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Abstract: In this paper, we consider a third-order explicit scheme based on Taylor’s formula to obtain an
approximate solution for the Cauchy problem of systems of ODEs. We prove an estimate for the accuracy of
the approximate solution with an explicit constant that depends only on the right-hand side of the equation
and the domain of the solution.
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1. Introduction

It is needless to note the importance of estimating accuracy for approximate solutions of ODEs.
Here we consider the problem

ẋ(t) = f(x(t)), x(0) = x0, (1.1)

where x ∈ D ⊂ R
d and D is a convex domain. In what follows, we assume that the function

f : D → R
d is three times differentiable with continuous derivatives in D. In practice, establishing

the highest possible accuracy of an approximate solution is one of the key problems. Thus, the
efficiency of an approximate solution is determined by its accuracy. Let x∗(t) be a solution of (1.1)
in the interval 0 ≤ t ≤ T for some T > 0, and let x̂(t) be its approximate solution (obtained by
some scheme) on the same interval. The accuracy of the scheme is expressed by an inequality of
the form

sup
0≤t≤T

|x∗(t)− x̂(t)| ≤ CeLThs, (1.2)

where L is the Lipschitz constant of the function f , h is the mesh size, and s is the order of accuracy
of the method. Approximate solution schemes can be implicit and explicit. In this paper, we are
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concerned with explicit methods. Frequently used one-step approximate solution schemes can be
divided into two groups:

(1) Schemes based on Taylor’s expansion of the solution;
(2) Runge–Kutta-type methods.

Schemes based on Taylor’s expansion are easy to implement, but experts prefer Runge–Kutta-
type methods. This preference is caused by the fact that the error estimates for schemes based
on Taylor’s formula contain derivatives of the function f , which can be challenging to estimate.
However, with the development of computer algebra, computations of derivatives of a rather wide
range of functions can be automated [7, 12, 13]. Therefore, schemes based on Taylor’s formula can
be implemented without any extra hurdles, due to the simplicity of implementation.

On the other hand, since the 1960s, computer simulations have been used extensively to study
dynamical systems described by nonlinear systems of ordinary differential equations (ODEs). Re-
cently, with the rise of computational power and computers being widely available, computer-
assisted proofs have come into play. These proofs, however, require verification of the accuracy of
the scheme, i.e., proof of inequality (1.2) with explicit constants.

Estimates for the accuracy of approximate solutions to ODEs are studied extensively in lit-
erature [2, 4, 6]. For example, the monographs [10, 14, 16] contain estimates for Runge–Kutta
methods. Part III of the well-known monograph [3] is devoted to approximate solutions of ODEs.
Schemes based on Taylor’s formula are briefly discussed in the first section from a methodological
viewpoint. But no estimates are provided. It is surprising that, among the vast amount of literature
devoted to the approximate solutions of ODEs, we did not find estimates with explicit constants.
Most estimates give the order of approximation, which is insufficient if we want to use approximate
solutions in the proofs. Except [10], which, citing [5], gives an inequality for the Runge–Kutta
method. In [15, Sect. 2, Part II], the authors mention a scheme based on Taylor’s formula, but do
not consider the problem of accuracy estimates. Some authors claim that if one takes the first n
terms of Taylor’s expansion, then the error term will be of the form

max
0≤n≤N

|xn − y(xn)| = O(hn).

But they neither provide proof nor speak about constants involved in O(hn).
In [7], which is one of the most comprehensive monographs on approximate solutions of ODEs,

the authors claim that the difference between exact and approximate solutions is estimated by the
remainder term of Taylor’s expansion and in just one step it will be O(hp+1) [8, Sect. 318, p. 180];
no further details are given. In [17, 18], the problem of estimating the error is investigated for
methods of approximation of the integral

x(t+ h) = x(t) +

t+h∫

t

f [x(t)]dt.

Paper [8] provides explicit estimates for the approximate computation of this integral. This is
equivalent to considering the first term of Taylor’s expansion, which provides the first-order Taylor
approximation scheme. The author considers multi-step approximate solution schemes but does
not give inequalities of the form (1.2).

It turns out that schemes based on Taylor’s formula are more convenient than schemes based
on Runge–Kutta methods for obtaining explicit constants in (1.2). For example, in [1], an estimate
of type (1.2) is obtained for a second-order scheme based on Taylor’s formula. Also, they are easier
to implement in numerical approximations than Runge–Kutta-type methods. Keeping in mind an
application of the approximate solution schemes in computer-aided proofs, in the present paper,
we consider a third-order scheme based on Taylor’s formula for Cauchy problem (1.1) and give an
explicit constant C, for which inequality (1.2) holds with s = 3.
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2. Approximate solution schemes based on Taylor’s formula

For a continuously differentiable function f(x), the initial value problem (1.1) has a unique
solution; however, it is challenging to estimate the interval where the solution exists [11]. On the
other hand, for approximation schemes, we need to know the existence of the solution. Therefore,
our first standing assumption is the following.

Assumption A. Fix T > 0. The solution x∗(t) to the Cauchy problem (1.1) is defined on the
interval [0, T ].

Usually, when considering approximate solutions, one tries to find values of the approximate
solution x∗(t) on a mesh 0 = t0 < t1 < t2 < · · · < tn = T . Here, to simplify the exposition, without
loss of generality, we consider the uniform mesh tn = nh, where h = T/N , N ∈ N

+.

We start with the Taylor expansion of the exact solution with accuracy O(h3):

x∗(t+ nh) = x∗(t) + hẋ∗(t) +
h2

2
ẍ∗(t) +

h3

6

...
x ∗(t) +R4(t, h).

By definition, we have

ẋ∗(t) = f [x∗(t)],

ẍ∗(t) = f ′[x∗(t)]f [x∗(t)],
...
x ∗(t) = f ′′[x∗(t)]f [x∗(t)]f [x∗(t)] + f ′[x∗(t)]f

′[x∗(t)]f [x∗(t)].

We also need the fourth derivative xIV (t). To shorten the notation, we interpret derivatives of the
function f as operators acting on x∗(t) and write

ẋ∗(t) = f [x∗(t)],

ẍ∗(t) = (f ′f)[x∗(t)],
...
x ∗(t) = (f ′′ff + f ′f ′f)[x∗(t)].

In particular, on the uniform mesh,

x∗[(n+ 1)h] = x∗(nh) + hf [x∗(nh)] +
h2

2
(f ′f)[x∗(nh)]

+
h3

6
(f ′′ff + f ′f ′f)[x∗(nh)] +R4(nh, h), n = 0, 1, 2, . . . , N − 1.

By neglecting the remainder term, we obtain the following recurrent formula for the approximate
solution:

xn+1 = hf(xn) +
h2

2
(f ′f)(xn) +

h3

6
(f ′′ff + f ′f ′f)(xn). (2.1)

It is expected that elements of the sequence xn (n = 1, 2, . . . , N) defined by (2.1) are close
to the values of the exact solution at the points x∗(h), x∗(2h), . . . , x∗(Nh). An intuitive way to
measure this closeness is to compute the value

ρ = max
1≤n≤N

|x∗(nh)− xn|. (2.2)

However, the quantity (2.2) does not provide any information about the behavior of the solution
on the interval ((n − 1)h, nh). The main aim of this paper is to derive such estimates. If we want
to apply numerical solutions in computer-aided proofs, then we cannot ignore the behavior of the
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system on the interval (nh, (n + 1)h). Certainly, for t ∈ (nh, (n + 1)h), we can estimate x∗(t) as
follows. For t ∈ [0, T ], let n(t) = [t/h]. Then |t− n(t)h| < h and

|x∗(t)− x∗(n(t)h)| ≤

h∫

n(t)h

|f [x(s)]|ds ≤ M0h,

where M0 is the maximum value of |f(x)| on some compact subset of D. The above inequality
together with (2.2) imply that

|x∗(t)− xn| ≤ M0h+ |x∗[n(t)h]− xn| ≤ M0h+ ρ,

which shows that the difference between the exact and approximate solutions is, at best, of order h.
However, this estimate is very rough and insufficient for our purposes. To get a better estimate,
we use generalized Euler polygons.

From now on, we fix N,h, and T > 0 such that Nh = T and define

σt = nh if t ∈ [nh, (n+ 1)h) for n = 0, . . . , N − 1.

We start with the definition of an approximate solution.

Definition 1. A continuous function x̂(t) : R → [0 : T ] satisfying the equation

x̂(t) = x0 +

t∫

0

(
f [x̂(σs)] + (s− σs)(f

′f)[x̂(σs)] +
(s− σs)

2

2
(f ′′ff + f ′f ′f)[x̂(σs)]

)
ds (2.3)

is called an approximate solution of (1.1).

Although (2.3) looks like an integral equation, it is a recurrent formula, and we can construct
x̂(t) explicitly step by step. Therefore, (2.3) defines a function x̂(t) on [0, T ] as an approximate
solution; i.e., our notion of approximate solution is well defined.

Lemma 1. The equality x̂(nh) = xn holds for all n > 0.

The lemma is proved easily by induction on the intervals [0, nh]. We use this lemma to reduce
the problem to deriving estimates of the form (1.2) for the difference |x∗(t)− x̂(t)|.

The remainder term of the Taylor expansion is given by the formula (see for example, [9])

R4(t, h) =

1∫

0

(1− s)3

3!
x
(IV )
∗ (t+ sh)h4ds,

where

x
(IV )
∗ (s) =

(
f ′′′fff + 3f ′′f ′ff + f ′f ′′ff + f ′f ′f ′f

)
[x∗(t)].

By the formula for R4, the error term is estimated by the maximum values of the derivatives of f .
To estimate the derivatives effectively along the solution and approximate solution, we need them
to stay in some compact set. Therefore, we assume the following.

Assumption B. Let K be a convex and compact domain in R
d. We assume that values of the

exact solution x∗(t) and the approximate solution x̂(t) remain in K for all t ∈ [0, T ].
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Since, K is compact by definition, Assumptions A and B allow us to define

M0 = max
x∈K

|f(x)|, M1 = max
x∈K

‖f ′(x)‖,

M2 = max
x∈K

‖f ′′(x)‖, M3 = max
x∈K

‖f ′′′(x)‖.
(2.4)

Using these quantities, we obtain the following estimate for the remainder term of the Taylor
formula:

|R4(nh, h)| ≤
h4

24
max
0≤t≤T

|xIV∗ (s)|ds ≤
h4

24

(
M3M

3
0 + 4M2M1M

2
0 +M3

1M0

)
.

In the literature, when estimating the accuracy of approximate solutions, many authors claim that
the error is bounded by |R4(nh, h)|. However, this is not true, since R4(nh, h) is the difference
between x∗(t) and its Taylor expansion, which does not directly imply any conclusions for the
difference x∗(t) − x̂(t). In the present paper, we show that it is possible to obtain an explicit
estimate for the latter. The main result of the this paper is the following theorem.

Theorem 1. Under Assumptions A and B, the following inequality holds:

|x∗(t)− x̂(t)| ≤
eM1T − 1

6M1
(L0 + L1h+ L2h

2)h3,

where

L0 = 5M2
0M1M2 +M0M

3
1 +M3

0M3,

L1 =
1

4
(M3

0M
2
2 + 4M3

0M1M3 + 9M2
0M

2
1M2),

L2 =
1

2
(M4

0M2M3 +M3
0M

2
1M3 + 2M3

0M1M
2
2 + 2M2

0M
3
1M2).

Note that our estimate for the accuracy of the method is explicit and can be computed effectively
in terms of the right-hand side of the initial value problem (1.1).

3. Proof of Theorem 1

In this section, we prove the main theorem. The key ingredient of the proof is a discretization
of the time t using a piecewise constant function σs.

In what follows, we repeatedly use the following formula for the derivative of the approximate
solution. By (2.3), for t 6= nh (n = 1, 2, . . . , N − 1),

˙̂x(t) = f [x̂(σt)] + (t− σt)(f
′f)[x̂(σt)] +

(t− σt)
2

2
(f ′′f2 + (f ′)2f)[x̂(σt)]. (3.1)

Further, taking into account that 0 ≤ t− σt ≤ h, we have

| ˙̂x(σt)| ≤ M0

(
1 + hM1 +

h2

2
(M2M0 +M2

1 )
)
. (3.2)

P r o o f. For the exact solution, we have the equality

x∗(t) = x0 +

t∫

0

f [x∗(s)]ds.
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Using this equality and equation (2.3) and adding and subtracting the term

∫ t

0
f [x̂(s)]ds,

we obtain

|x∗(t)− x̂(t)| ≤

t∫

0

I(s)ds +

t∫

0

∣∣f [x∗(s)]− f [x̂(s)]
∣∣ds,

where

I(s) = f [x̂(s)]− f [x̂(σs)]− (s− σs)(f
′f)[x̂(σs)]−

(s− σs)
2

2
(f ′′f2 + f ′2f)[x̂(σs)].

We are going to derive an upper estimate of the form Ch3 for I(s). By the fundamental rule of
the calculus, we have

f [x̂(s)]− f [x̂(σs)] =

s∫

σs

df [x̂(r)]

dr
dr =

s∫

σs

f ′[x̂(r)] ˙̂x(r)dr.

Substituting the derivative of the approximate solution ˙̂x(r) given in (3.2) into the right-hand side,
we obtain

f [x̂(s)]−f [x̂(σs)]=

s∫

σs

f ′[x̂(r)]
{
f [x̂(σr)]+(r−σr)(f

′f)[x̂(σr)] +
(r − σr)

2

2
(f ′′f2+f ′2f)[x̂(σr)]

}
dr.

Note that σr = σs in this equation since r ∈ [σs, s] and σ is piecewise constant. Denote the
latter term on the right-hand side by C1:

C1 =

s∫

σs

(r − σs)
2

2
(f ′′f2 + f ′2f)[x̂(σr)]f

′[x̂(r)]dr.

Using (2.4), we obtain the estimate

|C1| ≤ (M2M1M
2
0 +M3

1M0)

s∫

σs

(r − σs)
2

2
dr ≤ D1h

3, (3.3)

where D1 = (M2M1M
2
0 +M3

1M0)/6.
Therefore, we obtain

I(s) =

s∫

σs

{
f ′[x̂(r)]− f ′[x̂(σs)]

}
f [x̂(σs))]dr

+

s∫

σs

f ′[x̂(r)](f ′f)[x̂(σs)]dr −
(s− σs)

2

2
(f ′′f2 + f ′2f)[x̂(σs)] + C1.

(3.4)

Denote the first term of this expression by J(s):

J(s) =

s∫

σs

{
f ′[x̂(r)]− f ′[x̂(σs)]

}
f [x̂(σs)]dr.
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We estimate J(s), using the fundamental rule of calculus and the derivative of the approximate
solution given by (3.2):

J(s) =

s∫

σs

r∫

σs

df ′[x̂(u)]

du
duf [x̂(σs)]dr =

s∫

σs

r∫

σs

f ′′[x̂(u)]
{
f [x̂(σu)]

+ (u− σu)(f
′f)[x̂(σu)] +

(u− σu)
2

2
(f ′′f2 + (f ′)2f)[x̂(σu)]

}
f [x̂(σs)]dudr.

(3.5)

Define

C2 =

s∫

σs

r∫

σs

{
(u− σu)f

′′[x̂(u)](f ′f)[x̂(σu)]f [x̂(σs)]

+
(u− σu)

2

2
f ′′[x̂(u)](f ′′f2 + (f ′)2f)[x̂(σu)]f [x̂(σs)]

}
dudr.

(3.6)

Thus, taking into account that σu = σs and using (2.4), we obtain the inequality

|C2| ≤

s∫

σs

r∫

σs

∣∣∣∣M2M1M
2
0 (u− σs) + (M2

2M
3
0 +M2M

2
1M

2
0 )

(u− σs)
2

2

∣∣∣∣ dudr ≤ D2h
3 +D3h

4, (3.7)

where

D2 =
1

6
M1M2M

2
0 , D3 =

1

24
(M2

2M
3
0 +M2M

2
1M

2
0 ).

Consequently, substituting (3.6) into (3.5) and then (3.5) into (3.4) and denoting C1 + C2 by C3,
we obtain

I(s) =

s∫

σs

r∫

σs

f ′′[x̂(u)]f [x̂(u)]f [x̂(σs)]dudr +

s∫

σs

f ′[x̂(r)](r − σr)(f
′f)[x̂(σr)]dr

−
(s− σs)

2

2
(f ′′f2 + f ′2f)[x̂(σs)] + C3 = A(s) +B(s) + C3,

(3.8)

where we used the following notation:

A(s) =

s∫

σs

r∫

σs

{
(f ′′f)[x̂(u)]− (f ′f)[x̂(σs)]

}
f [x̂(σs)]dudr,

B(s) =

s∫

σs

(r − σs)
{
f ′[x̂(r)]− f ′[x̂(σs)]

}
(f ′f)[x̂(σs)]dr.

Combining (3.3) and (3.7), we obtain

|C3| ≤ D1h
3 +D2h

3 +D3h
4. (3.9)

It remains to estimate A(s) and B(s). We have

A(s) =

s∫

σs

r∫

σs

( u∫

σs

d

dv

(
f ′′[x̂(v)]f [x̂(v)]

)
dv

)
f [x̂(σs)]dudr.
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which implies

A(s) =

s∫

σs

r∫

σs

( u∫

σs

{
f ′′′[x̂(v)] ˙̂x(v)f [x̂(v)] + f ′′[x̂(v)]f ′[x̂(v)] ˙̂x(v)

}
dv

)
f [x̂(σs)]dudr. (3.10)

Therefore, taking the absolute value of the expression under the outer integral (integration
with respect to r), using estimates (2.4) and (3.2), and taking into account that t − σt ≤ h and
σu = σs = σr, we obtain

|A(s)| ≤

s∫

σs

r∫

σs

u∫

σs

(
M0 + hM1M0 +

h2

2
(M2M

2
0 +M2

1M0)
)
(M3M

2
0 +M0M1M2)dvdudr

≤ (M3M
2
0 +M0M1M2)

(
M0 + hM1M0 +

h2

2
(M2M

2
0 +M2

1M0)
)h3
6
.

Similarly,

B(s) =

s∫

σs

(r − σs)

{ r∫

σs

d

du
f ′[x̂(u)]du

}
(f ′f)[x̂(σs)]dr

=

s∫

σs

(r − σs)

r∫

σs

f ′′[x̂(u)] ˙̂x(u)du}(f ′f)[x̂(σs)]dr.

Again, using (2.4) and (3.2), and taking into account that t − σt ≤ h and σs = σr in the above
equation, we obtain

|B(s)| ≤
(r − σs)

3

3
M0M1M2

(
M0 + hM1M0 +

h2

2
(M2M

2
0 +M2

1M0)
)

≤ M0M1M2

(
M0 + hM1M0 +

h2

2
(M2M

2
0 +M2

1M0)
)h3
3
.

(3.11)

Finally, substituting (3.9), (3.10), and (3.11) into (3.8), we obtain the inequality

|I(s)| ≤
1

6
(M2M1M

2
0 +M3

1M0))h
3 +

1

6
M1M2M

2
0h

3 +
1

24
(M2

2M
3
0 +M2M

2
1M

2
0 )h

4

+(M3M
2
0 +M0M1M2)

(
M0 + hM1M0 +

h2

2
(M2M

2
0 +M2

1M0)

)
h3

6

+M0M1M2

(
M0 + hM1M0 +

h2

2
(M2M

2
0 +M2

1M0)

)
h3

3

=
1

6
(L0 + L1h+ L2h

2)h3,

with the required constants L0, L1, and L2.
Now, we use the compactness of the domain K and smoothness of f to obtain

|f [x∗(s)]− f [x̂(σs)]| ≤ M1|x∗(s)− x̂(s)|. (3.12)

Using inequalities (3.1), (3.2), and (3.12), we get the inequality

|x∗(t)− x̂(t)| ≤

t∫

0

|I(s)|ds +

t∫

0

|f [x∗(s)]− f [x̂(σs)]|ds

≤
1

6
(L0 + L1h+ L2h

2)h3t+

t∫

0

M1|x∗(s)− x̂(s)|.

(3.13)
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In (3.13), we apply Grönwall’s inequality. For our purposes, the following version is the most
convenient. Let u : R → R be a continuous function such that u(t) ≥ 0 for t ≥ 0 and

u(t) ≤ Ct+M

t∫

0

u(s)ds

for some C,M > 0. Then, the following inequality holds:

u(t) ≤ C
eMt − 1

M
.

Applying Gröwnall’s inequality to estimate (3.13), we obtain

|x∗(t)− x̂(t)| ≤
1

6
(L0 + L1h+ L2h

2)h3
eM1t − 1

M1
.

This completes the proof. �

4. Conclusion

1. If a nonautonomous system is considered in a d-dimensional space, then we can interpret it
as an autonomous system in the (d + 1)-dimensional space. In particular, we can consider
the following Cauchy problem:

ẋ = f(t, x), x(0) = x0 ⇔





dx

dt
= f(ξ, x), x(0) = x0,

dξ

dt
= 1, ξ(0) = 0.

Therefore, the difference between the exact and approximate solutions can be estimated by
the same expression with the constant

√
M2

0 + 1 insted of M0.

2. In the proof of the estimate for the difference between the exact and approximate solutions,
we obtained

max
0≤t≤T

|x∗(t)− x̂(t)| ≤ C
eM1t − 1

M1
h3

with the coefficient that is considerably larger than expected, where the constant C is a
fifth-order polynomial of the constants M0, M1, M2, and M3. If these constants are not very
large, i.e., on the order of 1, then the coefficient C does not affect the choice of the mesh size.
In this case, the mesh size would mostly depend on (eM1t − 1)/M1. On the other hand, if
the constants M0, M1, M2, and M3 are on about 10, then the coefficient at h3 is on the order
of 105, which would affect the choice of h essentially, in certain cases, it may even invalidate
the approximate solution scheme.

3. Another interesting question is whether it is possible to simplify the proof of the main theo-
rem. The authors think that the proofs cannot be simplified considerably.

4. It is possible to prove a similar theorem with the order of accuracy h4; i.e., we can consider
the fourth-order scheme

xn+1 = xn + hf(xn) +
h2

2
(f ′f)(xn) +

h3

6

(
f ′′ff + f ′f ′f

)
(xn)+

+
h4

24

(
f ′′′fff + 3f ′′f ′ff + f ′f ′′ff + f ′f ′f ′f

)
(xn)

and prove an analogous theorem.
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