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Abstract: We consider antipodal graphs Γ of diameter 4 for which Γ1,2 is a strongly regular graph.
A.A.Makhnev and D.V.Paduchikh noticed that, in this case, ∆ = Γ3,4 is a strongly regular graph without
triangles. It is known that in the cases µ = µ(∆) ∈ {2, 4, 6} there are infinite series of admissible param-
eters of strongly regular graphs with k(∆) = µ(r + 1) + r2, where r and s = −(µ + r) are nonprincipal
eigenvalues of ∆. This paper studies graphs with µ(∆) = 4 and 6. In these cases, Γ has intersection arrays
{r2 + 4r + 3, r2 + 4r, 4, 1; 1, 4, r2 + 4r, r2 + 4r + 3} and {r2 + 6r + 5, r2 + 6r, 6, 1; 1, 6, r2 + 6r, r2 + 6r + 5},
respectively. It is proved that graphs with such intersection arrays do not exist.
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1. Introduction

We consider undirected graphs without loops or multiple edges.
Let Γ be a connected graph. The distance d(a, b) between two vertices a and b of Γ is the

length of a shortest path between a and b in Γ. Given a vertex a in a graph Γ, we denote by Γi(a)
the subgraph induced by Γ on the set of all vertices that are at distance i from a. The subgraph
[a] = Γ1(a) is called the neighbourhood of the vertex a.

Let Γ be a graph and a, b ∈ Γ. Then the number of vertices in [a] ∩ [b] is denoted by
µ(a, b) (by λ(a, b)) if a and b are at distance 2 (are adjacent) in Γ. Further, a subgraph in-
duced by [a] ∩ [b] is called a µ-subgraph (a λ-subgraph). Let Γ be a graph of diameter d and
i, j ∈ {1, 2, 3, . . . , d}. A graph Γi has the same set of vertices as Γ and vertices u and w are adja-
cent in Γi if dΓ(u,w) = i. A graph Γi,j has the same set of vertices as Γ and vertices u and w are
adjacent in Γi if dΓ(u,w) ∈ {i, j}.

If vertices u and w are at distance i in Γ, then we denote by bi(u,w) (by ci(u,w)) the number of
vertices in the intersection Γi+1(u) (Γi−1(u)) with [w]. A graph Γ of diameter d is called distance-

regular with intersection array {b0, b1, . . . , bd−1; c1, . . . , cd} if the values bi(u,w) and ci(u,w) are
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independent of the choice of vertices u and w at distance i in Γ for any i = 0, . . . , d [1]. Let
ai = ki − bi − ci. Note that, for a distance-regular graph, b0 is the degree of the graph and c1 = 1.

Let Γ be a graph of diameter d, and let x and y be vertices of Γ. Denote by plij(x, y) the
number of vertices in the subgraph Γi(x) ∩ Γj(y) if d(x, y) = l in Γ. In a distance-regular graph,
the numbers plij(x, y) are independent of the choice of vertices x and y, are denoted by plij and are
called the intersection numbers of the graph Γ (see [1]).

Let Γ be a distance-regular graph of diameter d ≥ 3. If Γ is an antipodal graph of diameter 4
with antipodality index r, then, by [1, Proposition 4.2.2], Γ has intersection array {k, k − a1 −
1, (r − 1)c2, 1; 1, c2, k − a1 − 1, k}.

Consider an antipodal distance-regular graph Γ of diameter 4 for which Γ1,2 is a strongly regular
graph. Makhnev and Paduchikh noticed in [3] that, in this case, ∆ = Γ3,4 is a strongly regular
graph without triangles and the antipodality index of Γ equals 2. It is known that in the cases
µ = µ(∆) ∈ {2, 4, 6} there arise infinite series of admissible parameters of strongly regular graphs
with k(∆) = µ(r + 1) + r2, where r and s = −(µ + r) are nonprincipal eigenvalues of ∆.

In the present paper, we consider graphs with µ(∆) = 4 and 6. In these cases, Γ has intersection
arrays

{r2 + 4r + 3, r2 + 4r, 4, 1; 1, 4, r2 + 4r, r2 + 4r + 3}

and
{r2 + 6r + 5, r2 + 6r, 6, 1; 1, 6, r2 + 6r, r2 + 6r + 5},

respectively.
If µ(∆) = 4, then ∆ has parameters (v, r2 + 4r + 4, 0, 4), where

v = 1 + (r2 + 4r + 4) +
(r2 + 4r + 4)(r2 + 4r + 3)

4
.

Further, ∆ has nonprincipal eigenvalues r and −(r + 4), and the multiplicity of r is equal to
(r + 3)(r + 2)(r2 + 5r + 8)/8.

Theorem 1. A distance-regular graph with intersection array

{r2 + 4r + 3, r2 + 4r, 4, 1; 1, 4, r2 + 4r, r2 + 4r + 3}

does not exist.

If µ(∆) = 6, then ∆ has parameters (v, r2 + 6r + 6, 0, 6), where

v = 1 + (r2 + 6r + 6) + (r2 + 6r + 6)(r2 + 6r + 5)/6.

Further, ∆ has nonprincipal eigenvalues r and −(r + 6), and the multiplicity of r is equal to
(r + 5)(r2 + 6r + 6)(r + 4)/12. Therefore, r is even or congruent to 3 modulo 4.

Theorem 2. A distance-regular graph with intersection array

{r2 + 6r + 5, r2 + 6r, 6, 1; 1, 6, r2 + 6r, r2 + 6r + 5}

does not exist.

Corollary 1. Distance-regular graphs with intersection arrays

{32, 27, 6, 1; 1, 6, 27, 32}, {45, 40, 6, 1; 1, 6, 40, 45}, {77, 72, 6, 1; 1, 6, 72, 77},

{96, 91, 6, 1; 1, 6, 91, 96}, {117, 112, 6, 1; 1, 6, 112, 117}

do not exist.
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2. Triple intersection numbers

Let Γ be a distance-regular graph of diameter d. If u1, u2, and u3 are vertices of the graph Γ

and r1, r2, and r3 are nonnegative integers not greater than d, then
{

u1u2u3

r1r2r3

}

is the set of vertices

w ∈ Γ such that

d(w, ui) = ri,

[

u1u2u3
r1r2r3

]

=

∣

∣

∣

∣

{

u1u2u3
r1r2r3

}∣

∣

∣

∣

.

The numbers
[

u1u2u3

r1r2r3

]

are called triple intersection numbers. For a fixed triple u1, u2, u3 of vertices,

we will write [r1r2r3] instead of
[

u1u2u3

r1r2r3

]

.

Unfortunately, there are no general formulas for numbers [r1r2r3]. However, [2] suggests a
method for calculating some numbers [r1r2r3].

Assume that u, v, and w are vertices of the graph Γ, W = d(u, v), U = d(v,w), and V = d(u,w).
Since there is exactly one vertex x = u such that d(x, u) = 0, then the number [0jh] is 0 or 1.
Hence, [0jh] = δjW δhV . Similarly, [i0h] = δiW δhU and [ij0] = δiUδjV .

Another set of equations can be obtained by fixing the distance between two vertices from
{u, v, w} and counting the number of vertices located at all possible distances from the third.
Then, we get

d
∑

l=1

[ljh] = pUjh − [0jh],

d
∑

l=1

[ilh] = pVih − [i0h],

d
∑

l=1

[ijl] = pWij − [ij0]. (2.1)

At the same time, some triples disappear. If |i− j| > W or i+ j < W , then pWij = 0; therefore,
[ijh] = 0 for all h ∈ {0, . . . , d}. Define

Sijh(u, v, w) =

d
∑

r,s,t=0

QriQsjQth

[uvw

rst

]

.

If Krein’s parameter qhij is 0, then Sijh(u, v, w) = 0.

3. A distance-regular graph with intersection array

{r2 + 4r + 3, r2 + 4r, 4, 1; 1, 4, r2 + 4r, r2 + 4r + 3}

In this section, Γ is a distance-regular graph with intersection array

{r2 + 4r + 3, r2 + 4r, 4, 1; 1, 4, r2 + 4r, r2 + 4r + 3}.

Then, Γ has
1 + (r2 + 4r + 3) + (r2 + 4r + 3)(r2 + 4r)/4 + (r2 + 4r + 3) + 1

vertices and the spectrum

(r + 3)(r + 1) of multiplicity 1,

r + 3 of multiplicity

(

r2 + 5 r + 8
)(

r2 + 3 r + 4
)

(r + 1)

16 (r + 2)
,

r − 1 of multiplicity

(

r2 + 5 r + 8
)

(r + 4)(r + 3)(r + 1)

16 (r + 2)
,

−(r + 1) of multiplicity

(

r2 + 5 r + 8
)(

r2 + 3 r + 4
)

(r + 3)

16 (r + 2)
,

−(r + 5) of multiplicity

(

r2 + 3 r + 4
)

(r + 3)(r + 1)r

16 (r + 2)
.
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The multiplicity of r + 3 is equal to

(r2 + 5r + 8)(r2 + 3r + 4)(r + 1)

16(r + 2)
.

Further,
(r2 + 5r + 8, r + 2) = (3r + 8, r + 2)

divides 2 and (r+2, r2 +3r+4) = (r+2, r+4) divides 2; therefore r+2 divides 4. Consequently,
r = 2, a contradiction with the fact that the multiplicity of r + 3 is equal to

(r2 + 5r + 8)(r2 + 3r + 4)(r + 1)/(16(r + 2)) = 22× 14× 3/64.

Theorem 1 is proved.

4. A distance-regular graph with intersection array

{r2 + 6r + 5, r2 + 6r, 6, 1; 1, 6, r2 + 6r, r2 + 6r + 5}

In this section, Γ is a distance-regular graph with intersection array

{r2 + 6r + 5, r2 + 6r, 6, 1; 1, 6, r2 + 6r, r2 + 6r + 5}.

Then, Γ has
1 + (r2 + 6r + 5) + (r2 + 6r + 5)(r2 + 6r)/6 + (r2 + 6r + 5) + 1

vertices, the spectrum

(r + 5)(r + 1) of multiplicity 1,

r + 5 of multiplicity f = (r + 4)(r + 3)(r + 2)(r + 1)/24,

r − 1 of multiplicity (r + 6)(r + 5)(r + 4)(r + 1)/24,

−(r + 1) of multiplicity (r + 5)(r + 4)(r + 3)(r + 2)/24,

−(r + 7) of multiplicity (r + 5)(r + 2)(r + 1)r/24,

and the matrix Q (see [1]) of dual eigenvalues
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−
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.

Lemma 1. The intersection numbers are

p111 = 4, p121 = r2 + 6r, p132 = r2 + 6r, p122 = r4/6 + 2r3 + 29r2/6− 7r, p133 = 0, p134 = 1;

p211 = 6, p212 = r2 + 6r − 7, p213 = 6, p222 = r4/6 + 2r3 + 29r2/6− 7r + 12,

p223 = r2 + 6r − 7, p224 = 1, p233 = 2;

p312 = r2 + 6r, p313 = 4, p314 = 1, p322 = r4/6 + 2r3 + 29r2/6 − 7r, p323 = r2 + 6r, p333 = 0;

p413 = r2 + 6r + 5, p422 = r4/6 + 2r3 + 41r2/6 + 5r.
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P r o o f. Direct calculations using formulas from [1, Lemma 4.1.7]. �

Fix vertices u, v, and w of the graph Γ and define

{ijh} =

{

uvw

ijh

}

, [ijh] =

[

uvw

ijh

]

.

Let ∆ = Γ2(u), and let Λ be a graph with vertices from ∆ in which two vertices are adjacent
if they are at distance 2 in Γ. Then Λ is a regular graph of degree

p222 = r4/6 + 2r3 + 29r2/6− 7r + 12

on

k2 = (r2 + 6r + 5)(r2 + 6r)/6 = r4/6 + 2r3 + 41r2/6 + 5r

vertices.

Lemma 2. Let d(u, v) = d(u,w) = 2 and d(v,w) = 1. Then, the triple intersection numbers

are

[111] = r4, [112] = [121] = −r4 + 6, [122] = r3 + r4 + r2 + 6r − 19, [123] = [132] = −r3 + 6;

[211] = −r3 − r4 + 4, [212] = [221] = r3 + r4 + r2 + 6r − 12,

[222] = r4/6 + 2r3 + 17r2/6− 19r + 36,

[223] = [232] = r3 + r4 + r2 + 6r − 12, [233] = −r3 − r4 + 4, [234] = [243] = 1;

[311] = r3, [312] = [321] = −r3 + 6, [322] = r3 + r4 + r2 + 6r − 19, [323] = [332] = −r4 + 6;

[333] = r4, [422] = 1,

where r3 + r4 ≤ 4.

P r o o f. Simplification of formulas (2.1). �

By Lemma 2, we have

r4/6 + 2r3 + 17r2/6− 19r + 28

≤ [222] = −2r3 − 2r4 + r4/6 + 2r3 + 17r2/6 − 19r + 36 ≤ r4/6 + 2r3 + 17r2/6− 19r + 36.

Lemma 3. Let d(u, v) = d(u,w) = 2 and d(v,w) = 3. Then, the triple intersection numbers

are

[112] = −r11 + 6, [113] = r11,

[121] = −r12 + 6, [122] = r11 + r12 + r2 + 6r − 19, [123] = −r11 + 6, [132] = −r12 + 6;

[212] = [221] = r11 + r12 + r2 + 6r − 12, [213] = [231] = −r11 − r12 + 4, [214] = [241] = 1,

[222] = −2r3 − 2r4 + r4/6 + 2r3 + 17r2/6 − 19r + 36, [223] = [232] = r11 + r12 + r2 + 6r − 12;

[312] = −r12 + 6, [313] = r12, [321] = −r11 + 6, [322] = r11 + r12 + r2 + 6r − 19,

[323] = −r12 + 6, [331] = r11, [332] = −r11 + 6; [422] = 1,

where r11 + r12 ≤ 4.
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P r o o f. Simplification of formulas (2.1). �

By Lemma 3, we have

r4/6 + 2r3 + 17r2/6− 19r + 28

≤ [222] = −2r3 − 2r4 + r4/6 + 2r3 + 17r2/6 − 19r + 36 ≤ r4/6 + 2r3 + 17r2/6− 19r + 36.

Lemma 4. Let d(u, v) = d(u,w) = 2 and d(v,w) = 4. Then, the triple intersection numbers

are

[113] = [131] = 6, [122] = r2 + 6r − 7;

[213] = [231] = r2 + 6r − 7, [222] = r4/6 + 2r3 + 29r2/6 − 7r + 12;

[313] = [331] = 6, [322] = r2 + 6r − 7;

[422] = 1.

P r o o f. Simplification of formulas (2.1). �

By Lemma 4, we have

[222] = r4/6 + 2r3 + 29r2/6− 7r + 12.

Recall that

p212 = r2 + 6r − 7, p222 = r4/6 + 2r3 + 29r2/6− 7r + 12, p223 = r2 + 6r − 7, p224 = 1.

Let v and w be vertices from Λ. Then the number d of edges between Λ(v) and Λ− ({v} ∪Λ(v)) is

d = p212

[uvx

221

]

+ p232

[uvy

223

]

+ p242

[uvz

224

]

,

where x, y, and z are vertices from
{

uv
2i

}

for i = 1, 3, and 4, respectively. Now, d satisfies the
inequalities

(r2 + 6r − 7)(r4/3 + 4r3 + 17r2/3 − 38r + 56) + r4/6 + 2r3 + 29r2/6− 7r + 12 ≤ d

≤ (r2 + 6r − 7)(r4/3 + 4r3 + 17r2/3− 38r + 72) + r4/6 + 2r3 + 29r2/6 − 7r + 12.

On the other hand,

d =
∑

w∈Λ(v)

(p222 − 1− λΛ(v,w)) = kΛ

(

p222 − 1−

∑

w∈Λ(v) λΛ(v,w)

kΛ

)

.

So,
d = (r4/6 + 2r3 + 29r2/6− 7r + 12)(r4/6 + 2r3 + 29r2/6− 7r + 11− λ),

where λ is the average value of degree of the vertex w in the graph Λ. Consequently,

(r2 + 6r − 7)(r4/3 + 4r3 + 17r2/3− 38r + 56)

r4/6 + 2r3 + 29r2/6− 7r + 12
+ 1 ≤

r4

6
+ 2r3 +

29r2

6
− 7r + 11 − λ

≤
(r2 + 6r − 7)(r4/3 + 4r3 + 17r2/3− 38r + 72)

r4/6 + 2r3 + 29r2/6− 7r + 12
+ 1

and

r4

6
+ 2r3 +

29r2

6
− 7r + 10−

(r2 + 6r − 7)(r4/3 + 4r3 + 17r2/3− 38r + 72)

r4/6 + 2r3 + 29r2/6− 7r + 12
≤ λ

≤
r4

6
+ 2r3 +

29r2

6
− 7r + 10−

(r2 + 6r − 7)(r4/3 + 4r3 + 17r2/3− 38r + 56)

r4/6 + 2r3 + 29r2/6− 7r + 12
.
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Lemma 5. Let d(u, v) = d(u,w) = d(v,w) = 2. Then, the triple intersection numbers are

[111] = r9, [112] = −r7 − r9 + 6, [113] = r7, [121] = −r10 − r9 + 6,

[122] = r7 + r8 + r9 + r10 + r2 + 6r − 19, [123] = −r7 − r8 + 6,

[131] = r10, [132] = −r10 − r8 + 6, [133] = r8;

[211] = −r8 − r9 + 6, [212] = [221] = r7 + r8 + r9 + r10 + r2 + 6r − 19,

[213] = [231] = −r10 − r7 + 6, [222] = −2r7 − 2r8 − 2r9 − 2r10 + r4/6 + 2r3 + 17r2/6− 19r + 48,

[223] = [232] = r7 + r8 + r9 + r10 + r2 + 6r − 19, [224] = [242] = 1, [233] = −r8 − r8 + 6;

[311] = r8, [312] = −r10 − r8 + 6, [313] = r10, [321] = −r7 − r8 + 6,

[322] = r7 + r8 + r9 + r10 + r2 + 6r − 19, [323] = −r10 − r9 + 6,

[331] = r7, [332] = −r7 − r9 + 6, [333] = r9; [422] = 1,

where

r9 + r7, r9 + r10, r7 + r8, r10 + r8, r8 + r9, r7 + r10 ≤ 6.

P r o o f. Simplification of formulas (2.1). �

By Lemma 5, we have

r4

6
+ 2r3 +

17r2

6
− 19r + 24 ≤ [222] = −2r7 − 2r8 − 2r9 − 2r10 +

r4

6
+ 2r3 +

17r2

6
− 19r + 48

≤
r4

6
+ 2r3 +

17r2

6
− 19r + 48.

Let d(u, v) = 2.

Let us count the number e2 of pairs of vertices (s, t) at distance 2, where s ∈
{

uv
21

}

and t ∈
{

uv
22

}

.
On the one hand, by Lemma 2, we have

r4/6 + 2r3 + 17r2/6− 19r + 28 ≤ [222] ≤ r4/6 + 2r3 + 17r2/6− 19r + 36,

so,

(r2 + 6r − 7)
(r4

6
+ 2r3 +

17r2

6
− 19r + 28

)

≤ e2 ≤ (r2 + 6r − 7)
(r4

6
+ 2r3 +

17r2

6
− 19r + 36

)

.

On the other hand, by Lemma 5, we have

[212] = r7 + r8 + r9 + r10 + r2 + 6r − 19

and

(r2 + 6r − 7)
(r4

6
+ 2r3 +

17r2

6
− 19r + 28

)

≤ e2

= −
∑

i

(ri7 + ri8 + ri9 + ri10) + (r2 + 6r − 19)
(r4

6
+ 2r3 +

29r2

6
− 7r + 12

)

≤ (r2 + 6r − 7)
(r4

6
+ 2r3 +

17r2

6
− 19r + 36

)

.
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In this way,

(r2 + 6r − 19)
(r4

6
+ 2r3 +

29r2

6
− 7r + 12

)

− (r2 + 6r − 7)
(r4

6
+ 2r3 +

17r2

6
− 19r + 36

)

≤ (ri7 + ri8 + ri9 + ri10)

≤ (r2 + 6r − 19)
(r4

6
+ 2r3 +

29r2

6
− 7r + 12

)

− (r2 + 6r − 7)
(r4

6
+ 2r3 +

17r2

6
− 19r + 28

)

.

Consequently,
(ri7 + ri8 + ri9 + ri10) ≤ −145r3/6− 16r2 − 96r − 12,

a contradiction.
Theorem 2 is proved. �

The corollary follows from Theorems 1 and 2.

So, we have shown the nonexistence of graphs with intersection arrays

{r2 + 4r + 3, r2 + 4r, 4, 1; 1, 4, r2 + 4r, r2 + 4r + 3}

and
{r2 + 6r + 5, r2 + 6r, 6, 1; 1, 6, r2 + 6r, r2 + 6r + 5}.

In particular, distance-regular graphs with intersection arrays

{32, 27, 6, 1; 1, 6, 27, 32}, {45, 40, 6, 1; 1, 6, 40, 45}, {77, 72, 6, 1; 1, 6, 72, 77},

{96, 91, 6, 1; 1, 6, 91, 96}, {117, 112, 6, 1; 1, 6, 112, 117}

do not exist.
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2. Coolsaet K., Jurǐsić A. Using equality in the Krein conditions to prove nonexistence of ser-
tain distance-regular graphs. J. Combin. Theory Ser. A, 2018. Vol. 115, No. 6. P. 1086–1095.
DOI: 10.1016/j.jcta.2007.12.001

3. Makhnev A.A., Paduchikh D.V. Inverse problems in the class of distance-regular graphs of diameter 4.
Proc. Steklov Inst. Math., 2022. Vol. 317, No. Suppl. 1. P. S121–S129. DOI: 10.1134/S0081543822030105

https://doi.org/10.1007/978-3-642-74341-2
https://doi.org/10.1016/j.jcta.2007.12.001
https://doi.org/10.1134/S0081543822030105

	Introduction
	Triple intersection numbers
	A distance-regular graph with intersection array {r2+4r+3,r2+4r,4,1;1,4,r2+4r,r2+4r+3}
	A distance-regular graph with intersection array {r2+6r+5,r2+6r,6,1;1,6,r2+6r,r2+6r+5}

