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Abstract: The paper deals with approximative and form–retaining properties of the local parabolic splines
of the form S(x) =

P
j

yjB2(x− jh), (h > 0), where B2 is a normalized parabolic spline with the uniform nodes

and functionals yj = yj(f) are given for an arbitrary function f defined on R by means of the equalities

yj =
1

h1

h1
2Z

−h1
2

f(jh + t)dt (j ∈ Z).

On the class W 2∞ of functions under 0 < h1 ≤ 2h, the approximation error value is calculated exactly for the
case of approximation by such splines in the uniform metrics.
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Introduction

In the function approximation theory, the local polynomial splines of the order r and of minimal
defect are usually constructed as linear combinations of the corresponding B-splines Br,j(x). For a
function f from the class of continuous ones, the local polynomial spline S(x) = S(f, x) is defined
as follows:

S(x) =
∑

j

bj(f)Br,j(x), (0.1)

where bj(f) is the sequence of linear continuous functionals, whose choice determines the form of
the approximation.

As the functionals bj(f), one chooses the linear combinations of the function values and its
derivatives at the mesh nodes or its divided differences.

The most simple and convenient (in computation) version of this choice is bj(f) = f(xj) (here,
xj are the nodes of the spline S mesh). It leads to the well known local spline (see, for example,
[1–4]):

S(x) =
∑

j

f(xj)Br,j(x). (0.2)

In formula (0.2) instead of xj , the arithmetic mean is often used that is calculated over all nodes
of the B–spline Br,j(x) ([1–3]).

1The paper was originally published in Trudy Institute of Mathematics and Mechanics, Ural Branch of
the Russian Academy of Sciences, 2007. Vol. 13, no. 4. P. 169–189 (in Russian).
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A spline (constructed in such a way) is not an interpolation one. But in the case r = 2 (i.e., of
the parabolic splines), it is a continuously differentiable function on the whole number axis R and
possesses both the form–retaining and extremal features [5].

But if the function f is not continuous but only integrable, it is not natural to consider aspects
of this function approximation taking into account only its values at the mesh nodes. It is so since
its values at separate points are not essential for functions of such a type. In such case, one uses the
interpolation on the average. Aspects of existence, uniqueness, and approximative and extremal
properties of such splines were investigated in works [6–8]. (Generalizations onto the L-splines see,
also, on [9, 10]).

Let two real numbers h > 0 and h1 > 0 be given. For a function integrable on the whole number
axis f : R→ R assume

bj(f) = yj =





1
h1

h1
2∫

−h1
2

f(jh + t)dt, h1 > 0,

f(jh), h1 = 0.

(0.3)

Let B2,0(x) be a normalized parabolic B–spline (see, for example, [1]) with nodes −3h

2
, −h

2
,
h

2
,
3h

2
,

and B2,j(x) = B2,0(x− jh).
Let, also, W 2∞ = W 2∞(X) = {f : f ′ ∈ AC, ‖f ′′‖∞ ≤ 1} be a class of functions given on the set

X (X = R or X = [a, b]).
Here, AC is the class of locally absolute continuous functions ‖ · ‖∞ = ‖ · ‖L∞(X), L∞(X) is the

class of the functions essentially restricted on X with the usual definition of the norm

‖f‖∞ = ess sup
x∈X

|f(x)|.

In the present work, we investigate in details aspects of approximation of smooth functions f
by the local parabolic splines of the form (0.1) (i.e., for r = 2) with the choice of the functionals
bj(f) in the form (0.3).

1. Properties of the spline S

On the axis R (on both its sides), consider the following mesh of nodes: · · · < x−2 < x−1 <

x0 < x1 < x2 < · · · ; and let xj = jh, h = xj+1 − xj , xj+1/2 = xj +
h

2
(j ∈ Z).

For xj ≤ x ≤ xj+1/2 from formulas (0.1) and (0.3), it follows

S(x) = yj−1 ·
(x− xj+1/2)2

2h2
+ yj ·

(
xj+1 − x

h
− (x− xj+1/2)2

h2

)

+yj+1 ·
(

(x− xj+1/2)2

2h2
+

x− xj

h

)
,

(1.1)

and for xj+1/2 ≤ x ≤ xj+1

S(x) = yj ·
(

(x− xj+1/2)2

2h2
+

xj+1 − x

h

)
+ yj+1 ·

(
x− xj

h
− (x− xj+1/2)2

h2

)

+yj+2 ·
(x− xj+1/2)2

2h2
.

(1.2)
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To the function f(x) ∈ W 2∞(R), we put in correspondence the parabolic spline S(x) = S(f, x)
(see (1.1)–(1.2)), where the functionals yj are defined by formula (0.3).

For h1 = 0, the form-retaining and approximation properties of such splines were investigated
in [5]; so, we shall consider the case h1 > 0.

Denote by Aj the interval
(
xj − h1

2
; xj +

h1

2

)
, j ∈ Z.

Theorem 1. The local spline S(x) defined by formulas (1.1) − (1.2), possesses the following
properties:
1) locally inherits the sign of the original function f in the sense that

a) if f(x) ≥ 0 (≤ 0) for x ∈ Aj−1
⋃

Aj
⋃

Aj+1, then S(x) ≥ 0 (≤ 0) for xj ≤ x ≤ xj+1/2 (j ∈ Z);
b) if f(x) ≥ 0 (≤ 0) for x ∈ Aj

⋃
Aj+1

⋃
Aj+2, then S(x) ≥ 0 (≤ 0) for xj+1/2≤x≤xj+1 (j∈Z);

2) locally inherits the monotonicity property of the original function f , namely,

a) if the function f(x) does not decrease (does not increase) in the interval
(
xj−1−h1

2
; xj+1+

h1

2

)
,

then the spline S(x) does not decrease (does not increase) in the interval (xj ; xj+1/2) (j ∈ Z);

b) if the function f(x) does not decrease (does not increase) in the interval
(
xj − h1

2
;xj+2 +

h1

2

)
,

then the spline S(x) does not decrease (does not increase) in the interval (xj+1/2; xj+1) (j ∈ Z).

P r o o f. For the point 1), the proof follows directly from non-negativity of the B–spline
B2,0(x), formula (0.2), and non-negativity of yj for x ∈ Aj .

Point 2a). From condition of point 2) of Theorem 1 and definition of yj it follows yj+1 ≥ yj ≥
yj−1. By differentiation of the right-hand side of equations (1.1), we obtain that for x ∈ (

xj ; xj+1/2

)
the derivative

S′(x) =
yj+1 − yj

h
+

x− xj+1/2

h2
· (yj+1 − 2yj + yj+1)

of the spline S in this interval is a linear function in the variable x. So, to prove point 2), it is
sufficient to verify that for yj+1 ≥ yj ≥ yj−1, inequalities S′(xj + 0) ≥ 0, S′(xj+1/2 − 0) ≥ 0 hold.
Validity of these inequalities follows from the formulas

S′(xj + 0) =
yj+1 − yj−1

2h
,

S′(xj+1/2 − 0) =
yj+1 − yj

h
;

and point 2a) of Theorem 1 is proved.
Point 2b). From conditions of point 2b) of Theorem 1 and definition of yj , it follows yj+2 ≥

yj+1 ≥ yj . By differentiation of the right-hand side of equality (1.2), we obtain that for x ∈(
xj+1/2;xj

)
, the derivative

S′(x) =
yj+1 − yj

h
+

x− xj+1/2

h2
· (yj+2 − 2yj+1 + yj)

of the spline S in this interval is a linear function in the variable x. So, to prove point b), it is
sufficient to verify that for yj+2 ≥ yj+1 ≥ yj , the equalities S′(xj+1/2 + 0) ≥ 0, S′(xj+1 − 0) ≥ 0
hold. But this follows from the formulae

S′(xj+1/2 + 0) =
yj+1 − yj

h
,

S′(xj+1 − 0) =
yj+2 − yj

2h
.

¤
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Before formulation of further statements, obtain the integral representation for the difference
S(x)− f(x) in the interval [xj ; xj+1] for 0 < h1 ≤ 2h.

Let for the beginning x ∈ [xj ; xj+1/2]. Then, by the Taylor formula for the function f(x) ∈
W 2∞(R) we have

f(x) = f(xj) + f ′(xj)(x− xj) +

x∫

xj

(x− t)f ′′(t)dt. (1.3)

Using (1.3) and definition yj (see (0.3)), we derive

yj−1 = f(xj)− f ′(xj)h +
1
h1

h1
2∫

−h1
2

ds

s+xj−1∫

xj

(xj−1 + s− t)f ′′(t)dt,

yj = f(xj) +
1
h1

h1
2∫

−h1
2

ds

s+xj∫

xj

(xj + s− t)f ′′(t)dt,

yj+1 = f(xj) + f ′(xj)h +
1
h1

h1
2∫

−h1
2

ds

s+xj+1∫

xj

(xj+1 + s− t)f ′′(t)dt.

Therefore, from (1.1), we obtain

S(x) =
(x− xj+1/2)2

2h2

[
f(xj)− f ′(xj)h +

1
h1

h1
2∫

−h1
2

ds

s+xj−1∫

xj

(xj−1 + s− t)f ′′(t)dt

]

+
(

xj+1 − x

h
− (x− xj+1/2)2

h2

)[
f(xj) +

1
h1

h1
2∫

−h1
2

ds

s+xj∫

xj

(xj + s− t)f ′′(t)dt

]

+
(

(x− xj+1/2)2

2h2
+

x− xj

h

)[
f(xj) + f ′(xj)h +

1
h1

h1
2∫

−h1
2

ds

s+xj+1∫

xj

(xj+1 + s− t)f ′′(t)dt

]
.

(1.4)

Taking into account that 0 < h1 ≤ 2h, change the integration order in the integrals entering
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into representation (1.4). Hence, we obtain

S(x) =
(x− xj+1/2)2

2h2

{
f(xj)− f ′(xj)h +

1
h1

[ xj−1+
h1
2∫

xj−1−h1
2

1
2
f ′′(t)

(
t− xj−1 +

h1

2

)2
dt

+

xj∫

xj−1+
h1
2

f ′′(t)h1(t− xj−1)dt
]}

+
(xj+1 − x

h
− (x− xj+1/2)2

h2

)

×
{

f(xj) +
1
h1

[ xj∫

xj−h1
2

1
2
f ′′(t)

(
t− xj +

h1

2

)2
dt +

xj+
h1
2∫

xj

1
2
f ′′(t)

(
t− xj − h1

2

)2
dt

]}

+
((x− xj+1/2)2

2h2
+

x− xj

h

){
f(xj) + f ′(xj)h +

1
h1

[ xj+1−h1
2∫

xj

f ′′(t)h1(xj+1 − t)dt

+

xj+1+
h1
2∫

xj+1−h1
2

1
2
f ′′(t)

(
t− xj+1 − h1

2

)2
dt

]}
, x ∈ [xj ;xj+1/2].

(1.5)

By virtue of symmetry of formulas for S(x) w.r.t. the middle xj+1/2 of the interval [xj ; xj+1],
we obtain the following similar representation of S(x) for x ∈ [xj+1/2, xj+1]:

S(x) =
((x− xj+1/2)2

2h2
+

xj+1 − x

h

){
f(xj) +

1
h1

[ xj∫

xj−h1
2

1
2
f ′′(t)

(
t− xj +

h1

2

)2
dt

+

xj+
h1
2∫

xj

1
2
f ′′(t)

(
t− xj − h1

2

)2
dt

]}
+

(x− xj

h
− (x− xj+1/2)2

h2

){
f(xj) + f ′(xj)h

+
1
h1

[ xj+1−h1
2∫

xj

f ′′(t)h1(xj+1 − t)dt +

xj+1+
h1
2∫

xj+1−h1
2

1
2
f ′′(t)

(
t− xj+1 − h1

2

)2
dt

]}

+
(x− xj+1/2)2

2h2

{
f(xj) + f ′(xj)2h +

1
h1

[ xj+2−h1
2∫

xj

f ′′(t)h1(xj+2 − t)dt

+

xj+2+
h1
2∫

xj+2−h1
2

1
2
f ′′(t)

(
t− xj+2 − h1

2

)2
dt

]}
, x ∈ [xj+1/2, xj+1].

¤

Theorem 2. A local spline S(x) defined by formula (1.1) − (1.2), for 0 < h1 ≤ 2h, possesses
the following properties:
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1) inherits locally the convexity property of the original function f , namely,

a) if the function f(x) is down- (upper) convex in the interval
(
xj−1 − h1

2
; xj+1 +

h1

2

)
, then

the spline S(x) is the down- (upper-) convex function in the interval (xj ; xj+1/2) (j ∈ Z);

b) if the function f(x) is down- (upper-) convex in the interval
(
xj − h1

2
; xj+2 +

h1

2

)
, then the

spline S(x) is the down- (upper-) convex function in the interval (xj+1/2; xj+1) (j ∈ Z).

2) a) for any function f ∈ W 2∞
[
xj−1 − h1

2
; xj+1 +

h1

2

]
, the exact inequality holds

| S′′(x) |≤ 1, x ∈ (
xj ;xj+1/2

)
,

and, moreover, for all x ∈ (
xj ;xj+1/2

)
, the inequality sign is provided by the function f(x) =

x2

2
;

b) for any function f ∈ W 2∞
[
xj − h1

2
;xj+2 +

h1

2

]
, the exact inequality holds

| S′′(x) |≤ 1, x ∈ (
xj+1/2; xj+1

)
,

and, moreover, for all x ∈ (
xj+1/2; xj+1

)
, the inequality sign is provided by the function f(x) =

x2

2
.

P r o o f. To prove 1a), it is necessary to verify that if

f ′′(x) ≥ 0 (≤ 0) for x ∈
(
xj−1 − h1

2
; xj+1 +

h1

2

)
,

then S′′(x) ≥ 0 (≤ 0) for x ∈ (
xj ; xj+1/2

)
.

By the twice differentiation of the function S(x), we obtain from formula (1.5)

S′′(x) =

xj−1+
h1
2∫

xj−1−h1
2

f ′′(t)C1(t)dt +

xj∫

xj−1+
h1
2

f ′′(t)C2(t)dt +

xj∫

xj−h1
2

f ′′(t)C3(t)dt

+

xj+
h1
2∫

xj

f ′′(t)C4(t)dt +

xj+1−h1
2∫

xj

f ′′(t)C5(t)dt +

xj+1+
h1
2∫

xj+1−h1
2

f ′′(t)C6(t)dt,

(1.6)

where

C1(t) =
1

2h2h1

(
t− xj−1 +

h1

2

)2

, C2(t) =
1
h2

(t− xj−1), C3(t) = − 1
h2h1

(
t− xj +

h1

2

)2

,

C4(t) = − 1
h2h1

(
t− xj − h1

2

)2

, C5(t) =
1
h2

(xj+1 − t), C6(t) =
1

2h2h1

(
t− xj+1 − h1

2

)2

.

Divide the further proof into two cases: 1) 0 < h1 ≤ h, and 2) h < h1 ≤ 2h.
Case 1). Let 0 < h1 ≤ h. Under this, the function S′′(x) is transformed to the form

S′′(x) =

xj−1+
h1
2∫

xj−1−h1
2

f ′′(t)C1(t)dt +

xj−h1
2∫

xj−1+
h1
2

f ′′(t)C2(t)dt +

xj∫

xj−h1
2

f ′′(t)(C2(t) + C3(t))dt

+

xj+
h1
2∫

xj

f ′′(t)(C4(t) + C5(t))dt +

xj+1−h1
2∫

xj+
h1
2

f ′′(t)C5(t)dt +

xj+1+
h1
2∫

xj+1−h1
2

f ′′(t)C6(t)dt.

(1.7)
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From the definitions of Cj(t) (j = 1, 6), it follows that C1(t) ≥ 0 for t ∈
[
xj−1− h1

2
; xj−1 +

h1

2

]
,

C2(t) ≥ 0 for t ∈
[
xj−1 +

h1

2
; xj − h1

2

]
, C5(t) ≥ 0 for t ∈

[
xj +

h1

2
;xj+1 − h1

2

]
, and C6(t) ≥ 0 for

t ∈
[
xj+1 − h1

2
; xj+1 +

h1

2

]
.

Now it remains to investigate the quadratic trinomials C2(t) + C3(t) for t ∈
[
xj − h1

2
; xj

]
and

C4(t) + C5(t) for t ∈
[
xj ; xj +

h1

2

]
.

Non-negativity of the functions C2(t) + C3(t) for t ∈
[
xj − h1

2
; xj

]
and C4(t) + C5(t) for

t ∈
[
xj ;xj +

h1

2

]
follows from the fact that the branches of corresponding parabolas are down-

directed and their values (at the ends of the intervals under investigation) are non-negative. Namely,

C2(xj) + C3(xj) = C4(xj) + C5(xj) =
4h− h1

4h2
≥ 0,

C2(xj − h1

2
) + C3(xj − h1

2
) = C4(xj +

h1

2
) + C5(xj +

h1

2
) =

2h− h1

2h2
≥ 0.

From the statements proved, representation (1.7), and the condition f ′′(t) ≥ 0 for

t ∈
(
xj−1 − h1

2
;xj+1 +

h1

2

)
, it follows that S′′(x) ≥ 0 for x ∈ (xj ;xj+1/2).

Case 2). Let h < h1 ≤ 2h. Under this, the function S′′(x) is transformed to the form

S′′(x) =

xj−h1
2∫

xj−1−h1
2

f ′′(t)C1(t)dt+

xj−1+
h1
2∫

xj−h1
2

f ′′(t)(C1(t)+C3(t))dt +

xj∫

xj−1+
h1
2

f ′′(t)(C2(t)+C3(t))dt

+

xj+1−h1
2∫

xj

f ′′(t)(C4(t)+C5(t))dt+

xj+
h1
2∫

xj+1−h1
2

f ′′(t)(C4(t)+C6(t))dt +

xj+1+
h1
2∫

xj+
h1
2

f ′′(t)C6(t)dt. (1.8)

From the definitions of Cj(t) (j = 1, 6), it follows that C1(t) ≥ 0 for

t ∈
[
xj−1 − h1

2
; xj − h1

2

]
and C6(t) ≥ 0 for t ∈

[
xj +

h1

2
;xj+1 +

h1

2

]
.

Elementary calculations show that

C1

(
xj − h1

2

)
+ C3

(
xj − h1

2

)
= C4

(
xj +

h1

2

)
+ C6

(
xj +

h1

2

)
=

1
2h1

≥ 0,

C1

(
xj−1 +

h1

2

)
+ C3

(
xj−1 +

h1

2

)
= C4

(
xj+1 +

h1

2

)
+ C6

(
xj+1 +

h1

2

)
=

2h2 − (h1 − 2h)2

2h1h2
≥ 0,

C2(xj) + C3(xj) = C4(xj) + C5(xj) =
1
h2

(
h− h1

4

)
≥ 0,

C2

(
xj−1 +

h1

2

)
+ C3

(
xj−1 +

h1

2

)
= C4

(
xj+1 − h1

2

)
+ C5

(
xj+1 − h1

2

)
=

2h2 − (h1 − 2h)2

2h1h2
≥ 0.

Since the quadratic trinomials C1(t) + C3(t), C2(t) + C3(t), C4(t) + C5(t), and C4(t) + C6(t)
have negative leading coefficients and their values at the ends of the corresponding intervals are
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non-negative, we have

C1(t) + C3(t) ≥ 0 for t ∈
[
xj − h1

2
; xj−1 +

h1

2

]
,

C2(t) + C3(t) ≥ 0 for t ∈
[
xj−1 +

h1

2
; xj

]
,

C4(t) + C5(t) ≥ 0 for t ∈
[
xj ; xj+1 − h1

2

]
,

C4(t) + C6(t) ≥ 0 for t ∈
[
xj+1 − h1

2
;xj +

h1

2

]
.

From the statements proved, representation (1.8), and the condition f ′′(t) ≥ 0 for t ∈
(
xj−1 −

h1

2
; xj+1 +

h1

2

)
, it follows that S′′(x) ≥ 0 for x ∈ (xj ; xj+1/2).

Proof of point 1b) one-to-one repeats the reasonings mentioned in the prof of point 1a) after
substitution the variable x− xj by the xj+1 − x one.

Point 2a). Estimate |S′′(x)| for x ∈ [xj ; xj+1/2]. Under 0 < h1 ≤ h by (1.7) for any function

f ∈ W 2∞
[
xj−1− h1

2
; xj+1 +

h1

2

]
, the value |S′′(x)| is estimated from above by the sum of integrals,

and this sum is equal to 1. Namely,

|S′′(x)| ≤
xj−1+

h1
2∫

xj−1−h1
2

C1(t)dt +

xj−h1
2∫

xj−1+
h1
2

C2(t)dt +

xj∫

xj−h1
2

(C2(t) + C3(t))dt

+

xj+
h1
2∫

xj

(C4(t) + C5(t))dt +

xj+1−h1
2∫

xj+
h1
2

C5(t)dt +

xj+1+
h1
2∫

xj+1−h1
2

C6(t)dt = 1, x ∈ [xj ; xj+1/2].

Similarly, for h < h1 ≤ 2h from (1.7), we derive that for any function

f ∈ W 2∞
[
xj − h1

2
;xj+2 +

h1

2

]
for x ∈ [xj ; xj+1/2], the following inequality holds:

|S′′(x)| ≤
xj−h1

2∫

xj−1−h1
2

C1(t)dt +

xj−1+
h1
2∫

xj−h1
2

(C1(t) + C3(t))dt +

xj∫

xj−1+
h1
2

(C2(t) + C3(t))dt

+

xj+1−h1
2∫

xj

(C4(t) + C5(t))dt +

xj+
h1
2∫

xj+1−h1
2

(C4(t) + C6(t))dt +

xj+1+
h1
2∫

xj+
h1
2

C6(t)dt = 1.

From the proofs considered above, it follows that in both cases the function that realizes exact

equality in the inequalities proved is the function f(x) =
x2

2
.

Point 2b). The proof follows directly from the function S(x) symmetry w.r.t. the middle
point xj+1/2 of the interval [xj ; xj+1].

¤
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2. Estimations of approximation errors

Theorem 3. For 0 ≤ h1 ≤ 2h, the following equality holds:

sup
f∈W 2∞(R)

‖f − S‖∞ =
h2

8
+

h2
1

24
.

P r o o f. Consider for x ∈ [xj ; xj+1/2] non-integral terms in the function f ∈ W 2∞
[
xj−1 −

h1

2
; xj+1 +

h1

2

]
in representation (1.3) and in the function S(x) in representation (1.5). Note that

they coincide since

(x− xj+1/2)2

2h2
(f(xj)− f ′(xj)h) +

(
xj+1 − x

h
− (x− xj+1/2)2

h2

)
f(xj)

+
(

(x− xj+1/2)2

2h2
+

x− xj

h

)
(f(xj) + f ′(xj)h) = f(xj) + f ′(xj).

Taking this into account, we have for any x ∈ [xj ; xj+1/2]

S(x)− f(x) =
(x− xj+1/2)2

2h2

1
h1

[xj−1+
h1
2∫

xj−1−h1
2

1
2
f ′′(t)

(
t− xj−1 +

h1

2

)2
dt +

xj∫

xj−1+
h1
2

f ′′(t)h1(t− xj−1)dt

]

+
(

xj+1 − x

h
− (x− xj+1/2)2

h2

)
1
h1

[ xj∫

xj−h1
2

1
2
f ′′(t)

(
t− xj +

h1

2

)2
dt +

xj+
h1
2∫

xj

1
2
f ′′(t)

(
t− xj − h1

2

)2
dt

]

+
(

(x− xj+1/2)2

2h2
+

x− xj

h

)
1
h1

[xj+1−h1
2∫

xj

f ′′(t)h1(xj+1 − t)dt +

xj+1+
h1
2∫

xj+1−h1
2

1
2
f ′′(t)

(
t− xj+1 − h1

2

)2
dt

]

−
x∫

xj

f ′′(t)(x− t)dt. (2.1)

So, for any x ∈ [xj ; xj+1/2], the following equality holds:

S(x)− f(x) =

xj−1+
h1
2∫

xj−1−h1
2

f ′′(t)K1(x, t)dt +

xj∫

xj−1+
h1
2

f ′′(t)K2(x, t)dt

+

xj∫

xj−h1
2

f ′′(t)K3(x, t)dt +

xj+
h1
2∫

xj

f ′′(t)K4(x, t)dt +

xj+1−h1
2∫

xj

f ′′(t)K5(x, t)dt

+

xj+1+
h1
2∫

xj+1−h1
2

f ′′(t)K6(x, t)dt−
x∫

xj

f ′′(t)K7(x, t)dt,

(2.2)
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where

K1(x, t) =
(x− xj+1/2)2

4h2h1

(
t− xj−1 +

h1

2

)2
,

K2(x, t) =
(x− xj+1/2)2

2h2
(t− xj−1),

K3(x, t) =
(

xj+1 − x

h
− (x− xj+1/2)2

h2

)
1

2h1

(
t− xj +

h1

2

)2

,

K4(x, t) =
(

xj+1 − x

h
− (x− xj+1/2)2

h2

)
1

2h1

(
t− xj − h1

2

)2

,

K5(x, t) =
(

(x− xj+1/2)2

2h2
+

x− xj

h

)
(xj+1 − t),

K6(x, t) =
(

(x− xj+1/2)2

2h2
+

x− xj

h

)
1

2h1

(
t− xj+1 − h1

2

)2

,

K7(x, t) = t− x.

Further proof for x ∈ [xj ; xj+1/2] is divided into two cases: 1) 0 < h1 ≤ h and 2) h < h1 ≤ 2h.

Case 1). Let 0 < h1 ≤ h. Under this, the difference S(x) − f(x) for x ∈
[
xj , xj +

h1

2

]
is

transformed to the form

S(x)− f(x) =

xj−1+
h1
2∫

xj−1−h1
2

f ′′(t)K1(x, t)dt +

xj−h1
2∫

xj−1+
h1
2

f ′′(t)K2(x, t)dt

+

xj∫

xj−h1
2

f ′′(t)(K2(x, t) + K3(x, t))dt +

x∫

xj

f ′′(t)(K4(x, t) + K5(x, t) + K7(x, t))dt

+

xj+
h1
2∫

x

f ′′(t)(K4(x, t) + K5(x, t))dt +

xj+1−h1
2∫

xj+
h1
2

f ′′(t)K5(x, t)dt +

xj+1+
h1
2∫

xj+1−h1
2

f ′′(t)K6(x, t)dt.

(2.3)

But for x ∈
[
xj +

h1

2
, xj+1/2

]
, its form is

S(x)− f(x) =

xj−1+
h1
2∫

xj−1−h1
2

f ′′(t)K1(x, t)dt +

xj−h1
2∫

xj−1+
h1
2

f ′′(t)K2(x, t)dt

+

xj∫

xj−h1
2

f ′′(t)(K2(x, t) + K3(x, t))dt +

xj+
h1
2∫

xj

f ′′(t)(K4(x, t) + K5(x, t) + K7(x, t))dt

+

x∫

xj+
h1
2

f ′′(t)(K5(x, t) + K7(x, t))dt +

xj+1−h1
2∫

x

f ′′(t)K5(x, t)dt +

xj+1+
h1
2∫

xj+1−h1
2

f ′′(t)K6(x, t)dt.

(2.4)
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To obtain the estimation value on the function class W 2∞ = W 2∞(R), we shall prove that

under x ∈ [xj , xj+1/2]: K1(x, t) ≥ 0 for t ∈
[
xj−1 − h1

2
; xj−1 +

h1

2

]
, K2(x, t) ≥ 0 for

t ∈
[
xj−1 +

h1

2
; xj − h1

2

]
, K2(x, t) + K3(x, t) ≥ 0 for t ∈

[
xj − h1

2
; xj

]
, K6(x, t) ≥ 0 for

t ∈
[
xj+1 − h1

2
; xj+1 +

h1

2

]
;

under x ∈
[
xj , xj +

h1

2

]
: K4(x, t)+K5(x, t)+K7(x, t) ≥ 0 for t ∈ [xj ; x], K4(x, t)+K5(x, t) ≥ 0

for t ∈
[
x; xj +

h1

2

]
, K5(x, t) ≥ 0 for t ∈

[
xj +

h1

2
; xj+1 − h1

2

]
;

under x ∈
[
xj +

h1

2
, xj+1/2

]
: K4(x, t)+K5(x, t)+K7(x, t) ≥ 0 for t ∈ [xj ;xj +

h1

2
], K5(x, t)+

K7(x, t) ≥ 0 for t ∈
[
xj +

h1

2
; x

]
, K5(x, t) ≥ 0 for t ∈

[
x; xj+1 − h1

2

]
.

All these inequalities (except only two) immediately follow from definitions of the functions
Kj(x, t) (j = 1, 7). So, it is only necessary to verify that K4(x, t) + K5(x, t) + K7(x, t) ≥ 0 for

x ∈
[
xj , xj +

h1

2

]
, t ∈ [xj ; x], for x ∈

[
xj +

h1

2
, xj+1/2

]
, t ∈

[
xj ; xj +

h1

2

]
and K5(x, t)+K7(x, t) ≥ 0

for x ∈
[
xj +

h1

2
, xj+1/2

]
, t ∈

[
xj +

h1

2
; x

]
.

The function K4(x, t) + K5(x, t) + K7(x, t) is the quadratic trinomial in the variable t with the

positive leading coefficient; at the ends of the intervals [xj ; x],
[
xj ; xj +

h1

2

]
this function (as one of

the variable t) takes the positive values, and abscissa of the corresponding parabola apex is placed
at the left from the point xj . From this, the non-negativity of this function on the mentioned sets
follows.

The function K5(x, t) + K7(x, t) is linear in the variable t and takes non-negative values at the

ends of the interval
[
xj +

h1

2
; x

]
. Hence, K5(x, t) + K7(x, t) ≥ 0 in the whole interval

[
xj +

h1

2
;x

]

for x ∈
[
xj +

h1

2
, xj+1/2

]
.

Taking into account the above proved facts, it follows from formulas (2.3) and (2.4) that to
obtain the estimate from above for the value |S(x)− f(x)| (for these formulas) in the class W 2∞(R)
and, hence, in formula (2.1), the function f ′′(t) can be substituted by 1 in (2.3) and (2.4).

Put f ′′(t) = 1 and calculate for it values of integrals in the right-hand side of formula (2.1);

denote this value by the symbol J . After elementary calculations, we obtain that J =
h2

8
+

h2
1

24
. It

implies that the exact inequality

|f(x)− S(x)| ≤ h2

8
+

h2
1

24

holds for any function f ∈ W 2∞
[
xj−1 − h1

2
; xj+1 +

h1

2

]
for any x ∈ [xj ; xj+1/2]. Moreover, the sign

of equality is provided by the function f(t) =
t2

2
for t ∈

[
xj−1 − h1

2
; xj+1 +

h1

2

]
.

Similarly, for the function f ∈ W 2∞
[
xj − h1

2
;xj+2 +

h1

2

]
for any x ∈ [xj+1/2; xj+1], we derive

the exact inequality

|f(x)− S(x)| ≤ h2

8
+

h2
1

24
,

and the sign of equality is provided by the function f(t) =
t2

2
for t ∈

[
xj − h1

2
; xj+2 +

h1

2

]
.
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Case 2). Let h < h1 ≤ 2h. In this case, the difference S(x)− f(x) for x ∈
[
xj , xj+1 − h1

2

]
is

transformed to the form

S(x)− f(x) =

xj−h1
2∫

xj−1−h1
2

f ′′(t)K1(x, t)dt +

xj−1+
h1
2∫

xj−h1
2

f ′′(t)(K1(x, t) + K3(x, t))dt

+

xj∫

xj−1+
h1
2

f ′′(t)(K2(x, t) + K3(x, t))dt +

x∫

xj

f ′′(t)(K4(x, t) + K5(x, t) + K7(x, t))dt

+

xj+1−h1
2∫

x

f ′′(t)(K4(x, t) + K5(x, t))dt +

xj+
h1
2∫

xj+1−h1
2

f ′′(t)(K4(x, t) + K6(x, t))dt

+

xj+1+
h1
2∫

xj+
h1
2

f ′′(t)K6(x, t)dt,

(2.5)

S(x)− f(x) =

xj−h1
2∫

xj−1−h1
2

f ′′(t)K1(x, t)dt +

xj−1+
h1
2∫

xj−h1
2

f ′′(t)(K1(x, t) + K3(x, t))dt

+

xj∫

xj−1+
h1
2

f ′′(t)(K2(x, t) + K3(x, t))dt +

xj+1−h1
2∫

xj

f ′′(t)(K4(x, t) + K5(x, t) + K7(x, t))dt

+

x∫

xj+1−h1
2

f ′′(t)(K4(x, t) + K6(x, t) + K7(x, t))dt +

xj+
h1
2∫

x

f ′′(t)(K4(x, t) + K6(x, t))dt

+

xj+1+
h1
2∫

xj+
h1
2

f ′′(t)K6(x, t)dt.

(2.6)

To obtain the error estimate in the class W 2∞(R), prove that

under x ∈ [
xj , xj+1/2

]
, the following inequalities hold: K1(x, t) ≥ 0 for t ∈

[
xj−1−h1

2
;xj−h1

2

]
,

K1(x, t)+K3(x, t) ≥ 0 for t ∈
[
xj− h1

2
; xj−1 +

h1

2

]
, K2(x, t)+K3(x, t) ≥ 0 for t ∈

[
xj−1 +

h1

2
;xj

]
,

K6(x, t) ≥ 0 for t ∈
[
xj +

h1

2
; xj+1 +

h1

2

]
;

under x ∈
[
xj , xj+1−h1

2

]
these inequalities are: K4(x, t)+K5(x, t)+K7(x, t) ≥ 0 for t ∈ [xj ; x],

K4(x, t) + K5(x, t) ≥ 0 for t ∈
[
x; xj+1 − h1

2

]
, K4(x, t) + K6(x, t) ≥ 0 for t ∈

[
xj+1 − h1

2
; xj +

h1

2

]
;
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under x ∈
[
xj+1 − h1

2
, xj+1/2

]
the inequalities hold: K4(x, t) + K5(x, t) + K7(x, t) ≥ 0 for t ∈

[
xj ; xj+1− h1

2

]
, K4(x, t)+K6(x, t) = K7(x, t) ≥ 0 for t ∈

[
xj+1− h1

2
; x

]
, and K4(x, t)+K6(x, t) ≥ 0

for t ∈
[
x; xj +

h1

2

]
.

All these inequalities (except two ones) immediately follow from definitions of the function
Kj(x, t) (j = 1, 7). It is only necessary to verify that K4(x, t) + K5(x, t) + K7(x, t) ≥ 0 under

x ∈
[
xj , xj+1 − h1

2

]
, t ∈ [xj ;x] and under x ∈

[
xj+1 − h1

2
, xj+1/2

]
, t ∈

[
xj ; xj+1 − h1

2

]
, and

K4(x, t) + K6(x, t) + K7(x, t) ≥ 0 under x ∈
[
xj+1 − h1

2
, xj+1/2

]
, t ∈

[
xj+1 − h1

2
;x

]
.

The function K4(x, t) + K5(x, t) + K7(x, t) is the quadratic trinomial in the variable t with the

positive leading coefficient; at the ends of the intervals [xj ; x],
[
xj ; xj+1− h1

2

]
, this trinomial takes

positive values, and abscissa of the corresponding parabola apex is placed at the left from the point
xj .

The function K4(x, t) + K6(x, t) + K7(x, t) for x ∈
[
xj+1 − h1

2
;xj+1/2

]
, t ∈

[
xj+1 − h1

2
;x

]

possesses the same properties. Remind that this function is also the quadratic trinomial in the

variable t with the positive leading coefficient; at the ends of the interval
[
xj+1 − h1

2
; x

]
, this

trinomial takes positive values, and abscissa of the corresponding parabola apex is placed at the

left from the point xj+1− h1

2
. It implies non-negativity of the considered functions in the mentioned

sets.
Taking into account the above proved facts, it follows from formulas (2.5) and (2.6) that to

obtain the estimate from above for the value |S(x)− f(x)| (for these formulas) in the class W 2∞(R)
and, hence, in formula (2.1), the function f ′′(t) can be substituted by 1.

Put f ′′(t) = 1 and calculate for it values of integrals in the right-hand side of formula (2.1);

denote this value by the symbol J . After elementary calculations, we obtain that J =
h2

8
+

h2
1

24
. It

implies that the exact inequality

|f(x)− S(x)| ≤ h2

8
+

h2
1

24

holds for any function f ∈ W 2∞
[
xj−1 − h1

2
;xj+1 +

h1

2

]
under any x ∈ [xj ; xj+1/2]. Moreover, the

equality sign is provided by the function f(t) =
t2

2
for t ∈

[
xj−1 − h1

2
; xj+1 +

h1

2

]
.

Similarly, for the function f ∈ W 2∞
[
xj − h1

2
; xj+2 +

h1

2

]
under any x ∈ [xj+1/2; xj+1], we derive

the exact inequality

|S(x)− f(x)| ≤ h2

8
+

h2
1

24
,

and the equality sign is provided by the function f(t) =
t2

2
for t ∈

[
xj − h1

2
; xj+2 +

h1

2

]
.
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