) in x0 for a fixed ε,

F ′
x(x0, ε) = A0 + εA′

1(x0, ε).

Using Assumption 2 we can estimate ‖A′
1(x0, ε‖ from above:

‖A′
1(x0, ε)−A′

1(0, ε)‖ 6 L‖x0‖ 6 Lr,

‖A′
1(x0, ε)‖ 6 ‖A′

1(0, ε)‖ + Lr.

Since

‖A′
1(x0, ε)‖ = ‖

(
A′

1(x0, ε)
)∗‖,

it follows

‖
(
A′

1(x0, ε)
)∗‖ 6 ‖A′

1(0, ε)‖ + Lr.

From this and (3.1), we have

∥∥F ′
x(x0, ε)

∗y
∥∥ =

∥∥(A0 + εA′
1(x0, ε)

)∗
y
∥∥ > ‖A∗

0y‖ − ε
∥∥(A′

1(x0, ε)
)∗∥∥ ‖y‖ > (ν − kε)‖y‖,

where

k = max
ε∈[0,ε]

‖A′
1(0, ε)‖ + Lr > 0.

For small ε, the following inequality is true

(ν − kε) >
ν

2

and we have ∥∥F ′
x(x0, ε)

∗y
∥∥ >

ν

2
‖y‖.
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In order to use Lemma 1, we require that

‖F (x0, ε)− y(ε)‖ = ‖ξ(ε, x1, x2)‖ 6
1

4
Lε‖x1 − x2‖2 6

ν

2

‖x1 − x2‖2
8r

.

To achieve this, it is necessary to choose a value of ε such that it satisfies the inequality

ε 6 ε0 = min
{ ν

4Lr
,
ν

2k
, ε
}
.

Then, from Lemma 1 with parameters

µ =
ν

2
, ρ =

‖x1 − x2‖2
8r

,

it follows that there exists x∗ ∈ B(x0, ρ) such that F (x∗, ε) = y(ε).

Since BX(0, r) is Hilbert ball, it is strongly convex and the inclusion B(x0, ρ) ⊂ BX(0, r) is
true, therefore x∗ ∈ BX(0, r). So, the point

y(ε) =
1

2

(
F (x1, ε) + F (x2, ε)

)

is contained within the image of the ball F
(
BX(0, r), ε

)
for all ε 6 ε0 and x1, x2 ∈ BX(0, r). Due

to the closeness, for all ε 6 ε0, the image of the ball F
(
BX(0, r), ε

)
is convex. �

4. On the properties of the solutions of quasilinear systems

In this section we investigate the solutions of (2.1) to verify the applicability of the previous
results, in particular Theorem 1.

By X(t, τ) we denote the Cauchy matrix of the linear system ẋ(t) = A(t)x(t). This matrix is
the solution of the following equation

∂X(t, τ)

∂t
= A(t)X(T, τ), X(τ, τ) = I.

If x(·, ε, u(·)) is the solution of (2.1), produced by control u(·) and initial condition x0, it satisfies
the next integral equation

x
(
T, ε, u(·)

)
= X(T, t0)x0 +

T∫

t0

X(T, τ)

(
Bu(τ) + εf

(
x
(
τ, ε, u(·)

)
, τ
))

dτ

= X(T, t0)x0 +

T∫

t0

X(T, τ)B(t)u(τ) dτ + ε

T∫

t0

X(T, τ)f
(
x
(
τ, ε, u(·)

)
, τ
)
dτ.

Let us define the mapping F : BL2
(0, µ)× [0, ε] → R

n by the equality F (u(·), ε) = x(T, ε, u(·)),
where x(T, ε, u(·)) is the solution of (2.1) at moment T generated by the control u(·) and the small
parameter ε.

In order to use the results from the previous sections, we now rewrite the mapping F as

F (u(·), ε) = a0 +A0u(·) + εA1(u(·), ε),
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where a0 = X(T, 0)x0, the linear map A0 : BL2
(0, µ) 7→ R

n is defined by

A0u(·) =
T∫

t0

X(T, τ)B(t)u(τ) dτ

and nonlinear map A1 : BL2
(0, µ)× [0, ε] → R

n is defined by

A1(u(·), ε) =
T∫

t0

X(T, τ)f
(
x
(
τ, ε, u(·)

)
, τ
)
dτ. (4.1)

Reachable set G(T, µ, ε) of the quasilinear system (2.1) is the image under mapping F of the
ball BL2

(0, µ),
G(T, µ, ε) = F (BL2

(0, µ), ε).

Assertion 1. Assume the Assumption 1 is fulfilled. Then, for all ε ∈ [0, ε], the reachable set
G(T, µ, ε) is closed.

P r o o f. The proof is based on the equicontinuity of trajectories, the uniform boundedness of
the set of trajectories, and the weak compactness of the ball BL2

(0, µ) (see, for example [11]). �

To apply Theorem 1 to the mapping F , we must demonstrate that Assumption 2 holds for A1,
defined in equation (4.1).

Lemma 2. Assume Assumption 1 to be fulfilled. Then, for all ε ∈ [0, ε], there exists a constant
Lx(ε) > 0, such that for any ui(·) ∈ BL2

(0, µ), i = 1, 2 and t ∈ [t0, T ],

‖x1(t)− x2(t)‖ 6 Lx(ε)‖u1(·)− u2(·)‖L2
,

where xi(t) = x(t, ε, ui(·)), i = 1, 2. Furthermore, Lx(ε) 6 Lx(ε).

P r o o f. Since xi(t) ∈ D for all t ∈ [t0, T ], from Assumption 1, we have

‖f
(
x1(t), t

)
− f

(
x2(t), t

)
‖ 6 Lf‖x1(t)− x2(t)‖.

From the integral identities

xi(t) = x0 +

t∫

t0

A(τ)xi(τ) dτ +

t∫

t0

B(τ)ui(τ) dτ + ε

t∫

t0

f
(
xi(τ), τ

)
dτ (4.2)

we get

‖x1(t)− x2(t)‖ 6

∥∥∥∥

t∫

t0

A(τ)
(
x1(τ)− x2(τ)

)
dτ

∥∥∥∥+

∥∥∥∥

t∫

t0

B(τ)
(
u1(τ)− u2(τ)

)
dτ

∥∥∥∥

+ε

∥∥∥∥

t∫

t0

(
f
(
x1(τ), τ

)
− f

(
x2(τ), τ

))
dτ

∥∥∥∥

6

t∫

t0

(
kA + Lfε) ‖x1(τ)− x2(τ)‖ dτ + ku‖u1(·)− u2(·)‖L2

.
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Here,

ku =
√
(T − t0) max

τ∈[t0,t]
‖B(τ)‖, kA = max

τ∈[t0,t]
‖A(τ)‖.

From the Grownwall inequality we have

‖x1(t)− x2(t)‖ 6 Lx(ε)‖u1(·)− u2(·)‖L2
,

where

Lx(ε) = ku exp
(
(kA + Lfε)(T − t0)

)
.

Note, that Lx(ε) 6 Lx(ε). �

Introduce the mapping F : [t0, T ]× [0, ε]×BL2
(0, µ) → R

n,

F (τ, ε, u(·)) = x
(
τ, ε, u(·)

)
,

where x
(
τ, ε, u(·)

)
is a solution of (2.1) at moment τ generated by the control u(·) the small

parameter ε. The derivative of F in u(·), F ′
: BL2

(0, µ) → R
n is the solution of the linearized

system as it was shown in [11]

F
′
(τ, ε, u(·))δu(·) = δx(τ),

where δx(τ) is a solution of the the system (2.1) linearized along (u(·), x(·, ε, u(·)), corresponding
to the control δu(·) and zero initial condition:

δẋ = A
(
t, ε, u(·)

)
δx+B(t)δu(t), 0 6 t 6 τ, δx(0) = 0, (4.3)

where

A
(
t, ε, u(·)

)
= A(t) + ε

∂f
(
x(t, ε, u(·)), t

)

∂x
.

Lemma 3. Suppose Assumption 1 to be fulfilled. There exists a constant Lu(ε) > 0, such that
for any ε ∈ [0, ε], ui(·) ∈ BL2

(0, µ) and τ ∈ [t0, T ],

‖F ′
(τ, ε, u1(·))− F

′
(τ, ε, u2(·))‖ 6 Lu(ε)‖u1(·) − u2(·)‖L2

,

where i = 1, 2.

P r o o f. The solution of (4.3) has the form

δx
(
τ, ε, ui(·), δu(·)

)
=

τ∫

t0

X(τ, s, ε, ui(·))B(s)δu(s) ds, (4.4)

where X(τ, s, ε, u(·)) is fundamental matrix of system (4.3), and it satisfies the equation

∂X(τ, s, ε, u(·))
∂s

= −A
(
s, ε, u(·)

)⊤
X(τ, s, ε, u(·)), X

(
τ, τ, ε, u(·)

)
= I.
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It is well-known (for example, it follows from the proof of Theorem 3 in [7]), that there exists
kX > 0 such that

‖X(τ, s, ε, u(·))‖ 6 kX , τ ∈ [t0, T ], s ∈ [t0, T ]

for all u(·) ∈ BL2
(0, µ) and sufficiently small ε. For the sake of brevity, we use the notation

Ai(t) = A
(
t, ε, ui(·)

)
and X i(t, s) = X(t, s, ε, ui(·)). Under Assumption 1 and using Lemma 2 we

can obtain the estimate
τ∫

t0

‖A1(s)−A2(s)‖ds 6 LA‖u1(·)− u2(·)‖L2
.

Here LA > 0 does not depend on u1(·), u2(·), τ and ε. Since,

∂

∂t

(
X1(t, s)−X2(t, s)

)
= −A

⊤

1 (t)
(
X1(t, s)−X2(t, s)

)
+ (A2(t)−A1(t))

⊤X2(t, s), t ∈ [s, τ ]

we get the following formula

X1(τ, s)−X2(τ, s) =

τ∫

s

Y (t, s)
(
A2(t)−A1(t)

)⊤
X2(t, s)dt.

Here Y (t, s) is a fundamental matrix of the system

ẏ = −A1(t)y.

Like X i(τ, s), this matrix is also bounded: there exists kY > 0 such that

‖Y (t, s)‖ 6 kY , t, s ∈ [t0, τ ]

for all u(·) ∈ B(0, µ). We get

‖X1(τ, s)−X2(τ, s)‖ 6 LX‖u1(·)− u2(·)‖L2
,

where
LX = kY LAkX(T − t0).

Hence from (4.4) it follows the statement of the lemma and Lu(ε) = LX(ε)τ . �

Now we will claim Frechet differentiability of the mapping A1(u(·), ε) in u(·). Let us choose
arbitrary u(·) ∈ BL2

(0, µ) and δu(·), such that ‖δu(·)‖L2
6 µ− µ and consider

A1(u(·) + δu(·), ε) −A1(u(·), ε)

=

T∫

t0

X(T, τ)
[
f
(
x
(
τ, ε, u(·) + δu(·)

)
, τ
)
− f

(
x
(
τ, ε, u(·)

)
, τ
)]

dτ.
(4.5)

Here we should study the difference between solutions of (2.1), produced by u(·) and u(·)+δu(·).
From (4.2) it follows

x
(
t, ε, u(·) + δu(·)

)
− x

(
t, ε, u(·)

)
=

t∫

t0

A(τ)
[
x
(
τ, ε, u(·) + δu(·)

)
− x

(
τ, ε, u(·)

)]
dτ

+

t∫

t0

B(τ)δu(τ) dτ + ε

t∫

t0

[
f
(
x(τ, ε, u(·) + δu(·)), τ

)
− f

(
x(τ, ε, u(·)), τ

)]
dτ.

(4.6)
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Let y ∈ R
n and h ∈ R

n be chosen such that the inclusions y ∈ D and y + h ∈ D are valid.
Then, for all τ ∈ [t0, T ], using representation of the increment of a function through the integral
over a parameter, we have

f(y + h, τ)− f(y, τ) =

( 1∫

0

∂f

∂x

(
y + ξh, τ

)
dξ

)
h =

∂f

∂x

(
y, τ

)
h+ ω(y, h, τ),

where

ω(y, h, τ) =

( 1∫

0

[
∂f

∂x

(
y + ξh, τ

)
− ∂f

∂x

(
y, τ

)]
dξ

)
h.

Since D is convex, y+ ξh ∈ D for all 0 6 ξ 6 1. Therefore, using Assumption 1, we can obtain
the following estimate

‖ω(y, h, τ)‖ 6 lf

( 1∫

0

‖ξh‖ dξ

)
h 6

lf
2
‖h‖2.

When y = x
(
τ, ε, u(·)

)
and

h = ∆x
(
τ, ε, δu(·)

)
= x

(
τ, ε, u(·) + δu(·)

)
− x

(
τ, ε, u(·)

)
,

for all τ ∈ [t0, T ] we have

f
(
x(τ, ε, u(·) + δu(·)), τ

)
− f

(
x(τ, ε, u(·)), τ

)

=
∂f

∂x

(
x(τ, ε, u(·)), τ

)
∆x

(
τ, ε, δu(·)

)
+ ω

(
x(τ, ε, u(·)),∆x(τ, ε, δu(·)), τ

)
,

(4.7)

where (see Lemma 2)

∥∥ω
(
x
(
τ, ε, u(·)

)
,∆x

(
τ, ε, δu(·)

)
, τ
)∥∥ 6

lf
2
‖∆x(τ, ε, δu(·))‖2 6 lf

2
L2
x(ε)‖δu(·)‖2L2

. (4.8)

From (4.7) it follows, that ω(x(τ, ε, u(·)),∆x(τ, ε, δu(·)), ·) is measurable, as the sum of mea-
surable functions. Substituting (4.7) to (4.6), we obtain

∆x
(
t, ε, δu(·)

)
=

t∫

t0

A
(
τ, ε, u(·)

)
∆x

(
τ, ε, δu(·)

)
dτ +

t∫

t0

B(τ)δu(τ) dτ

+ε

t∫

t0

ω
(
x
(
τ, ε, u(·)

)
,∆x

(
τ, ε, δu(·)

)
, τ
)
dτ = δx(t) + Ω(t, ε, δu(·)),

where δx(t) is the solution of system (4.3) and

Ω(t, ε, δu(·)) = ε

t∫

t0

ω
(
x
(
τ, ε, u(·)

)
,∆x

(
τ, ε, δu(·)

)
, τ
)
dτ.
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Since (4.8) we can estimate Ω(t, ε, δu(·)) from above for all t ∈ [t0, T ]

‖Ω(t, ε, δu(·))‖ 6
lf
2
εL2

x(ε)(T − t0)‖δu(·)‖2L2
.

Here we are going to rewrite (4.7),

f
(
x(τ, ε, u(·) + δu(·)), τ

)
− f

(
x(τ, ε, u(·)), τ

)

=
∂f

∂x

(
x(τ, ε, u(·)), τ

)
δx(t) +

∂f

∂x

(
x(τ, ε, u(·)), τ

)
Ω(t, ε, δu(·)) + ω

(
x(τ, ε, u(·)),∆x(τ, ε, δu(·)), τ

)
.

We can estimate the norm of residial term from above:
∥∥∥∥
∂f

∂x

(
x(τ, ε, u(·)), τ

)
Ω(t, ε, δu(·))

∥∥∥∥ 6
lf
2
εL2

x(ε)(T − t0) max
x∈D

τ∈[t0,T ]

∥∥∥
∂f

∂x

(
x, τ

)∥∥∥‖δu(·)‖2L2
,

Therefore, we are able to rewrite (4.5) in form

A1(u(·) + δu(·), ε) −A1(u(·), ε) =
T∫

t0

X(T, τ)
∂f

∂x

(
x
(
τ, ε, u(·)

)
, τ
)
δx(t) dτ + o(‖δu(·)‖2).

This implies, that the Frechet derivative A′
1(u(·), ε) : BL2

(0, µ) → R
n exists and could be defined

by equality

A′
1(u(·), ε)δu(·) =

T∫

t0

X(T, τ)
∂f

∂x

(
x
(
τ, ε, u(·)

)
, τ
)
δx(t) dτ (4.9)

The Lipschitz continuity of δx(·) was proved in Lemma 3. The derivative

∂f

∂x

(
x
(
τ, ε, u(·)

)
, τ
)

is Lipschitz continuous as a composition of Lipschitz continuous functions

∥∥∥∥
∂f

(
x(τ, ε, u1(·)), τ

)

∂x
− ∂f

(
x(τ, ε, u2(·)), τ

)

∂x

∥∥∥∥ 6 lf
∥∥x

(
τ, ε, u1(·)

)
− x

(
τ, ε, u2(·)

)∥∥

6 lfLx(ε) ‖u1(·)− u2(·)‖L2
, τ ∈ [t0, T ], u1(·), u2(·) ∈ BL2

(0, µ).

Then the integrand in (4.9) also fulfills the Lipschitz condition for all ε ∈ [0, ε] and τ ∈ [t0, T ],
∥∥∥∥
∂f

∂x

(
x(τ, ε, u1(·)), τ

)
F

′
(τ, ε, u1(·))δu(·) −

∂f

∂x

(
x(τ, ε, u2(·)), τ

)
F

′
(τ, ε, u2(·))δu(·)

∥∥∥∥

6 (µ − µ)
(
lfLx(ε) max

u(·)∈BL2
(0,µ)

τ∈[t0,T ]

‖F ′
(τ, ε, u(·))‖ + Lu(ε) max

x∈D,
τ∈[t0,T ]

∥∥∥
∂f

∂x

(
x, τ

)∥∥∥
)
‖u1(·)− u2(·)‖ ,

and the whole derivative A′
1(u(·), ε) will be Lipschitz continuous in u(·).

In order to fulfill the condition of Assumption 2, it remains to show that this derivative will
be continuous in ε. This is valid due to the facts that the right-hand side of system (2.1) is linear
in the parameter ε and the matrix A

(
t, ε, u(·)

)
of the linearized system (4.3) depends continuously

on ε.
Thus, the mapping A1(u(·), ε) defined in (4.1) fulfills the condition of Assumption 2 and we are

able to formulate the main result of this paper in the following theorem
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Theorem 2. Assume the conditions of Assumption 1 are satisfied, then there exists a positive
value ε0 such that the reachable sets G(T, µ, ε) of the quasilinear system (2.1) are convex for all
ε < ε0.

P r o o f. The statement’s validity can be confirmed by applying Theorem 1 to the mapping F ,
given that Lipschitz continuity of A′

1 and closeness of G(T, µ, ε) (Assertion 1) were previously
established. �

Remark 1. In the article [2], E.G. Albrecht investigates the support functions of reachable
sets for quasilinear systems with integral constraints. The paper defines conditions under which
the support functions of reachable sets have continuous dependence on parameter. The author also
noted that the continuous dependence of the reachable set on the parameter implies its convexity
for small values of parameter. However, no proof of this fact was provided. Furthermore, continuity
of reachable sets alone was not sufficient to prove it.

5. Examples

In this section, we present the results of numerical experiments that are intended to illustrate
the application of the Theorems 1 and 2.

Example 1. First system under study is Duffing oscillator. We deal with equations

ẋ1 = x2, ẋ2 = −x1 − 10εx31 + u, 0 6 t 6 2 (5.1)

describing the motion of a non-linear elastic spring under the influence of an external force u. The
impact of the nonlinear elastic force term is determined by the small parameter ε > 0. The initial
state is x1(0) = x2(0) = 0, and the control is bounded by

2∫

0

u2dt 6 1. (5.2)

When ε = 0, the equations (5.1) describe a linear system with the matrices

A =

(
0 1
−1 0

)
, B =

(
0
1

)
.

The nonlinear term comprises of a small parameter and the function f(x) = [−10x3; 0]. Con-
dition (2.2) is not fulfilled for this nonlinear term. However, we can use estimates obtained in
paper [26] to show, that all the trajectories of the system (5.1) corresponding to admissible con-
trols and zero initial state are lying in a compact set D.

We set

vε(t, x) =
5

2
εx41 +

1

2
x21 +

1

2
x22

and calculate the time derivative

d

dt
vε(t, x(t)) = ∇vε(t, x(t))

(
Ax(t) +Bu(t) + εf(x(t))

)
= x2(t)u(t). (5.3)
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Figure 1. The reachable sets of Duffing oscillator.

For each ε > 0 and each control u(·) satisfied (5.2), there exists τ > 0, such that the solution
of (5.1) generated by this control u(·) and by zero initial state is defined on time interval [0, τ ]. Let
us integrate (5.3) from 0 to τ . We have

vε(τ, x(τ)) =

τ∫

0

x2(t)u(t) dt 6

( 2∫

0

u2(t) dt

)1/2( τ∫

0

x22(t) dt

)1/2

6
√
2

( τ∫

0

vε(t, x(t)) dt

)1/2

.

Applying comparison theorem to this inequality, one can obtain, that vε(τ, x(τ)) 6 τ and,
therefore, ‖x(τ)‖2 6 2τ . Using well-known technique, we could conclude that any solution (5.1)
generated by a control u(·) ∈ BL2

(0, 1) and zero initial state, could be continued to time interval
[0, 2] and it will belong to the convex set D = BRn(0, 2).

The Assumption 1 are fullfilled: the pair (A,B) is a constant; the function f is continuous
and continuously differentiable; also, the function f and its derivative ∂f/∂x satisfy the Lipschitz
condition on the set D.

Therefore, the requirements of Theorem 2 are fulfilled for system (5.1), and the correspond-
ing reachable sets should be convex for small parameter values. This is evident in Fig. 1, which
demonstrates the constructed reachable sets Gε(T, µ) using numerical Monte–Carlo based tech-
nique [24, 25].

It can be seen that sets G0.01(1, 1) and G0.1(1, 1) are close to set G0(1, 1) constructed for the
linear system. One can also see that the sets become non-convex as the parameter ε increases.
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Figure 2. The reachable sets of system (5.4).

Example 2. Second system under study is



ẋ1
ẋ2
ẋ3


 =



0 1 0
0 0 1
0 0 0






x1
x2
x3


+ ε



cos x3 − x2
sinx3 − x3

0


+



0
0
1


u. (5.4)

When ε = 0, the equations (5.4) describe a linear system with matrices

A =



0 1 0
0 0 1
0 0 1


 , B =



0
0
1


 ,

and when ε = 1, they describe a unicycle. The nonlinear term comprises of a small parameter and
the function

f(x) =



cos x3 − x2
sinx3 − x3

0


 .

The initial state is zero x1(0) = x2(0) = x3(0), the constraints on the controls are the same as
in the first example, but we will consider this system on the time interval 0 6 t 6 1.

Similar to the previous example, the conditions of Assumption 1 are satisfied, allowing the
application of Theorem 2. Fig. 2 displays the projections in the plane (x1, x2) of the numerically
constructed reachable sets Gε(T, µ) for the system (5.4).

It can be seen that projections of sets G0.001(1, 1) and G0.01(1, 1) are close to projection of
set G0(1, 1) constructed for the linear system. One can also see that the projections of sets become
non-convex as the parameter ε increases.
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