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Abstract: The main aim of this paper is to present and explore some of properties of the concept of I-
statistical convergence in measure of complex uncertain sequences. Furthermore, we introduce the concept of I-
statistical Cauchy sequence in measure and study the relationships between different types of convergencies. We
observe that, in complex uncertain space, every I-statistically convergent sequence in measure is I-statistically
Cauchy sequence in measure, but the converse is not necessarily true.
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1. Introduction

In the real world, there are different kinds of uncertainty. So, it makes perfect sense to investi-
gate the behavior of uncertain phenomena. To address some aspects of this uncertain phenomena,
Liu [12] introduced initially the uncertainty theory in 2007. After that, it has been studied in var-
ious fields of mathematics like calculus, set theory, graph theory, sequence and series, etc. In [12]
Liu initially proposed the idea of uncertain variables as a functions from measurable space to the
set of real numbers (R). Peng [15] later expanded it to include complex uncertain variables.

In the fundamental theory of mathematics, the significance of sequence convergence is highly
pivotal which is also one of the most important fields of mathematics. Furthermore, one of the most
important aspects of uncertainty theory is the convergence of uncertain variable sequences. For
the first time in uncertainty theory, Liu [12] established several convergence notions of uncertain
variable sequences, such as convergence almost surely, convergence in measure, convergence in
distribution, and convergence in mean.

Following that, by using complex uncertain variables, Chen et al. [1] introduced the concept
of convergence of complex uncertain sequences and then numerous researchers have subsequently
expanded this idea, including Saha et al. [17], Debnath and Das [2], and You and Yan [23]. The
concept of Cauchy convergence in measure and in mean was recently presented by Wu and Xia [24].

On the other hand, in 1951, Fast [8] and Steinhaus[21] extended the concepts of convergence
of a real sequence to statistical convergence independently and after that, it was studied by Fridy
[9] and many other famous researchers. Later Kostyrko et al. [11] introduced a new concept of
convergence namely I-convergence, which is a generalization of statistical convergence.

Savas and Das [19] further expanded the notion of statistical convergence and I-convergence
to include I-statistical convergence. This extension prompted further explorations in the field
by researchers such as Savas and Das [20], Debnath and Debnath [5], Debnath and Rakshit [6],
Mursaleen et al. [13], Savas et al. [18], Esi et al. [7], and numerous others.
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Tripathy and Nath [22] introduced the concept of statistical convergence for complex uncertain
sequences within the framework of uncertainty theory. Then many other researchers like Nath and
Tripathy [14], Roy et al. [16], Debnath and Das [3, 4], and Kisi [10] have successfully applied the
concept of generalized convergence of sequences in uncertainty theory.

Inspired by the above works, in this paper, we introduce the concepts of I-statistical convergence
in measure of complex uncertain sequences and study some of its properties. We also introduce
the notion of I-statistical Cauchy sequence in measure and identifying the relationship between
I-statistical convergence in measure and I-statistical Cauchy sequence in measure.

2. Definitions and preliminaries

The generalized convergence notions and the theory of uncertainty, which will be utilized
throughout the study, are defined and findings are presented in this section.

Definition 1 [11]. Consider a non-empty set S. An ideal on S is defined as a family of sub-

sets I that satisfies the following conditions:

(i) The empty set, φ, belongs to I.
(ii) For any U, V ∈ I, the union of U and V , denoted as U ∪ V , is also in I.
(iii) For any U ∈ I and any subset V ⊂ U , V is a member of I.
An ideal I is called non-trivial if I 6= {φ} and S /∈ I. A non-trivial ideal I is called an admissible

ideal in S if and only if
{

{s} : s ∈ S
}

⊂ I.

Example 1. (i) If := {The set of all finite subsets of N forms a non-trivial admissible ideal}.
(ii) Id := {The set of all subsets of N whose natural density is zero forms a non-trivial admissible
ideal}.

Definition 2 [11]. Consider a non-empty set S. A family of subsets F, which is a subset of

the power set P (S), is called a filter on S if and only if the following conditions are satisfied :

(i) The empty set φ is not a member of F.

(ii) For any subsets U and V in F, their intersection U ∩ V is also included in F.

(iii) If U is a member of F and V is a superset of U , then V is also a member of F.

Now, let I be an admissible ideal. The filter F(I) associated with the ideal I is defined as

F(I) = {S \ U : U ∈ I}.

Definition 3 [9]. A real sequence (xm) is said to be statistically convergent to ℓ ∈ R provided

that for each ε > 0 we have

lim
m→∞

1

m

∣

∣{k ≤ m : |xk − ℓ| ≥ ε}
∣

∣ = 0, m ∈ N.

Definition 4 [11]. A real sequence (xm) is said to be I-convergent to ℓ ∈ R, if for every ε > 0,
we have

{m ∈ N : |xm − ℓ| ≥ ε} ∈ I.
The usual convergence of sequences is a special case of I-convergence (I=If -the ideal of all fimite

subsets of N). The statistical convergence of sequences is also a special case of I-convergence. In

this case,

I = Id =
{

A ⊆ N : lim
m→∞

| A ∩ {1, 2, ...,m} |
m

= 0
}

,

where |A| is the cardinality of the set A.
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Definition 5 [18]. A real sequence (xm) is said to be I-statistically convergent to ℓ ∈ R, if for

every ε > 0, and every δ > 0,

{

m ∈ N :
1

m

∣

∣{k ≤ m : |xk − ℓ| ≥ ε}
∣

∣ ≥ δ
}

∈ I.

For I = If , I-statistical convergence coincides with statistical convergence.

Definition 6 [12]. Let P be a σ-algebra on a non-empty set Υ. If the set function X on Υ
satisfies the following axioms, it is referred to be an uncertain measure:

(i) The first axiom, which deals with normality, is: X{Υ} = 1;
(ii) The second, which deals with duality, is: X{Ξ}+ X{Ξc} = 1 for any Ξ ∈ P;
(iii) The third, which deals with subadditivity, is: for every countable sequence of {Ξm} ∈ P,

X

{

∞
⋃

m=1

Ξm

}

≤
∞
∑

m=1

X{Ξm}.

An uncertainty space is denoted by the triplet (Υ,P,X), and an event is denoted by each member

Ξ in P. For an uncertain measure of a compound event, Liu defines a product uncertain measure

as follows:

X

{

∞
∏

r=1

Ξr

}

=
∞
∧

r=1

X{Ξr}.

Definition 7 [15]. A complex uncertain variable is represented by a variable ζ in the uncer-

tainty space (Υ,P,X) if and only if both its real part ξ and imaginary part η are uncertain variables.

Here, ξ and η correspond to the real and imaginary components of the complex variable ζ = ξ+ iη,
respectively.

Definition 8 [1]. A complex uncertain sequence (ζm) is said to be convergent in measure to ζ
if for every ε > 0,

lim
m→∞

X
{

‖ζm(̺)− ζ(̺)‖ ≥ ε
}

= 0.

Definition 9 [22]. A complex uncertain sequence (ζm) is said to be statistically convergent in

measure to ζ if for any given positive values of ε, δ, we have

lim
m→∞

1

m

∣

∣

{

k ≤ m : X
(

‖ζk(̺)− ζ(̺)‖ ≥ ε
)

≥ δ
}
∣

∣ = 0

and we write ζm
SMs−−−→ ζ.

Definition 10. A complex uncertain sequence (ζm) is said to be I-convergent in measure to ζ
if for any given positive values of ε, δ, we have

{

m ∈ N : X
(

‖ζm(̺)− ζ(̺)‖ ≥ ε
)

≥ δ
}

∈ I.

and we write ζm
Ms(I)−−−−→ ζ.

In this paper, I is taken to be an admissible ideal.
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3. Main results

Definition 11. A complex uncertain sequence (ζm) is considered to be I-statistically conver-

gent in measure to ζ if, for any given positive values of ε, δ, υ, there exists a set satisfying the

condition
{

m ∈ N :
1

m

∣

∣

{

k ≤ m : X
(

‖ζk(̺)− ζ(̺)‖ ≥ ε
)

≥ δ
}
∣

∣ ≥ υ
}

∈ I.

This is denoted as ζm
SMs(I)−−−−−→ ζ.

Example 2. Consider the uncertainty space (Υ,P,X) to be {̺1, ̺2, · · · } with power set and
X{Υ} = 1, X{φ} = 0 and

X{Ξ} =



























sup
̺m∈Ξ

3

(2m+ 1)
, if sup

̺m∈Ξ

3

(2m+ 1)
<

1

2
,

1− sup
̺m∈Ξc

3

(2m+ 1)
, if sup

̺m∈Ξc

3

(2m+ 1)
<

1

2
,

1

2
, otherwise

for m = 1, 2, 3, . . . ,

and ζm(̺) (the complex uncertain variables) are defined by

ζm(̺) =

{

mi, if ̺ = ̺m, m = 1, 2, 3, . . . ,

0, otherwise

and ζ ≡ 0. Take I=Id.
For m ≥ 3 and small positive values of ε, δ, υ we get,

{

m ∈ N :
1

m

∣

∣{k ≤ m : X
(

‖ζk(̺)− ζ(̺)‖ ≥ ε
)

≥ δ
}∣

∣ ≥ υ
}

=
{

m ∈ N :
1

m

∣

∣{k ≤ m : X
(

̺ : ‖ζk(̺)− ζ(̺)‖ ≥ ε
)

≥ δ
}
∣

∣ ≥ υ
}

=
{

m ∈ N :
1

m

∣

∣{k ≤ m : X{̺k} ≥ δ}
∣

∣ ≥ υ
}

=
{

m ∈ N :
1

m

∣

∣

∣

{

k ≤ m :
3

2k + 1
≥ δ

}
∣

∣

∣
≥ υ

}

∈ I.

Therefore the sequence (ζm) is I-statistically convergent in measure to ζ.

Theorem 1. If ζm
SMs(I)−−−−−→ ζ and ζm

SMs(I)−−−−−→ ζ∗ then X{ζ = ζ∗} = 1.

P r o o f. Let ε, δ > 0 and 0 < υ < 1, then

G =
{

m ∈ N :
1

m

∣

∣

∣

{

k ≤ m : X
(

‖ζk − ζ‖ ≥ ε

2

)

≥ δ

2

}
∣

∣

∣
<

υ

3

}

∈ F(I),

and

H =
{

m ∈ N :
1

m

∣

∣

∣

{

k ≤ m : X
(

‖ζk − ζ∗‖ ≥ ε

2

)

≥ δ

2

}
∣

∣

∣
<

υ

3

}

∈ F(I).

Since G ∩H ∈ F(I) and φ /∈ F(I) this implies G ∩H 6= φ. Let m ∈ G ∩H. Then

1

m

∣

∣

∣

{

k ≤ m : X
(

‖ζk − ζ‖ ≥ ε

2

)

≥ δ

2

}
∣

∣

∣
<

υ

3
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and
1

m

∣

∣

∣

{

k ≤ m : X
(

‖ζk − ζ∗‖ ≥ ε

2

)

≥ δ

2

}∣

∣

∣
<

υ

3
.

Therefore

1

m

∣

∣

∣

{

k ≤ m : X
(

‖ζk − ζ‖ ≥ ε

2

)

≥ δ

2
or X

(

|| ζk − ζ∗ ||≥ ε

2

)

≥ δ

2

}
∣

∣

∣
< υ < 1.

Thus there exists some k ≤ m such that

X

(

‖ζk − ζ‖ ≥ ε

2

)

<
δ

2
and X

(

‖ζk − ζ∗‖ ≥ ε

2

)

<
δ

2
.

Therefore
X(||ζ − ζ∗|| ≥ ε) ≤ X

(

‖ζk − ζ‖ ≥ ε

2

)

+ X

(

‖ζk − ζ∗‖ ≥ ε

2

)

< δ.

Hence we get the result. �

Theorem 2. Elementary properties are valid :

(i) ζm
SMs(I)−−−−−→ ζ ⇐⇒ ζm − ζ

SMs(I)−−−−−→ 0;

(ii) ζm
SMs(I)−−−−−→ ζ =⇒ cζm

SMs(I)−−−−−→ cζ, where c ∈ C;

(iii) ζm
SMs(I)−−−−−→ ζ and ζ∗m

SMs(I)−−−−−→ ζ∗ =⇒ ζm + ζ∗m
SMs(I)−−−−−→ ζ + ζ∗;

(iv) ζm
SMs(I)−−−−−→ ζ and ζ∗m

SMs(I)−−−−−→ ζ∗ =⇒ ζm − ζ∗m
SMs(I)−−−−−→ ζ − ζ∗.

P r o o f. Let ε, δ, υ be any positive real numbers. For (i), (ii), the proofs are straight forward
and so omitted.

(iii) It is obvious from the inequality

X

(

‖(ζk + ζ∗k)− (ζ + ζ∗)‖ ≥ ε
)

≤ X

(

‖ζk − ζ‖ ≥ ε

2

)

+ X

(

‖ζ∗k − ζ∗‖ ≥ ε

2

)

.

We have
{

k ≤ m : X
(

‖(ζk − ζ) + (ζ∗k − ζ∗)‖ ≥ ε
)

≥ δ
}

⊆
{

k ≤ m : X
(

‖ζk − ζ‖ ≥ ε

2

)

≥ δ

2

}

∪
{

k ≤ m : X
(

‖ζ∗k − ζ∗‖ ≥ ε

2

)

≥ δ

2

}

.

Therefore

{

m ∈ N :
1

m

∣

∣

{

k ≤ m : X
(

‖(ζk + ζ∗k)− (ζ + ζ∗)‖ ≥ ε
)

≥ δ
}∣

∣ ≥ υ
}

⊆
{

m ∈ N :
1

m

∣

∣

∣

{

k ≤ m : X
(

‖ζk − ζ‖ ≥ ε

2

)

≥ δ

2

}
∣

∣

∣
≥ υ

2

}

∪
{

m ∈ N :
1

m

∣

∣

∣

{

k ≤ m : X
(

‖ζ∗k − ζ∗‖ ≥ ε

2

)

≥ δ

2

}∣

∣

∣
≥ υ

2

}

∈ I.

This implies

ζm + ζ∗m
SMs(I)−−−−−→ ζ + ζ∗.

(iv) The reason it was left out was because it was equivalent to the proof of (iii) above. �
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Theorem 3. If the complex uncertain sequences (ζm), (ζ∗m) are I-statistically convergent in

measure to ζ and ζ∗, respectively, and there exist positive numbers p1, p, q1, and q such that

p1 ≤ ‖ζm‖ , ‖ζ‖ ≤ p and q1 ≤ ‖ζ∗m‖ , ‖ζ∗‖ ≤ q for any n, then

(i) (ζmζ∗m) is I-statistically convergent in measure to ζζ∗.
(ii) (ζm/ζ∗m) is I-statistically convergent in measure to ζ/ζ∗.

P r o o f. Let (ζm), (ζ∗m) are I-statistically convergent in measure to ζ and ζ∗, respectively,
where (ζm), (ζ∗m) both are complex uncertain sequences. For p, q > 0 and any given positive values
of ε, δ, υ, we obtain

{

m ∈ N :
1

m

∣

∣

∣

{

k ≤ m : X

(

‖ζk − ζ‖ ≥ ε

2q

)

≥ δ

2

}
∣

∣

∣
≥ υ

}

∈ I,
{

m ∈ N :
1

m

∣

∣

∣

{

k ≤ m : X

(

‖ζ∗k − ζ∗‖ ≥ ε

2p

)

≥ δ

2

}
∣

∣

∣
≥ υ

}

∈ I.

Now

X

(

‖ζmζ∗m − ζζ∗‖ ≥ ε
)

= X

(

‖ζmζ∗m − ζmζ∗ + ζmζ∗ − ζζ∗‖ ≥ ε
)

≤ X

(

‖ζmζ∗m − ζmζ∗‖ ≥ ε

2

)

+ X

(

‖ζmζ∗ − ζζ∗‖ ≥ ε

2

)

≤ X

(

p‖ζ∗m − ζ∗‖ ≥ ε

2

)

+ X

(

q||ζm − ζ|| ≥ ε

2

)

=⇒ X

(

‖ζmζ∗m − ζζ∗‖ ≥ ε
)

≤ X

(

‖ζ∗m − ζ∗‖ ≥ ε

2p

)

+ X

(

||ζm − ζ|| ≥ ε

2q

)

.

Then for small number δ > 0,

{

k ≤ m : X(‖ζkζ∗k − ζζ∗‖ ≥ ε) ≥ δ
}

⊆
{

k ≤ m : X
(

‖ζ∗k − ζ∗‖ ≥ ε

2p

)

≥ δ

2

}

∪
{

k ≤ m : X
(

‖ζk − ζ‖ ≥ ε

2q

)

≥ δ

2

}

=⇒ 1

m

∣

∣

{

k ≤ m : X(‖ζkζ∗k − ζζ∗‖ ≥ ε) ≥ δ
}
∣

∣

≤ 1

m

∣

∣

∣

{

k ≤ m : X
(

‖ζ∗k − ζ∗‖ ≥ ε

2p

)

≥ δ

2

}
∣

∣

∣
+

1

m

∣

∣

∣

{

k ≤ m : X
(

‖ζk − ζ‖ ≥ ε

2q

)

≥ δ

2

}
∣

∣

∣
.

For small number υ > 0,

{

m ∈ N :
1

m

∣

∣

{

k ≤ m : X(‖ζkζ∗k − ζζ∗‖ ≥ ε) ≥ δ
}
∣

∣ ≥ υ
}

⊆
{

m ∈ N :≤ 1

m

∣

∣

∣

{

k ≤ m : X
(

‖ζ∗k − ζ∗‖ ≥ ε

2p

)

≥ δ

2

}
∣

∣

∣
≥ υ

}

∪
{

m ∈ N :
1

m

∣

∣

∣

{

k ≤ m : X
(

‖ζk − ζ‖ ≥ ε

2q

)

≥ δ

2

}
∣

∣

∣
≥ υ

}

∈ I.

Hence the sequence (ζmζ∗m) converges I-statistical in measure to ζζ∗.

(ii) It was left out because it is similar to the (i) proof above. �

Theorem 4. If a sequence (ζm) is ζm
Ms(I)−−−−→ ζ then it is ζm

SMs(I)−−−−−→ ζ.

P r o o f. It is evidently true. �
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But in general, the converse may not be true.

Example 3. Consider the uncertainty space (Υ,P,X) to be {̺1, ̺2, ...} with power set and
X{Υ} = 1, X{φ} = 0 and

X{Ξ} =



























sup
̺m∈Ξ

mβm
2m+ 1

, if sup
̺m∈Ξ

mβm
2m+ 1

<
1

2
,

1− sup
̺m∈Ξc

mβm
2m+ 1

, if sup
̺m∈Ξc

mβm
2m+ 1

<
1

2
,

1

2
, otherwise,

for m = 1, 2, 3, . . . ,

where

βm =

{

1, if m = k2, k ∈ N,

0, otherwise,
for m = 1, 2, 3, . . . .

Furthermore, ζm(̺) (the complex uncertain variables) are defined by

ζm(̺) =

{

(m+ 1)i, if ̺ = ̺m,

0, otherwise,
for m = 1, 2, 3, . . . ,

and ζ ≡ 0. Take I=If .
For every positive value of ε, we obtain

X
({

̺ ∈ Υ : ‖ζm(̺)− ζ(̺)‖ ≥ ε
})

= X(̺m) =
mβm
2m+ 1

.

Then
{

m ∈ N : X
(

‖ζm − ζ‖ ≥ ε
)

≥ δ
}

=
{

m ∈ N :
mβm
2m+ 1

≥ δ
}

/∈ If .

Now
1

m

∣

∣

{

k ≤ m : X(‖ζk − ζ‖ ≥ ε) ≥ δ
}∣

∣ ≤
√
m

m
=

1√
m
.

Then

{

m ∈ N :
1

m

∣

∣

{

k ≤ m : X
(

‖ζk − ζ‖ ≥ ε
)

≥ δ
}∣

∣ ≥ υ
}

⊆
{

m ∈ N :
1√
m

≥ υ
}

∈ If .

Hence the sequence (ζm) is not I-convergent in measure to ζ ≡ 0 but it is I-statistically convergent
in measure to ζ ≡ 0.

Theorem 5. For any sequence(ζm), ζm
SMs−−−→ ζ implies ζm

SMs(I)−−−−−→ ζ.

P r o o f. Let ζm
SMs−−−→ ζ. Then for each ε, δ > 0

lim
m→∞

1

m

∣

∣

{

k ≤ m : X
(

‖ζk − ζ‖ ≥ ε
)

≥ δ
}
∣

∣ = 0.

So for every υ > 0,

{

m ∈ N :
1

m

∣

∣

{

k ≤ m : X
(

‖ζk − ζ‖ ≥ ε
)

≥ δ
}∣

∣ ≥ υ
}
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is a finite set and since I is an admissible ideal, it must belong to I. Hence

ζm
SMs(I)−−−−−→ ζ.

But in general, the converse may not hold. �

Example 4. Let

N =
∞
⋃

j=1

Dj,

where
Dj =

{

2j−1k : 2 does not divide k, k ∈ N
}

be the decomposition of N such that each Dj is infimite and Dj ∩ Dk = φ, for j 6= k. Let I be
the class of all subsets of N that can intersect only fimite number of Dj

′s. Then I is a nontrivial
admissible ideal of N [11].

Now we consider the uncertainty space (Υ,P,X) to be {̺1, ̺2, ...} with power set and X{Υ} = 1,
X{φ} = 0 and

X{Ξ} =



























sup
̺m∈Ξ

βm, if sup
̺m∈Ξ

βm <
1

2
,

1− sup
̺m∈Ξc

βm, if sup
̺m∈Ξc

βm <
1

2
,

1

2
, otherwise,

where

βm =
1

j + 1
, if m ∈ Dj for m = 1, 2, 3, . . . .

Furthermore, ζm(̺) (the complex uncertain variables) are defined by

ζm(̺) =

{

(m+ 1)i, if ̺ = ̺m,

0, otherwise,
for m = 1, 2, 3, . . . ,

and ζ ≡ 0.
For m ∈ NrD1 and any positive number ε, we have

X
({

̺ ∈ Υ : ‖ζm(̺)− ζ(̺)‖ ≥ ε
})

= X(̺m) = βm.

Then

lim
m→∞

1

m

∣

∣

{

k ≤ m : X(‖ζk − ζ‖ ≥ ε) ≥ δ
}
∣

∣ 6= 0.

Thus the sequence (ζm) is not statistically convergent in measure to ζ ≡ 0.
Again

{

m ∈ N : X
(

‖ζm − ζ‖ ≥ ε
)

≥ δ
}

=
{

m ∈ N : βm ≥ δ
}

∈ I.
Therefore the sequence (ζm) is I-convergent in measure to ζ ≡ 0. By Theorem 4, the sequence (ζm)
is I-statistically convergent in measure to ζ ≡ 0.

Theorem 6. (ζm) is I-statistically convergent in measure to ζ if each of its subsequences is

I-statistically convergent in measure to ζ.
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P r o o f. Assume that (ζm) does not I-statistically convergent in measure to ζ. Consequently,
there are positive constants ε, δ, υ such that

A =
{

m ∈ N :
1

m

∣

∣

{

k ≤ m : X
(

‖ζk(̺)− ζ(̺)‖ ≥ ε
)

≥ δ
}
∣

∣ ≥ υ
}

/∈ I.

As I is an admissible ideal, it implies that the set A must be infinite.
Let A = {m1 < m1 < · · · < mk < · · · }. Let ζ∗k = ζmk

, k ∈ N. Then (ζ∗k)k∈N is a subsequence
of (ζm) which is not I-statistical convergent in measure to ζ, we have got a contradiction.
But in general, the converse may not hold.

Example 5. Consider the uncertainty space (Υ,P,X) to be {̺1, ̺2, · · · } with power set and
X{Υ} = 1, X{φ} = 0 and

X{Ξ} =



























sup
̺m∈Ξ

1

m
, if sup

̺m∈Ξ

1

m
<

1

2
,

1− sup
̺m∈Ξc

1

m
, if sup

̺m∈Ξc

1

m
<

1

2
,

1

2
, otherwise,

for m = 1, 2, 3, . . . ,

and ζm(̺) (the complex uncertain variables) are defined by

ζm(̺) =

{

(m+ 1)i, if ̺ = ̺m=k2 , k ∈ N,

0, otherwise,
for m = 1, 2, 3, . . . ,

and ζ ≡ 0. Take I=Id.
Clearly, the sequence (ζm) is I-statistically convergent in measure to ζ ≡ 0. But the subsequence
(ζm=k2), k ∈ N is not I-statistically convergent in measure to ζ ≡ 0.

Definition 12. A complex uncertain sequence, denoted as (ζm), is called I-statistically Cauchy

sequence in measure if, for any given ε and δ (both greater than zero), there exists a natural number

m0 such that, for any υ > 0, we have

{

m ∈ N :
1

m

∣

∣

{

k ≤ m : X
(

‖ζk(̺)− ζm0
(̺)‖ ≥ ε

)

≥ δ
}
∣

∣ ≥ υ
}

∈ I.

Theorem 7. A complex uncertain sequence (ζm) is I-statistically Cauchy sequence in measure

if it is I-statistically convergent in measure to ζ.

P r o o f. Let the complex uncertain sequence (ζm) be I-statistically convergent in measure to
ζ. Then for 0 < υ < 1 and every positive number ε, δ, we have

{

m ∈ N :
1

m

∣

∣

∣

{

k ≤ m : X
(

‖ζk − ζ‖ ≥ ε

2

)

≥ δ

2

}
∣

∣

∣
≥ υ

}

∈ I.

Then for 0 < υ < 1,

G =
{

m ∈ N :
1

m

∣

∣

∣

{

k ≤ m : X
(

‖ζk − ζ‖ ≥ ε

2

)

≥ δ

2

}∣

∣

∣
< υ

}

∈ F(I).

Since G ∈ F(I) and φ /∈ F(I), so G 6= φ. Let m ∈ G. Then

1

m

∣

∣

∣

{

k ≤ m : X
(

‖ζk − ζ‖ ≥ ε

2

)

≥ δ

2

}∣

∣

∣
< υ < 1.
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So, there exists some m0 ≤ m such that

X

(

‖ζm0
− ζ‖ ≥ ε

2

)

<
δ

2
.

We have

{

k ≤ m : X
(

‖ζk − ζm0
‖ ≥ ε

)

≥ δ
}

⊂
{

k ≤ m : X
(

‖ζk − ζ‖ ≥ ε

2

)

≥ δ

2

}

which implies

{

m ∈ N :
1

m

∣

∣

∣

{

k ≤ m : X
(

‖ζk − ζm0
‖ ≥ ε

)

≥ δ
}
∣

∣

∣
≥ υ

}

⊂
{

m ∈ N :
1

m

∣

∣

∣

{

k ≤ m : X
(

‖ζk − ζ‖ ≥ ε

2

)

≥ δ

2

}
∣

∣

∣
≥ υ

}

∈ I.

Hence the sequence (ζm) is I-statistically Cauchy sequence in measure. �

But in general, the converse may not hold.

Example 6. Consider the uncertainty space (Υ,P,X) to be equivalent to set of real number R
with Ξm = (m,∞), for m = 1, 2, 3, . . . and

X{Ξ} =















0, if Ξ = φ or Ξ is upper bounded,
1

2
, if both Ξ and Ξc are upper unbounded,

1, if Ξ = Υ or Ξc is upper bounded.

Furthermore, ζm(̺) (the complex uncertain variables) are defined by

ζm(̺) =

{

i, if ̺ ∈ Ξm,

0, if ̺ /∈ Ξm,
for m = 1, 2, 3, . . . ,

and ζ ≡ 0. Take I=Id. Now

{

̺ ∈ Υ : ‖ζm(̺)− ζm0
(̺)‖ ≥ ε

}

=

{

(m0,m], if 0 < ε ≤ 1,

φ, if ε > 1.

=⇒ X
({

̺ ∈ Υ : ‖ζm(̺)− ζm0
(̺)‖ ≥ ε

})

= 0

=⇒ lim
m→∞

1

m

∣

∣

{

k ≤ m : X(‖ζk − ζm0
‖ ≥ ε) ≥ δ

}∣

∣ = 0.

Therefore
{

m ∈ N :
1

m

∣

∣

{

k ≤ m : X(‖ζk − ζm0
‖ ≥ ε) ≥ δ

}∣

∣ ≥ υ
}

∈ I.

Again,
X
({

̺ ∈ Υ : ‖ζm(̺)− ζ(̺)‖ ≥ ε
})

= X(Ξm) = 1.

So,

lim
m→∞

1

m

∣

∣

{

k ≤ m : X(‖ζk − ζ‖ ≥ ε) ≥ δ
}
∣

∣ 6= 0.

Therefore
{

m ∈ N :
1

m

∣

∣

{

k ≤ m : X(‖ζk − ζ‖ ≥ ε) ≥ δ
}
∣

∣ ≥ υ
}

/∈ I.

Hence the sequence (ζm) is not I-statistically convergent in measure to ζ ≡ 0 but it is I-statistically
Cauchy sequence in measure.
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4. Conclusion

This paper mainly contributes to the study of I-statistical convergence in measure of complex
uncertain sequences, by establishing some of its properties. Also, we define I-statistical Cauchy
sequence in measure and study the relationship among them. It is possible to generalize and apply
these concepts and results to future research in this area.
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