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Abstract: If w(ζ) is a polynomial of degree n with all its zeros in |ζ| ≤ ∆, ∆ ≥ 1 and any real γ ≥ 1, Aziz
proved the integral inequality [1]
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In this article, we establish a refined extension of the above integral inequality by using the polar derivative
instead of the ordinary derivative consisting of the leading coefficient and the constant term of the polynomial.
Besides, our result also yields other intriguing inequalities as special cases.
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1. Introduction

In the late nineteenth century, renowned chemist Mendeleev became interested in the subject of
the extremal properties of polynomials while searching for an upper bound of a quadratic polyno-
mial. More specifically, he [14] established that, if w(r) is a quadratic polynomial of real variable r
with real coefficients, then for −1 ≤ w(r) ≤ 1 and −1 ≤ r ≤ 1,

max
−1≤r≤1

|w′(r)| ≤ 4.

While working on a problem in Approximation Theory, Bernstein needed an upper bound estimate
of the maximum modulus |w′(ζ)| of a complex polynomial in terms of the maximum modulus of
|w(ζ)|, where |ζ| = 1, which is an analogue of above Mendeleev’s problem in the complex domain.
He [5] proved his famous inequality which states that, if w(ζ) is a n degree polynomial, then

max
|ζ|=1

|w′(ζ)| ≤ nmax
|ζ|=1

|w(ζ)|. (1.1)

This inequality is sharp if and only if w(ζ) = δζn, where

|δ| = max
|ζ|=1

|w(ζ)|.

Inequality (1.1) is an immediate consequence of an inequality concerning trigonometric polynomials
proved by him.

Paul Turán [21] was the first to estimate the maximum modulus for the derivative of a polyno-
mial through a lower bound in terms of the maximum modulus of the polynomial. He established,
in particular, that if w(ζ) is a n degree polynomial and all of its zeros lie in |ζ| ≤ 1, then

max
|ζ|=1

w′(ζ) ≥ n

2
max
|ζ|=1

|w(ζ)|. (1.2)
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Equality in (1.2) attains for w(ζ) = δζn + β, where |δ| = |β|. If w(ζ) is a n degree polynomial over
the complex numbers C, and for a real number γ > 0, the integral mean of w(ζ) is defined by

‖w‖γ =
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Taking limit as γ → ∞ and using the fact from the analysis [18, 20] that

lim
γ→∞
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= max
|ζ|=1

|w(ζ)|,

we can legitimately denote
‖w‖∞ = max

|ζ|=1
|w(ζ)|.

Aziz and Dawood [2] improved (1.2) into the form

‖w′‖∞ ≥ n

2

{

‖w‖∞ + min
|ζ|=1

|w(ζ)|
}

. (1.3)

Throughout this paper, Pn,s,∆ represents the class of all polynomials

w(ζ) = ζs
n=s
∑

j=0

αjζ
j, 0 ≤ s ≤ n,

with zero of multiplicity s at the origin having all its zeros in |ζ| ≤ ∆, ∆ ≥ 1 and Pn,∆, the class
of all polynomials

w(ζ) =

n
∑

j=0

αjζ
j

with all their zeros in |ζ| ≤ ∆, ∆ ≥ 1.
Applications and interest in inequality (1.2) have been substantial. Thus, it would be very

interesting to determine its generalisation for polynomials whose zeros are all in |ζ| ≤ ∆, ∆ > 0.
For 0 < ∆ ≤ 1, Malik [13] proved

‖w′‖∞ ≥ n

1 + ∆
‖w‖∞. (1.4)

For ∆ ≥ 1, Govil [9] found

‖w′‖∞ ≥ n

1 + ∆n
‖w‖∞. (1.5)

Equality in (1.5) holds for w(ζ) = ζn +∆n,∆ ≥ 1.
Govil [10] refined inequality (1.4) by proving that

‖w′‖∞ ≥ n

1 + ∆

(

‖w‖∞ +
1

∆n−1
min
|ζ|=∆

|w(ζ)|
)

. (1.6)

Equality in (1.6) holds for w(ζ) = (ζ +∆)n.
For the polynomials which have all their zeros in |ζ| ≤ ∆, ∆ ≤ 1 with zero of multiplicity s at

the origin, Aziz and Shah [4] obtained the following generalization of (1.4) that

‖w′‖∞ ≥ n+ s∆

1 +∆
‖w‖∞.

The above inequality is sharp with the extremal polynomial being w(ζ) = ζs (ζ +∆)n−s , 0 ≤ s ≤ n.
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Using the same assumption, Govil [10] was able to improve (1.5) as

‖w′‖∞ ≥ n

1 + ∆n

{

‖w‖∞ + min
|ζ|=∆

|w(ζ)|
}

. (1.7)

Inequality (1.7) attains equality for

w(ζ) = ζn +∆n, ∆ ≥ 1.

Malik [12] extended inequality (1.2) for the first time in 1984 into its integral analogue by
establishing that if w(ζ) is a n degree polynomial with all its zeros in |ζ| ≤ 1, then for γ > 0,

‖1 + ζ‖γ‖w′‖∞ ≥ n‖w‖γ .

The result is best possible for w(ζ) = (ζ + 1)n.

In 1988, Aziz [1] extended to integral form of (1.5) by establishing

Theorem 1. If w(ζ) ∈ Pn,∆, then for γ ≥ 1,

‖1 + ∆nζ‖γ‖w′‖∞ ≥ n‖w‖γ . (1.8)

Equality in (1.8) holds for

w(ζ) = δζn + β∆n, |δ| = |β|.

For a n degree polynomial w(ζ) and any δ ∈ C, we define the polar derivative of the polynomial
w(ζ) with regard to δ by

Dδw(ζ) = nw(ζ) + (δ − ζ)w′(ζ).

Note that Dδw(ζ) has atmost n− 1 degree, and it is a generalization of the ordinary derivative as

lim
δ→∞

Dδw(ζ)

δ
= w′(ζ),

uniformly with respect to ζ for |ζ| ≤ R,R > 0.
Inequality (1.4) was first extended to the polar derivative by Aziz and Rather [3]. They obtained

that if w(ζ) is a n degree polynomial with all its zeros in |ζ| ≤ ∆,∆ ≤ 1, then for δ ∈ C, |δ| ≥ ∆,

‖Dδw‖∞ ≥ n

( |δ| −∆

1 +∆

)

‖w‖∞.

Besides, in the same article [3], they could extend (1.5) to polar derivative by proving that

‖Dδw‖∞ ≥ n

( |δ| −∆

1 +∆n

)

‖w‖∞, (1.9)

where δ ∈ C with |δ| ≥ ∆.
Dewan et al. [7] obtained the polar derivative version of (1.7), which also sharpens (1.9) by

proving that if w(ζ) ∈ Pn,∆, then for δ ∈ C with |δ| ≥ ∆,

‖Dδw‖∞ ≥ n

1 + ∆n

{

(|δ| −∆)‖w‖∞ +
(

|δ|+ 1

∆n−1

)

min
|ζ|=∆

|w(ζ)|
}

. (1.10)

The following generalization and improvement of (1.9) consisting of the polynomial’s constant term
and leading coefficient was recently established by Singh and Chanam [19].
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Theorem 2. If w(ζ) ∈ Pn,s,∆, then δ ∈ C with |δ| ≥ ∆,

‖Dδw‖∞ ≥ |δ| −∆

1 +∆n

{

n+ s+

√

∆n−s|αn−s| −
√

|α0|
√

∆n−s|αn−s|

}

‖w‖∞ . (1.11)

Milovanovic et al. [15] proved the following improvement and generalization of (1.9), (1.10)
and (1.11).

Theorem 3. If w(ζ) ∈ Pn,s,∆, then for δ ∈ C, |δ| ≥ ∆,

‖Dδw‖∞ ≥ n

1 + ∆n

{

(

|δ| −∆
)

‖w‖∞ +
(

|δ| + 1

∆n−1

)

m
}

+
|δ| −∆

1+∆n

{
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√

∆n−s|αn−s| −m−
√

|α0|
√

∆n−s|αn−s| −m

}

(

‖w‖∞ − m

∆n

)

,
(1.12)

where m = min
|ζ|=∆

|w(ζ)|.

2. Main result

Below we derive the generalized integral extension of Theorem 2, which further improves The-
orem 3 and also gives many other interesting results as special cases. In particular, we prove

Theorem 4. If w(ζ) ∈ Pn,s,∆, then for δ ∈ C, |δ| ≥ ∆ and λ ∈ C, |λ| < 1 and γ > 0,

∥

∥

∥
Dδ

{

w
(

eiθ
)

− m

∆n
λeinθ

}
∥

∥

∥

γ
≥ |δ| −∆

2Eγ
A
∥

∥

∥
w
(
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)

− m

∆n
λeinθ

∥

∥

∥

γ
, (2.1)

where

m = min
|ζ|=∆

|w(ζ)|, A =

{

n+ s+

√

∆n|αn−s| − |λ|m−
√

∆s|α0|
√

∆n|αn−s| − |λ|m

}

and

Eγ =

{

∫ 2π
0

∣

∣1 + ∆n−seiθ
∣

∣

γ
dθ

}1/γ

{

∫ 2π
0

∣

∣1 + eiθ
∣

∣

γ
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}1/γ
.

Remark 1. Suppose w(ζ) has all its zeros in |ζ| ≤ ∆, ∆ ≥ 1. Now, for |ζ| = ∆

m = min
|ζ|=∆

|w(ζ)| ≤ |w(ζ)|. (2.2)

As a consequence of Maximum Modulus Principle, we have

max
|ζ|=∆

|w(ζ)| ≤ ∆nmax
|ζ|=1

|w(ζ)|. (2.3)

Using (2.3) to (2.2), we get
m ≤ ∆nmax

|ζ|=1
|w(ζ)|,

i.e.
m

∆n
≤ max

|ζ|=1
|w(ζ)|. (2.4)
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For arbitrary λ ∈ C, |λ| < 1, we have

|λ|m
∆n

< max
|ζ|=1

|w(ζ)|. (2.5)

Remark 2. Suppose γ → ∞ in (2.1) and knowing the simple fact that

Eγ → 1 + ∆n

2
as γ → ∞,

we get

max
|ζ|=1

∣

∣

∣
Dδ

{

w(ζ)− mλ

∆n
ζn

}
∣

∣

∣
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1+∆n
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∣

∣

∣
w(ζ)− mλ

∆n
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∣

∣

∣
,

i.e.

max
|ζ|=1

∣

∣

∣
Dδw(ζ)−

|δ|mnλ

∆n
ζn−1

∣

∣

∣
≥ |δ| −∆
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∣

∣
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∣

∣
. (2.6)

Let ζ0 on |ζ| = 1 be such that

max
|ζ|=1

∣

∣

∣
Dδw(ζ)−

|δ|mnλ

∆n
ζn−1

∣

∣

∣
=

∣

∣

∣

∣

Dδw(ζ0)−
|δ|mnλ

∆n
ζn−1
0

∣

∣

∣

∣

. (2.7)

In the right side of (2.7), we can choose the argument of λ with
∣

∣

∣
Dδw(ζ0)−

|δ|mnλ

∆n
ζn−1
0

∣

∣

∣
= |Dδw(ζ0)| −

n|δ||λ|
∆n

m. (2.8)

From (2.7) and (2.8), (2.6) becomes

|Dδw(ζ0)| −
n|δ||λ|
∆n

m ≥ |δ| −∆

1 +∆n
Amax
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∣

∣
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∆n
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∣

∣

∣
. (2.9)

Since
|Dδw(ζ0)| ≤ max

|ζ|=1
|Dδw(ζ)| ,

(2.9) gives

max
|ζ|=1

|Dδw(ζ)| −
n|δ||λ|
∆n

m ≥ |δ| −∆

1 +∆n
Amax

|ζ|=1

∣

∣

∣
w(ζ)− mλ

∆n
ζn

∣

∣

∣
. (2.10)

Let ζ1 on |ζ| = 1 be such that max
|ζ|=1

|w(ζ)| = |w(ζ1)|. Then

max
|ζ|=1

∣

∣

∣
w(ζ)− mλ

∆n
ζn

∣

∣

∣
≥

∣

∣

∣
w(ζ1)−

mλ

∆n
ζn

∣

∣

∣
≥

∣

∣

∣
|w(ζ1)| −

m|λ|
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∣

∣

∣
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Using (2.5) to (2.11), we get

max
|ζ|=1

∣

∣

∣
w(ζ)− mλ

∆n
ζn

∣

∣

∣
≥ max

|ζ|=1
|w(ζ)| − m|λ|

∆n
. (2.12)

Using (2.12), (2.10) gives

max
|ζ|=1

|Dδw(ζ)| −
n|δ||λ|
∆n

m ≥ |δ| −∆

1+∆n
A
(

max
|ζ|=1

|w(ζ)| − |λ|
∆n

m
)

. (2.13)

When |λ| → l in (2.13), we have

max
|ζ|=1

|Dδw(ζ)| −
n|δ|l
∆n

m ≥ |δ| −∆

1 +∆n
A
(

max
|ζ|=1

|w(ζ)| − l

∆n
m
)

,

which becomes the following result on simply taking limit l → 1.
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Corollary 1. If w(ζ) ∈ Pn,s,∆, then for δ ∈ C, |δ| ≥ ∆,

‖Dδw‖∞ ≥ n

1 + ∆n

{

(|δ| −∆) ‖w‖∞ +
(

|δ|+ 1

∆n−1

)

m
}

+
|δ| −∆

1 +∆n

(

s+

√

∆n|αn−s| −m−
√

∆s|α0|
√

∆n|αn−s| −m

)

(

‖w‖∞ − m

∆n

)

,
(2.14)

where m = min|ζ|=∆ |w(ζ)|.

Remark 3. Using the three facts (2.4), (4.1) and (4.3) in (2.14), it is obvious that Corollary 1
improves (1.10).

Remark 4. Also, the function

f(x) =

√

∆n−s|αn−s| − x−
√

|α0|
√

∆n−s|αn−s| − x

is non-increasing for x. Therefore, for ∆ ≥ 1

f
( m

∆s

)

≥ f(m),

that is,
√

∆n|αn−s| −m−
√

∆s|α0|
√

∆n|αn−s| −m
≥

√

∆n−s|αn−s| −m−
√

|α0|
√

∆n−s|αn−s| −m
.

This shows that Corollary 1 is an improvement of (1.12).

Remark 5. If we divide both sides of (2.14) by |δ| and let |δ| → ∞, the next result which
improves (1.7), is obtained.

Corollary 2. If w(ζ) ∈ Pn,s,∆, then

∥

∥w′
∥

∥

∞
≥ n

1 +∆n
(‖w‖∞ +m) +

1

1 + ∆n

(

s+

√

∆n|αn−s| −m−
√

∆s|α0|
√

∆n|αn−s| −m

)

(

‖w‖∞ − m

∆n

)

,

(2.15)
where m = min|ζ|=∆ |w(ζ)|.

Remark 6. If we divide both sides of (2.1) of Theorem 4 by |δ| and let |δ| → ∞, the following
generalized integral extension of Corollary 2 is obtained.

Corollary 3. If w(ζ) ∈ Pn,s,∆, then for each λ ∈ C, |λ| < 1 and γ > 0,

∥

∥

∥
w′(eiθ)− mn

∆n
λei(n−1)θ

∥

∥

∥

γ
≥ A

2Eγ

∥

∥

∥
w(eiθ)− m

∆n
λeinθ

∥

∥

∥

γ
,

where m, A and Er are defined in Theorem 4.

Remark 7. When λ = 0 in (2.1) of Theorem 4, the below integral extension of Theorem 2
yields an improved and generalised integral analogue for polar derivative of Theorem 1.
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Corollary 4. If w(ζ) ∈ Pn,s,∆, then for δ ∈ C, |δ| ≥ ∆ and γ > 0,

‖Dδw‖γ ≥ |δ| −∆

2Eγ

(

n+ s+

√

∆n−s|αn−s| −
√

|α0|
√

∆n−s|αn−s|

)

‖w‖γ , (2.16)

where Eγ is defined in Theorem 4.

Remark 8. In case r → ∞ in (2.16), Corollary 4, in particular, becomes Theorem 2 and
dividing both sides by |δ| and making |δ| → ∞, we have an improved form of (1.5).

Corollary 5. If w(ζ) ∈ Pn,s,∆, then

‖w′‖∞ ≥ 1

1 + ∆n

(

n+ s+

√

∆n−s|αn−s| −
√

|α0|
√

∆n−s|αn−s|

)

‖w‖∞. (2.17)

Remark 9. If degree n of polynomial w(ζ) is greater than or equal to 1, the leading coefficient
αn is different from zero, and using the fact (4.1), it follows obviously that inequality (2.17) always
provides better bounds than that of (1.5). When ∆ = 1, (2.15) and (2.17) sharpen (1.3) and (1.2)
respectively.

3. Example with numerical illustration

Example. Consider w(ζ) = ζ(ζ + 1) with all zeros 0,−1. Now, all the zeros lie in the closed
disk |ζ| ≤ 1. On the unit circle |ζ| = 1,

∣

∣w
(

eiθ
)∣

∣ =
√
2 + 2 cos θ.

Since the non-negative function

f(θ) = 2 + 2 cos θ, 0 ≤ θ < 2π,

attains its maximum at θ = 0,

max
|ζ|=1

∣

∣w(ζ)
∣

∣ = 2.

For each fixed ∆ = ∆0,

|w(∆0e
iθ)| = ∆0

√

∆2
0 + 2∆0 cos θ + 1.

Since the function

g(θ) = ∆2
0 + 2∆0 cos θ + 1, 0 ≤ θ < 2π,

attains its minimum at θ = π,

m = min
|ζ|=∆0

|w(ζ)| = ∆0(∆0 − 1).

If we take ∆0 = 1.95 and |δ| = 10, then by using Theorem 2, we have

‖D10w‖∞ ≥ 10− 1.95

1 + 1.952

{

2 + 1 +

√
1.95 × 1−

√
1√

1.95 × 1

}

× 2 ≈ 11.009,
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while by Theorem 3,

‖D10w‖∞ ≥ 2

1 + 1.952

{

(10− 1.95)2 +
(

10 +
1

1.95

)

1.95(1.95 − 1)
}

+
10− 1.95

1 + 1.952

{

1 +

√

1.95× 1− 1.95(1.95 − 1)−
√
1

√

1.95 × 1− 1.95(1.95 − 1)

}(

2− 1.95(1.95 − 1)

1.952

)

≈ 11.7657

Meanwhile, if we use Corollary 1, we get

‖D10w‖∞ ≥ 2

1 + 1.952

{

(10− 1.95)2 +
(

10 +
1

1.95

)

1.95(1.95 − 1)
}

+
10− 1.95

1 + 1.952

{

1 +

√

1.952 × 1− 1.95(1.95 − 1)−
√
1.95 × 1

√

1.952 × 1− 1.95(1.95 − 1)

}{

2− 1.95(1.95 − 1)

1.952

}

≈ 17.351,

which is larger than the bounds obtained by using Theorems 2 and 3. In other words, the bound of
Corollary 1 improves over those of Theorems 2 and 3 respectively due to Singh and Chanam [19]
and Milovanovic et al. [15] by about 57.61% and 47.47%. From this, it is easy to see that by
making appropriate choices of the polynomial w(ζ), and the parameters ∆ and δ, this improvement
can be scaled up.

4. Lemmas

We need the following auxiliary results to prove the theorem and its corollaries. For a n degree
polynomial w(ζ), we will use

q(ζ) = ζnw
(

1/ζ̄
)

.

Lemma 1 [13]. If w(ζ) is a n degree polynomial with all its zeros in |ζ| ≤ ∆, ∆ ≤ 1, then for

|ζ| = 1,
|q′(ζ)| ≤ ∆|w′(ζ)|.

Lemma 2. If w(ζ) is a n degree polynomial, then for R ≥ 1 and γ > 0,

{
∫ 2π

0

∣

∣w
(

Reiθ
)∣

∣

γ
dθ

}1/γ

≤ Rn

{
∫ 2π

0

∣

∣w
(

eiθ
)∣

∣

γ
dθ

}1/γ

.

It is difficult to trace the origin of Lemma 2. However, it could be followed from a famous result
of Hardy [11], by which for any function f(ζ) analytic in |ζ| < t0, and for each γ > 0,

{
∫ 2π

0

∣

∣f
(

xeiθ
)
∣

∣

γ
dθ

}1/γ

is non-decreasing for x ∈ (0, t0). If w(ζ) is a n degree polynomial, then

f(ζ) = ζnw
(

1/ζ̄
)

is a polynomial of degree at most n and is an entire function, and by Hardy’s result for γ > 0,

{
∫ 2π

0

∣

∣f
(

xeiθ
)
∣

∣

γ
dθ

}1/γ

≤
{
∫ 2π

0

∣

∣f
(

eiθ
)
∣

∣

γ
dθ

}1/γ

,

for x = 1/R < 1, and hence Lemma 2.
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Lemma 3 [19]. If w(ζ) ∈ Pn,s,1 , then for |ζ| = 1,

∣

∣w′(ζ)
∣

∣ ≥ 1

2

{

n+ s+

√

|αn−s| −
√

|α0|
√

|αn−s|

}

|w(ζ)|.

Lemma 4 [6, 16]. If w(ζ) is a n degree polynomial and w(ζ) 6= 0 in |ζ| < 1, then for R ≥ 1
and γ > 0,

{
∫ 2π

0

∣

∣w
(

Reiθ
)
∣

∣

γ
dθ

}1/γ

≤ Bγ

{
∫ 2π

0

∣

∣w
(

eiθ
)
∣

∣

γ
dθ

}1/γ

,

where

Bγ =

{

∫ 2π
0 |1 +Rneiθ|γdθ

}1/γ

{

∫ 2π
0 |1 + eiθ|γdθ

}1/γ
.

This is due to Boas and Rahman [6] for γ ≥ 1. Later, Rahman and Schmeisser [16] verified validity
for 0 < γ < 1.

Lemma 5 [8]. If w(ζ) is a n degree polynomial and w(ζ) 6= 0 in |ζ| < ∆, ∆ > 0, then for

|ζ| < ∆

|w(ζ)| > m,

where m = min|ζ|=∆ |w(ζ)|.

Lemma 6. If

w(ζ) = ζs
( n−s
∑

j=0

αjζ
j

)

, 0 ≤ s ≤ n,

is a polynomial with all its zeros in |ζ| ≤ ∆, ∆ > 0, then for λ ∈ C, |λ| < 1

√

∆n−s|αn−s| − |λ| m
∆s

−
√

|α0| ≥ 0, (4.1)

where m = min|ζ|=∆ |w(ζ)|.

P r o o f. By hypothesis,

w(ζ) = ζsh(ζ) = ζs
( n−s
∑

j=0

αjζ
j

)

, 0 ≤ s ≤ n,

has all its zeros in |ζ| ≤ ∆, ∆ > 0. Then, the polynomial W (ζ) = e−i argαn−sh(ζ) has the same
zeros as h(ζ).
Now,

W (ζ) = e−i argαn−s
{

α0 + α1ζ + · · · + αn−s−1ζ
n−s−1 + |αn−s|ei argαn−sζn−s

}

= e−i argαn−s
{

α0 + α1ζ + · · · + αn−s−1ζ
n−s−1

}

+ |αn−s|ζn−s.

Now, on |ζ| = ∆ for λ ∈ C, |λ| < 1 and m = min|ζ|=∆w(ζ) 6= 0, we have

∣

∣

∣

mλ

∆n
ζn−s

∣

∣

∣
<

m

∆s
= min

|ζ|=∆
|h(ζ)| = min

|ζ|=∆
|W (ζ)| ≤ |W (ζ)|.
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Then by Rouche’s theorem,

R(ζ) = W (ζ)− m|λ|
∆n

ζn−s

has all its zeros in |ζ| < ∆. By Vieta’s formula applied to R(ζ), we get

|α0|
∣

∣|αn−s| −m|λ|/∆n
∣

∣

< ∆n−s,

that is,
( |α0|
∣

∣|αn−s| −m|λ|/∆n
∣

∣

)1/2

< ∆(n−s)/2. (4.2)

Since W (ζ) is a polynomial of degree n− s with all its zeros in |ζ| ≤ ∆, then

Q(ζ) = ζn−sW
(

1/ζ
)

is a polynomial having atmost n− s degree having no zero in |ζ| < 1/∆. Using Lemma 5 to Q(ζ),
we obtain

|αn−s| = |Q(0)| > min
|ζ|=1/∆

|Q(ζ)| = 1

∆n−s
min
|ζ|=∆

|W (ζ)| = m

∆n
,

i.e.
|αn−s| >

m

∆n
. (4.3)

Using (4.3) to (4.2), we have

√

∆n−s|αn−s| − |λ| m
∆s

−
√

|α0| > 0.

For m = min|ζ|=∆ |w(ζ)| = 0, the result becomes trivial, simply by the similar reasoning of inequal-
ity (4.2) to

h(ζ) =
n−s
∑

j=0

αjζ
j,

i.e.
√

∆n−s|αn−s| −
√

|α0| ≥ 0.

�

5. Proof of Theorem 4

By assumption, w(ζ) has all its zeros in |ζ| ≤ ∆, ∆ ≥ 1. For m = min|ζ|=∆ |w(ζ)| 6= 0, consider

R(ζ) = w(ζ)− m

∆n
λζn,

where λ ∈ C, |λ| < 1. Now, on |ζ| = ∆
∣

∣

∣

m

∆n
λζn

∣

∣

∣
<

m

∆n
∆n ≤ |w(ζ)|.

Consequently, from Rouche’s theorem, R(ζ) has all its zeros in |ζ| < ∆. When m = 0, R(ζ) = w(ζ).
Therefore, R(ζ) has all its zeros in |ζ| ≤ ∆ in any case. Then, all the zeros of W (ζ) = R(∆ζ) are
in |ζ| ≤ 1. It is a simple fact that for |ζ| = 1

|Q′ (ζ) | =
∣

∣nW (ζ)− ζW ′ (ζ)
∣

∣ , (5.1)
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where

Q(ζ) = ζnW
(

1/ζ̄
)

.

Using Lemma 1 to W (ζ), we have for |ζ| = 1

∣

∣Q′(ζ)
∣

∣ ≤
∣

∣W ′(ζ)
∣

∣ . (5.2)

Using (5.1) and (5.2), we have for |δ/∆| ≥ 1 and |ζ| = 1

∣

∣Dδ/∆W (ζ)
∣

∣ =
∣

∣

∣
nW (ζ) +

( δ

∆
− ζ

)

W ′(ζ)
∣

∣

∣
≥

∣

∣

∣

δ

∆

∣

∣

∣
|W ′(ζ)| −

∣

∣nW (ζ)− ζW ′ (ζ)
∣

∣

=
∣

∣

∣

δ

∆

∣

∣

∣
|W ′(ζ)| − |Q′ (ζ) | ≥

(∣

∣

∣

δ

∆

∣

∣

∣
− 1

)

|W ′(ζ)|.
(5.3)

Applying Lemma 3 to W (ζ), we have for |ζ| = 1

∣

∣W ′(ζ)
∣

∣ ≥ 1

2

{

n+ s+

√

∆n−s|αn−s − (m/∆n)λ| −
√

|α0|
√

∆n−s|αn−s − (m/∆n)λ|

}

|W (ζ)|.

Since f(x) = (x− |a|)/x is non-decreasing and in view of (4.3), we get

∣

∣W ′(ζ)
∣

∣ ≥ 1

2

{

n+ s+

√

∆n|αn−s| − |λ|m−
√

∆s|α0|
√

∆n|αn−s| − |λ|m

}

|W (ζ)|. (5.4)

Combining (5.4) and (5.3), we get

∣

∣Dδ/∆W (ζ)
∣

∣ ≥ |δ| −∆

2∆

{

n+ s+

√

∆n|αn−s| − |λ|m−
√

∆s|α0|
√

∆n|αn−s| − |λ|m

}

|W (ζ)|.

Replacing W (ζ) by R(∆ζ), this inequality gives

∣

∣

∣
nR(∆ζ) +

( δ

∆
− ζ

)

∆R′(∆ζ)
∣

∣

∣
≥ |δ| −∆

2∆
A|R(∆ζ)|, (5.5)

where

A =
{

n+ s+

√

∆n|αn−s| − |λ|m−
√

∆s|α0|
√

∆n|αn−s| − |λ|m
}

.

Inequality (5.5) becomes

∣

∣nR(∆ζ) + (δ −∆ζ)R′(∆ζ)
∣

∣ ≥ |δ| −∆

2∆
A|R(∆ζ)|,

therefore for any γ > 0, we have

∣

∣DδR
(

∆eiθ
)
∣

∣

γ ≥
( |δ| −∆

2∆
A
)γ∣

∣R(∆eiθ)
∣

∣

γ
, 0 ≤ θ < 2π.

Equivalently,

{

∫ 2π

0

∣

∣DδR
(

∆eiθ
)
∣

∣

γ
dθ

}1/γ
≥ |δ| −∆

2∆
A
{

∫ 2π

0

∣

∣R
(

∆eiθ
)
∣

∣

γ
dθ

}1/γ
. (5.6)

We have,

W (ζ) = R(∆ζ) = α0∆
sζs + α1∆

s+1ζs+1 + ...+ (αn−s∆
n −mλ)ζn,
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and

Q(ζ) = ζnW
(

1/ζ̄
)

. (5.7)

Applying Lemma 4 to Q(ζ), we get

{

∫ 2π

0

∣

∣Q
(

∆eiθ
)∣

∣

γ
dθ

}1/γ
≤ Eγ

{

∫ 2π

0

∣

∣Q
(

eiθ
)∣

∣

γ
dθ

}1/γ
. (5.8)

Now, it follows readily that
∣

∣Q(∆eiθ)
∣

∣ = ∆n
∣

∣R
(

eiθ
)
∣

∣ and
∣

∣Q
(

eiθ
)
∣

∣ =
∣

∣R
(

∆eiθ
)
∣

∣.
Using the two relations, (5.8) gives

∆n
{

∫ 2π

0

∣

∣R
(

eiθ
)∣

∣

γ
dθ

}1/γ
≤ Eγ

{

∫ 2π

0

∣

∣R
(

∆eiθ
)∣

∣

γ
dθ

}1/γ
. (5.9)

Since DδR(ζ) is a polynomial of degree at most (n − 1), by Lemma 2 to DδR(ζ), R = ∆ ≥ 1, we
have

1

∆n−1

{

∫ 2π

0

∣

∣DδR
(

∆eiθ
)∣

∣

γ
dθ

}1/γ
≤

{
∫ 2π

0

∣

∣DδR
(

eiθ
)∣

∣

γ
dθ

}1/γ

. (5.10)

Using (5.10) to (5.6), we get

∆n−1

{
∫ 2π

0

∣

∣DδR
(

eiθ
)∣

∣

γ
dθ

}1/γ

≥ |δ| −∆

2∆
A

{
∫ 2π

0

∣

∣R(∆eiθ)
∣

∣

γ
dθ

}1/γ

. (5.11)

Combining (5.9) and (5.11), we have

{
∫ 2π

0

∣

∣DδR
(

eiθ
)
∣

∣

γ
dθ

}1/γ

≥ |δ| −∆

2Eγ
A

{
∫ 2π

0

∣

∣R
(

eiθ
)
∣

∣

γ
dθ

}1/γ

,

which is equivalent to

{
∫ 2π

0

∣

∣

∣
Dδ

{

w
(

eiθ
)

− m

∆n
λeinθ

}
∣

∣

∣

γ
dθ

}1/γ

≥ |δ| −∆

2Eγ
A

{
∫ 2π

0

∣

∣

∣
w
(

eiθ
)

− m

∆n
λeinθ

∣

∣

∣

γ
dθ

}1/γ

.

This proves Theorem 4. �

6. Conclusion

For the set of n degree polynomials with all their zeros in |ζ| ≤ ∆, ∆ ≥ 1, there has been
no integral analogue of Turán-type inequalities for about 19 years until 2017 that Rather and
Bhat [17] had extended inequality (1.9) to integral mean setting. In this paper, we provide an
integral mean version of Theorem 2 by using some techniques different from those followed by
Rather and Bhat [17]. Our result also implicates various existing known results in the literature.
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