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Abstract: This paper extends as a lemma an auxiliary result obtained by Singh and Chanam. Using it, we
prove a refinement of the Turán-type inequality for rational functions obtained recently by Akhter et al. Next,
using examples, we discuss the result of Mir et al.
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1. Introduction

Let C denote the set of complex numbers z, and let ℜ(z) be the real part of z. Let Pn be the
set of all complex polynomials

g(z) :=
n
∑

k=0

dkz
k

of degree at most n, and let g′(z) be the derivative of g(z). Let Sl := {z : |z| = l}, and let R−
l and

R+
l be the interior and exterior of Sl, respectively. For γk ∈ C, let

w(z) :=

n
∏

k=1

(z − γk); V (z) :=

n
∏

k=1

(

1− γkz

z − γk

)

,

and let

Rn = Rn(γ1, γ2, . . . , γn) :=

{

g(z)

w(z)
: g ∈ Pn

}

be the set of rational functions having a finite limit as z → ∞ and poles γ1, γ2, . . . , γn, such that
γk ∈ R+

1 . The well-known result of Bernstein [4] states the following.

Theorem 1 [4]. For any z ∈ C, if g ∈ Pn, then

max
z∈S1

|g′(z)| ≤ nmax
z∈S1

|g(z)|.

Confining himself to the set of polynomials whose zeros all lie in S1 ∪ R+
1 , Erdös conjectured,

which was later confirmed by Lax [5], that

max
z∈S1

|g′(z)| ≤ n

2
max
z∈S1

|g(z)|.

1The first author is highly thankful to NIT Manipur for financial support.
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If all zeros of g(z) are in S1 ∪R−
1 , Turán [9] proved that

max
z∈S1

|g′(z)| ≥ n

2
max
z∈S1

|g(z)|.

Li et al. [6] derived inequalities similar to Bernstein inequalities for rational functions q ∈ Rn,
considering prescribed poles γ1, γ2, . . . , γn and replacing zn by the Blashke product V (z). They
established the following result featuring these poles.

Theorem 2 [6]. If q ∈ Rn has all its zeros in S1 ∪R+
1 , then, for z ∈ S1,

|q′(z)| ≤ 1

2
|V ′(z)||q(z)|.

Equality holds for q(z) = a0V (z) + b0 with |a0| = |b0| = 1.

Aziz and Shah [2] improved this inequality as follows.

Theorem 3 [2]. Let q ∈ Rn and all its zeros lye in S1 ∪ R+
1 . If e1, e2, . . . , en are the zeros of

V (z) + ξ and ǫ1, ǫ2, . . . , ǫn are the zeros of V (z)− ξ, ξ ∈ S1, then, for z ∈ S1,

|q′(z)| ≤ |V ′(z)|
2

{

(

max
1≤k≤n

|q(ek)|
)2

+
(

max
1≤k≤n

|q(ǫk)|
)2
}1/2

. (1.1)

Recently, Mir et al. [7] proved the following result, which gives a generalized and strengthened
upper estimate than that in Theorem 3.

Theorem 4 [7]. Let

q(z) =
g(z)

w(z)
∈ Rn,

where

g(z) = zs
m−s
∑

k=0

dkz
k

is an m-degree polynomial (m ≤ n) having all its zeros in Sl ∪ R+
l , l ≥ 1, except for a zero of

multiplicity s at the origin. If e1, e2, . . . , en are the zeros of V (z)+ ξ and ǫ1, ǫ2, . . . , ǫn are the zeros

of V (z)− ξ, ξ ∈ S1, then, for z ∈ S1,

|q′(z)| ≤ |V ′(z)|
2

{

(

max
1≤k≤n

|q(ek)|
)2

+
(

max
1≤k≤n

|q(ǫk)|
)2

−4

(

l

1 + l

( |d0| − lm−s|dm−s|
|d0|+ lm−s|dm−s|

)

− sl

1 + l
− 2m− n(1 + l)

2(1 + l)

) |q(z)|2
|V ′(z)|

}1/2

.

(1.2)

Furthermore, Li et al. [6] obtained the following inequality for rational functions, which gener-
alizes the polynomial inequality of Turán [9].

Theorem 5 [6]. If q ∈ Rn has all its zeros in S1 ∪R−
1 , then, for z ∈ S1,

|q′(z)| ≥ 1

2
|V ′(z)||q(z)|.

Recently, Akhter et al. [1] obtained the following result by introducing a complex parameter α
which provides an improvement and a generalization of Theorem 5.
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Theorem 6 [1]. Assume that

q(z) =
g(z)

w(z)
∈ Rn,

where

g(z) = zs
m−s
∑

k=0

dkz
k

is an m-degree polynomial (m ≤ n) having all zeros in Sl ∪R−
l , l ≤ 1, and a zero of multiplicity s

at the origin. Then, for every complex δ, |δ| ≤ 1, and z ∈ S1,

∣

∣

∣
zq′(z) +

(m− s)δ

1 + l
q(z)

∣

∣

∣
≥ 1

2

{

|V ′(z)| + 1

1 + l

(

l(2s − n) + 2m− n+ 2(m− s)ℜ(δ)
)

}

|q(z)|.

In this paper, we first establish a refined inequality of Theorem 6 by including certain coefficients
of the polynomial, and then discuss Theorem 4 due to Mir et al. [7] using counterexamples that
they claim improve the bound given by Theorem 3. The paper is organized as follows. Section 2
presents the main result, some remarks, and corollaries. In addition, we discuss the result due to
Mir et al. [7]. Section 3 presents some auxiliary results necessary to establish the main result.
Section 4 provides a proof of the main result. Section 5 concerns the conclusion.

2. Main result and discussion

Here, we present the following result concerning rational functions, which generalizes and sharp-
ens the polynomial inequality of Turán [9].

Theorem 7. Let

q(z) =
g(z)

w(z)
∈ Rn,

where

g(z) = zs
m−s
∑

k=0

dkz
k

is an m-degree polynomial (m ≤ n) having all its zeros in Sl ∪R−
l , l ≤ 1, and a zero of multiplicity

s at the origin. Then, for every complex δ, |δ| ≤ 1, and z ∈ S1,

∣

∣

∣
zq′(z) +

(m− s)δ

1 + l
q(z)

∣

∣

∣
≥ 1

2

{

|V ′(z)|+ 1

1 + l

(

l(2s− n) + 2m− n

+2l

(

√

lm−s|dm−s| −
√

|d0|
√

lm−s|dm−s|

)

+ 2(m− s)ℜ(δ)
)}

|q(z)|.
(2.1)

Remark 1. Since the zeros of the polynomial

h(z) =
g(z)

zs
=

m−s
∑

k=0

dkz
k

are in Sl ∪R−
l , l ≤ 1, we have

∣

∣

∣

∣

d0

dm−s

∣

∣

∣

∣

≤ lm−s,
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which is equivalent to
√

lm−s|dm−s| ≥
√

|d0|. (2.2)

On the right-hand side of inequality (2.1) of Theorem 7, there is an extra term contributed by
the quantity

2l

(

√

lm−s|dm−s| −
√

|d0|
√

lm−s|dm−s|

)

,

which in view of (2.2) is nonnegative, and hence Theorem 7 refines Theorem 6.

Taking δ = 0 and m = n in Theorem 7, we obtain the following interesting result, which gives
a generalization and an improvement of Theorem 5 due to Li et al. [6], and an improvement of the
result established by Akhter et al. [1, Corollary 2.2].

Corollary 1. Let

q(z) =
g(z)

w(z)
∈ Rn,

where

g(z) = zs
n−s
∑

k=0

dkz
k

is an n-degree polynomial having all its zeros in Sl ∪R−
l , l ≤ 1, and a zero of multiplicity s at the

origin. Then, for z ∈ S1,

|q′(z)| ≥ 1

2

{

|V ′(z)| + 1

1 + l

(

2ls+ n(1− l) + 2l
(

√

ln−s|dn−s| −
√

|d0|
√

ln−s|dn−s|

)

)}

|q(z)|.

Moreover, taking l = 1 in Theorem 7, we obtain a result that improves the known result
[1, Corollary 2.4] obtained by Akhter et al.

Corollary 2. Let

q(z) =
g(z)

w(z)
∈ Rn,

where

g(z) = zs
m−s
∑

k=0

dkz
k

is an m-degree polynomial (m ≤ n) having all its zeros in S1 ∪ R−
1 and a zero of multiplicity s at

the origin. Then, for every complex δ, |δ| ≤ 1, and z ∈ S1,

∣

∣

∣
zq′(z) +

(m− s)δ

2
q(z)

∣

∣

∣
≥ 1

2

{

|V ′(z)|+ (s+m− n) +
(

√

|dm−s| −
√

|d0|
√

|dm−s|

)

+ (m− s)ℜ(δ)
}

|q(z)|.

Next, the claim that the bound in inequality (1.2) of Theorem 4 proved by Mir et al. [7]
sharpens the bound in inequality (1.1) of Theorem 3 due to Aziz and Shah [2] follows in the case
when the quantity

(

l

1 + l

( |d0| − lm−s|dm−s|
|d0|+ lm−s|dm−s|

)

− sl

1 + l
− 2m− n(1 + l)

2(1 + l)

)

= A

on the right-hand side of inequality (1.2) of Theorem 4 is nonnegative. But this is not always the
case, as the following counterexamples illustrate.
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Example 1. Let q ∈ R6, where g(z) = z3(z3 − z2 + z − 1) has the zeros {1, i,−i} on |z| = 1
and the remaining zeros at the origin. It can be easily seen that this polynomial gives A = −1.5 in
Theorem 4.

Example 2. Let q ∈ R5, where g(z) = z3(z2 − 4) has the zeros {−2, 2} on |z| = 2 and the
remaining zeros at the origin. For this polynomial, we have A = −1.1666̄.

3. Lemmas

We must incorporate the following lemmas into our proof to demonstrate the theorem. Aziz
and Zargar [3] established the first.

Lemma 1 [3]. If

V (z) =
n
∏

k=1

(

1− γkz

z − γk

)

,

then, for z ∈ S1,

ℜ
(

zw′(z)

w(z)

)

=
n− |V ′(z)|

2
.

Lemma 2. If 0 ≤ a ≤ 1, 0 ≤ b ≤ 1, and 0 ≤ l ≤ 1, then

2

1 + a
≥ 1 + l

√
b− l

√
ab.

P r o o f. For a = 1, the inequality follows trivially. So, take a < 1, then

1 +
√
a

1 + a
> 1 ≥ l

√
b;

that is,
1− a

1 + a
> l

√
b
1− a

1 +
√
a
= l

√
b− l

√
ab.

Hence,
2

1 + a
> 1 + l

√
b− l

√
ab.

�

The following lemma we prove is a generalization of a finding by Singh and Chanam [8].

Lemma 3. If g ∈ Pn (n ≥ 1) has all its zeros in Sl ∪ R−
l , l ≤ 1, then, for z ∈ S1 such that

g(z) 6= 0,

ℜ
(

z
g′(z)

g(z)

)

≥ 1

1 + l

{

n+ l
(

√

ln|dn| −
√

|d0|
√

ln|dn|

)

}

. (3.1)

Remark 2. As the abstract mentioned, for l = 1, this lemma reduces to Lemma 2 of Singh and
Chanam [8].

P r o o f. For simplicity, suppose that dn = 1. We apply mathematical induction on the degree
of g(z).
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If n = 1, then g(z) = z − z0, z0 ∈ Sl ∪R−
l , and, for z ∈ S1 and z 6= z0, we have

ℜ
(

z
g′(z)

g(z)

)

= ℜ
(

z

z − z0

)

≥ 1

1 + |z0|
.

By basic computation, we can show that, for z0 ∈ Sl ∪R−
l ,

1

1 + |z0|
≥ 1

1 + l

{

1 + l
(

√
l −
√

|z0|√
l

)

}

.

So,

ℜ
(

z
g′(z)

g(z)

)

≥ 1

1 + l

{

1 + l
(

√
l −
√

|z0|√
l

)

}

,

which is inequality (3.1) for n = 1.
Suppose that (3.1) holds for all polynomials of degree ≤ M .
Let g(z) = (z − w)G(z), w ∈ Sl ∪R−

l , where

G(z) =
M
∑

k=0

dkz
k

is a polynomial of degree M having all its zeros in Sl ∪R−
l , then

ℜ
(

z
g′(z)

g(z)

)

= ℜ
(

z

z −w

)

+ ℜ
(

z
G′(z)

G(z)

)

≥ 1

1 + |w| +
1

1 + l

{

M + l

(

√
lM −

√

|d0|√
lM

)}

for all z ∈ S1 such that g(z) 6= 0.
It is required to show that, for z ∈ S1,

ℜ
(

z
g′(z)

g(z)

)

≥ 1

1 + l

{

M + 1 + l

(

√
lM+1 −

√

|w||d0|√
lM+1

)}

. (3.2)

Clearly, inequality (3.2) holds if

1

1 + |w| +
1

1 + l

{

M + l

(

√
lM −

√

|d0|√
lM

)}

≥ 1

1 + l

{

M + 1 + l

(

√
lM+1 −

√

|w||d0|√
lM+1

)}

,

which is equivalent to

1 + l

1 + |w| ≥ 1 + l

√

|d0|
lM

− l

√

|w||d0|
lM+1

. (3.3)

As the zeros of g(z) are in Sl ∪R−
l and

0 ≤ l ≤ 1, 0 ≤ |d0|
lM

≤ 1, 0 ≤ |w|
l

≤ 1,

by Lemma 2,

2l

l + |w| ≥ 1 + l

√

|d0|
lM

− l

√

|w||d0|
lM+1

. (3.4)

Also,
1 + l

1 + |w| ≥
2l

l + |w| . (3.5)

From (3.4) and (3.5), inequality (3.3) follows, and this proves Lemma 3. �
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4. Proof of the main result

P r o o f o f T h e o r e m 7. Since

q(z) =
zsh(z)

w(z)
∈ Rn,

where

h(z) =

m−s
∑

k=0

dkz
k,

for every complex δ, |δ| ≤ 1, we have

zq′(z)

q(z)
+

(m− s)δ

1 + l
= s+

zh′(z)

h(z)
− zw′(z)

w(z)
+

(m− s)δ

1 + l
.

Equivalently,

ℜ
(

zq′(z)

q(z)
+

(m− s)δ

1 + l

)

= s+ ℜ
(

zh′(z)

h(z)

)

−ℜ
(

zw′(z)

w(z)

)

+
(m− s)ℜ(δ)

1 + l
.

Specially for z ∈ S1, using Lemmas 3 and 1, we have

ℜ
(

zq′(z)

q(z)
+

(m− s)δ

1 + l

)

≥ s+
1

1 + l

{

m− s+ l

(

√

lm−s|dm−s| −
√

|d0|
√

lm−s|dm−s|

)}

−
(

n− |V ′(z)|
2

)

+
(m− s)ℜ(δ)

1 + l

=
1

2

{

|V ′(z)| + 1

1 + l

(

l(2s− n) + 2m− n+ 2l

(

√

lm−s|dm−s|−
√

|d0|
√

lm−s|dm−s|

)

+ 2(m− s)ℜ(δ)
)}

,

from which it is obvious that
∣

∣

∣

∣

zq′(z) +
(m− s)δ

1 + l
q(z)

∣

∣

∣

∣

≥ 1

2

{

|V ′(z)|+ 1

1 + l

(

l(2s− n) + 2m− n+ 2l

(

√

lm−s|dm−s|−
√

|d0|
√

lm−s|dm−s|

)

+ 2(m− s)ℜ(δ)
)}

|q(z)|.

This proves Theorem 7. �

5. Conclusion

This paper investigates the bounds of the derivative of a class of rational functions on the unit
disk while considering the contribution of certain coefficients of the underlying polynomial. We
also discuss the result by Mir et al., recently published in the Ural Mathematical Journal, using
some counterexamples.
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