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Abstract: In this study, beta Sturm-Liouville problems are discussed. For such equations, the spectral
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1. Introduction

Fractional derivatives are mathematical operations that describe derivatives with non-integer
degrees, extending the traditional concept of derivatives with integer degrees. These derivatives are
part of a branch of mathematics often referred to as “fractional analysis” or “fractional calculus”.
The application areas of fractional derivatives are quite wide. For example, mathematical models
expressed with fractional derivatives are used in fields such as electromagnetism, diffusion processes,
and semiconductor physics. In addition, the concepts of fractional derivatives can be applied during
the analysis of some fractal structures or complex systems.

In 2014, Khalil et al. defined conformable fractional derivatives and integrals by using classical
derivative methods [9]. Later, Atangana et al. defined the beta fractional derivative and created a
model of the famous river blindness disease based on Caputo and beta derivatives [3]. Martinez et al.
have created analytical solutions of the space-time generalized nonlinear Schrédinger equation,

92010 Mathematical Subject Classificition: 34B24, 26A33, 34L05.
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including the beta derivative, using the sub-equation method [13]. Beta derivative has a particular
applicability, particularly within the fields of biology and medicine [4, 5].

The spectral expansion of differential equations is a method of converting a given mathematical
expression into a simpler and more easily solvable form. This method is particularly useful for
solving difficult or complex differential equations. Expansion makes it possible to obtain analytical
solutions or to obtain more effective solutions by numerical methods. The expansion of differential
equations is important for numerical solutions as well as for obtaining analytical solutions. To
solve a differential equation with numerical methods, it may often be possible to take an expanded
equation in a simpler way and then solve this simplified equation numerically. The expansion
of differential equations has many applications in mathematics, engineering, physics, and other
branches of science. It is an indispensable tool, especially for obtaining analytical or numerical
solutions to complex and real-world problems. In [1], the authors proved the existence of the
spectral function for the singular conformable Sturm—Liouville problem.

The congruent fractional Sturm—Liouville problem is an extended version of the Sturm—Liouville
theory and deals with differential equations involving fractional derivatives. While traditional
Sturm—Liouville theory determines eigenvalues and eigenfunctions by examining quadratic lin-
ear differential equations, the fractional Sturm—Liouville problem includes fractional derivatives
in equations. Fractional Sturm—Liouville problems often require eigenvalues and eigenfunctions to
be obtained by analytical or semi-analytical expressions. Solving such equations may require spec-
tral analysis methods that are often used for eigenvalue problems. Some researchers examine the
solution of differential equations with fractional derivatives by dealing with eigenvalue problems
such as fractional Sturm-Liouville problems and standard Sturm-Liouville problems [2, 6-8, 11, 14].

The computation and properties of fractional derivatives are generally more complex compared
to integer-order derivatives. They expand the properties of traditional derivatives, and certain rules
such as the fractional chain rule apply. Fractional derivatives can yield meaningful and valuable
results for specific classes of functions. When calculating fractional derivatives, a method closely
related to the integral operation is used. Special fractional derivative operators are used to calculate
the fractional derivative of the function. These operators have some special properties and rules.

In this paper, singular beta Sturm-Liouville equations defined as

~Thy +v(Q)y = py, ¢ €(0,00), (1.1)

where p is a complex eigenvalue parameter, v(.) is a real-valued function defined on [0, c0), and v €
L}; 10c(0,00), were considered. Using Levitan’s method [11], the spectral function was established
for such equations. A spectral expansion theorem was proved with the help of this function.

2. Preliminaries

Definition 1 [3, 13]. Let 0 < <1 and 0 : [0,00) — R := (—00,00) be a function. The beta
derivative of o is defined by

bo o € 1-8y _ 4
Tho(q) = £78) g G ITENT) = l)

e—0 IS

As is known, fractional derivatives do not have the basic properties of the classical derivative (such
as the derivative of the product, the derivative of the division). However, the beta derivative has
the basic properties of the ordinary derivative and is therefore an extension of the conformable
derivative.

Theorem 1 [13]. Let o,w be beta differentiable functions for ¢ > 0 and (0 < 8 < 1). The
following relations hold:
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(i)
T3(Ao + dw) = NTgo + 01w, for all u,0 € R,
(ii)
Ts(ow) = 0Tg(w) +wlp(o),
(iii)
Tﬁ(g) _ ng(a)u;aTg(w)’
(iv)
1 \'"?d
B = (i)
v) .
Tﬁ(Cn) = (C + W)176n<n717 N:= {172737 }
P r o o f. The proof is clear, so we omit it. O

Definition 2. Let o : [a,00) = R, be a given function, then the beta-integral of o is:
1

L) = [ e w5 o

where 0 < 6 <1 and
("Tpo)(¢) = lim ("Tpa)(C).

(—b—

Theorem 2. Let o,w be beta-differentiable functions. Then, the following relation holds

b b b
/ (&) T5 () ()¢ = o(Qw(C)]” / ()T (@)(C)dsC.

P roof. By Theorem 1 the proof is clear. O

Le
t 0.0 ={o: ([ oOPas(0) " < x}.

Then L3(0,b) is a Hilbert space endowed with the inner product

b
ow)i= [ (OB, owe L30.D),
0
The - Wronskian of o and w is defined by
Ws(o,w)(¢) = p(Q)[0(O)Tpw(¢) — () Tpw(Q)], ¢ € [0,0].

Theorem 3. Let A be an operator defined as A{t;} = {y;}, where

o0
Y = Zaiktk and i € N.
k=1

If
o
> lal® < 400 (2.1)
i k=1

then A is a compact operator in 1* [12].
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3. Regular beta Sturm—Liouville problem

Consider the following regular problem

~T3y(¢) + v(Qy(¢) = py(¢), 0<( <b< oo, (3.1)
y(0, i) cos 0 + Ty (0, 1) sin @ = 0, (3.2)
y(b, p) cosy +Tpy(b, ) siny =0, ~,0 €R,

where v(+) is a real-valued function defined on [0,00), u is a complex eigenvalue parameter, and
v E L%,loc (0,00) , where

b
L 10e (0.00) i= {0:10.00) 5 € [ o (€) el (O) < 0, Wb € (0.00)},
0
We denote by ¢(¢, p) and 1({, 1) two solutions of (3.1) satisfying

#(0, ) =sinf, Tpp(0, ) = —cosb, (3.4)
¢(b7 /’L) = Sin77 Tﬁw(b7 M) = —COos7. (35)

Then Green’s function of (3.1)—(3.3) is defined as

L e, 0<t<(,
G(C’t”“‘)‘ww,w{ o(C it ), C<t<b. (8.6)

Without loss of generality we can assume that g = 0 is not an eigenvalue of (3.1)—(3.3).
From (3.6), we find

_ _ 1 P(Q)o(t), 0<t<(,
Gle0 = G600 = gy { (OB(1), <t <b

Theorem 4. G((,t) is a beta Hilbert—-Schmidt kernel, i.e.,
b rb
| [1e@npasas <-+.
Proof. From (3.6), we infer that

b ¢
[ as©) [ 16t 0Pda0) <+,
0 0

and

b b
/ ds(0) / IG(C, 1) 2ds(t) < 4o
0 ¢

since ¢, € L%(O, b). Hence we obtain

b b
/0 /0 IGC.8)Pds(C)ds(t) < +oo. (3.7)
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Theorem 5. The operator F defined as

b
:AG&@WMW)

is compact and self-adjoint on L%(O, b).

Proof. Let p; =;(t) (i € N) be an orthonormal basis of LQB(O, b). Define

b
mz@wﬂzAGW%@%@,
b
MW—/M)(WU
agk —/ / G(Ct)pi(Q)r(t)ds(()ds(t) (i k € N).

Then, L% (0,b) is mapped isometrically onto /2. By this mapping, f transforms into A on 12, (3.7)
is translated into (2.1). By Theorems 3 and 4, the operator A is compact. Therefore the operator
F is compact.

Let o,w € LQB(O, b). Then we see that

(F o) = /ﬂnm / /a<t STs(Os(t)
/ (/GtC d5(0) ) U=Ao«(£@@mmmw0%@=wfm,
t

due to G(¢,t) = G(t,(). O

4. Eigenfunction expansion

Let pmp (m € N) denote the eigenvalues of (3.1)—(3.3) and ¢, 5() = ¢(C,fum,p) are the corre-
sponding eigenfunctions. By virtue of Theorem 5 and the Hilbert—Schmidt theorem [10], we infer

that
b 2
/w«nww /w o (25 (©),
0 m=1 mb
where o(.) € L%(O, b) and

b
'an,b:/o ¢ib,b(C)dﬁ(C)-

Set .
- Z 9 for H < 07
Pb(,u) _ M<Mm,b<0fym,b
—, for p > 0.
1< b b <0 Vb
Then we obtain ,
[ ieoraso = [~ e d,. (@)

which is called the Parseval equality, where

b
NM=AoMM&M%@-
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Lemma 1. For any T > 0, there exists a positive constant P = P (s) not depending on b such
that
¢ 1
Viewi= > o =mR) —n(-R) <P (4.2)
R —REji <R b
where \/ denotes the total variation.

Proof. Letsinf # 0. By (3.4), there exists a positive number k nearby 0 such that

¢ /O "o wids) > s’ 6 (4.3)

due to ¢(C, p) is continuous at 0. Let us define oy, (t) by

1
0, ¢>k

Combining (4.1), (4.2) and (4.3), we conclude that

F 1 1 o 1 [k 2
2 - = \8 — -
| otus = g 70 = [ ([ ecmdac) i)
R k
> [ (5 ] 6Cmdne) dn) > 5sint 04 (B) = oo (<)}
If sin@ = 0, then o4 (() is defined by
1\ 2
0, ¢ >k.

The proof of the lemma follows from Parseval’s equality. O

Let p be any nondecreasing function on —oo < p < co. We will denote by L% (R) the Hilbert
space of all functions ¢ : R — R measurable with respect to the Lebesgue—Stieltjes measure defined
by p, with the condition

and with the inner product

Theorem 6. For Problem (3.1)—(3.2), there exists a nondecreasing function p(u)
(—o0 < p < 00) with the following properties.
(i) If o is a real-valued function and o € L%(O,oo), then there exists a function YT € L%(R)

satisfying . ,
tim [~ {100~ [ #(Q0(¢15(0) Yy ) =0 (44)
and the Parseval equality
| s = [ (45)
0 —0o0

holds.
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(ii) The integral
/_ Y (1) (¢, p)dp (),

converges to o in L%(O7 o0). That is,

o 2

im [ {o0)= [ X} datc) <o

n—o0 0

Proof. (i) Suppose that:
1) The real-valued function o¢(.) vanishes outside the interval [0,], where £ < b.
2) 0¢(¢) and Tgoe(() are continuous.
3) o¢(Q) satisfies (3.2).
By (4.1), we deduce that

[ o2@ai0 = [~ riema, (1.6)
, eSS = g\H)ap (1) .

where

3
Te(p) = /O oe(OB(C1)ds(0). (4.7)

Since ¢ (¢, ) satisfies the equation (3.1), we see that

(¢ 1) = % [~T26(¢C, 1) + v(Q)d(C, )] -
By (4.7), we get
1 ¢
Te() = /0 0¢(0) [~T26(C, 1) + v(Q)B(C )] ds(©).

Since 0¢(¢) and ¢(, ) satisfy the boundary condition (3.4) and o¢(¢) vanishes in a neighborhood
of the point &, we get

b
Te(n) = % /0 6(C, 1) [~T20¢(0) + 0(Q)oe(0)] da ().

via the integration by parts.
For any finite R > 0, by using (4.1), we get

2

b
5[] 0 [-130e(0) + 00 O] (O} (1)
lu>Rr ~JO

/|M>R Tg(ﬂ)dpb (n) < R

9] b 9
<7 | _{ [ [0 [FT30e(6) + o)) da(6)} )

3
— 75 || [FT300)+ Ol O] dafc).

From (4.6), we see that

¢ 2 f 2 ¢ 2
[ 200 - [ t2dnt| < g5 [ =300 + o0p0e(c)
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By Lemma 1, we see that {py(n)} is bounded. By Helly’s theorems [10], we can find a se-
quence {by, } such that the sequence py, (n) converges (b,, — 00) to a monotone function p(u).
Passing to the limit as b,, — oo in (4.8), we get

¢ R ¢
'/0 o2 (¢)ds(C) —/_RTE(M)dB(M)' < %/g [~T20¢(¢) + d(O)ae ()] ds ().

Hence, letting R — 0o, we obtain

13 00
/ o2(O)ds(C) = / T2()d, (1)
0 —00

Assume that o is an arbitrary real-valued function on L%(a,oo). Then there exists a se-
quence {o5(¢)} satisfying the conditions 1)-3) and such that

[e.9]

lim [ (0(¢) — 04(¢))* ds(¢) = 0. (4.9)

5§—00 0

Let

Then, we have

By (4.9), we see that o4(¢) is a Cauchy sequence, i.e.,

/0 T (0n(Q) = om(€)?ds(¢) = 0

as 7,,7, — 00. Thus we have

/ (L () = Yo (10))2dp (1) = /0 T (om (1) — 0y ()2 d5(C) = 0

— 00

as 7,7, — 00. Therefore, there exists a limit function Y satisfying

| a0 = [~ )
0

—00

by the completeness of the space L%(R).
Now, we show that K, defined as

Ko () = /0 "o (¢ 1)ds(0)

converges to T as 7 —00. Assume that w is another function in L% (0,00) . Similarly, Q(u) can be
defined by w. Then we have

/0 o€ =P da©) = [ {T0) 2} dy ).

Now set
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Then we have

|00 - Kyl = [ (01500 (r00),

(ii) Suppose that o,w € L%(O,oo) and Y(u),Q(p) are their Fourier transforms, respectively.
Then Y F Q are the transforms of o F w. From (4.5), we obtain

| @ @R a0 = [ 1o+ 200 dyto) (410
|00 = w0 ds(€) = [ 00 = 20 dy ). (411)

Combining (4.10) and (4.11), we conclude that
| e0u01a50) = [~ TG00yt (4.12)

Define .
7€) = [ T)o(C md, .

where T is defined in (4.4) and ¢ is a positive number. Let w(.) be a function which is equal to
zero outside the finite interval [0, 7] . Hence

[ o5 = [ { [ T0(C. a0 o150

. . . (4.13)
= [ { [ om0 }aem = [ Tawaew.
From (4.12), we get
| o0wt01dstc) = [ TG0000d, 0 (4.14)
By (4.13) and (4.14), we have
|00 = 0@ w(0ds©) = [ X000, 0.
0 lul><
From the Cauchy—Schwarz inequality, we see that
00 2
|00 -a@wt0is0)| < [ i) [ 0,
0 pl>< lul>< (4.15)

< [ T [ 9w,

Let

From (4.15), we obtain

| @ -ara© s [ Twdmw.
0 lul>s

Letting ¢ — oo gives the desired result due to the right-hand side does not depend on 7. ([l
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Ezample 1. 1If we take f = 1 in (1.1), then we obtain the ordinary Sturm-Liouville problem
defined by

—y" +v(Qy =py, ¢e€(0,00),

where p is a complex eigenvalue parameter, v(.) is a real-valued function defined on [0, 00), and
v € L . (0,00). Then Theorem 6 gives the spectral expansion for this problem (see [11]).

loc

Ezxample 2. Consider the following problem

T3y (¢) —ky (¢) = py (¢), 0< ¢ <oo, (4.16)

where k is a constant. It is clear that

sin <f0< \/mdﬁg)
NESS

(¢, ) =

is the solution of (4.16). By Theorem 6, we obtain

oo sin( [S v+ kdgC
() = [ o0 L — Va0

and

[ ™ (J5 VAT Fdac)

7= | T ),

5. Conclusion

The present study is devoted to the discussion of beta Sturm—Liouville problems. In the context
of such equations, the spectral function was established in the singular case. A spectral expansion
was derived with the aid of this function. The Titchmarh—Weyl theory for this type of equations
may be the subject of future research.
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