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Abstract: Let Y X denote the set of all functions from X to Y . When Y is a topological space, various
topologies can be defined on Y X . In this paper, we study these topologies within the framework of function
spaces. To characterize different topologies and their properties, we employ generalized open sets in the topolog-
ical space Y . This approach also applies to the set of all continuous functions from X to Y , denoted by C(X, Y ),
particularly when Y is a topological group. In investigating various topologies on both Y X and C(X, Y ), the
concept of limit points plays a crucial role. The notion of a topological ideal provides a useful tool for defining
limit points in such spaces. Thus, we utilize topological ideals to study the properties and consequences for
function spaces and topological groups.
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1. Introduction

For any topological space Z and topological group H [6, 26], let C(Z,H) denote the group of
all continuous functions from Z to H, equipped with the “pointwise group operations”. That is,
the product of f ∈ C(Z,H) and g ∈ C(Z,H) is the function fg ∈ C(Z,H) defined by

fg(z) = f(z)g(z)

for all z ∈ Z, and the inverse of f is the function h ∈ C(Z,H) defined by

h(z) = (f(z))−1

for all z ∈ Z. The space C(Z,H) with the point-open topology was studied by Shakhmatov and
Spěvák [25]. A set of the form

[z, V ]+ =
{

f ∈ C(Z,H)| f(z) ∈ V
}

,

where z ∈ Z and V is an open subset of H, is a subbase of the point-open topology on C(Z,H).
The space C(Z,H) with the open-point topology has a subbase consisting of sets of the form

[U, r]− =
{

f ∈ C(Z,H)| f−1(r) ∩ U 6= ∅
}

,

where r ∈ H and U is an open subset of Z.

The space C(Z,H) with the bi-point-open topology has a subbase consisting of sets of both
kinds: [z, V ]+ and [U, r]−, where z ∈ Z and V is an open subset of H, U is an open subset of Z,
and r ∈ H.

The following three propositions serve as necessary tools for the development of this paper.
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Proposition 1 [5]. Let β be a basis of a topological group H. The collection

{

[z1, B1]
+ ∩ · · · ∩ [zn, Bn]

+| n ∈ N, zi ∈ Z, Bi ∈ β
}

is a basis for the space C(Z,H) equipped with the point-open topology.

Proposition 2 [26]. Let β be a basis of a topological space X. The collection

{

[B1, r1]
− ∩ · · · ∩ [Bn, rn]

−| n ∈ N, ri ∈ H, Bi ∈ β
}

is a basis for the space C(Z,H) equipped with the open-point topology.

Proposition 3 [26]. Let βZ and βH be bases of a topological space Z and a topological group H,
respectively. The collection

{

[z1, B1]
+ ∩ · · · ∩ [zn, Bn]

+ ∩ [V1, r1]
− ∩ · · · ∩ [Vm, rm]

−|

zi ∈ Z, rj ∈ H, ri ∈ H, Bi ∈ βH , and Vj ∈ βZ , 1 ≤ i ≤ n, 1 ≤ j ≤ m
}

is a basis for the space C(Z,H) equipped with the bi-point-open topology.

General definition of the point-open topology on Y X :

Definition 1 [21]. Given a point x ∈ X and an open set U in a topological space Y , define

S(x,U) =
{

f ∈ Y X | f(x) ∈ U
}

.

The collection of all such sets S(x,U) forms a subbasis for a topology on Y X . This topology is

called the point-open topology on Y X .

To obtain a topology on Y X , it is not necessary that Y be a topological space. That is, for any
set Y , the following construction defines a topology on Y X .

Let x be a point of the set X and A be any subset of Y . Consider

S(x,A) =
{

f ∈ Y X | f(x) ∈ A
}

.

The sets S(x,A) form a subbasis for a topology on Y X . Suppose F ⊆ Y X .
The question is: Is F open in the topology on Y X generated by the subbasis elements above?
Let g ∈ F. For any x ∈ X, we have g(x) ∈ Y . If X is finite, then g ∈ S(x, {g(x)}) ⊆ F. Thus,

the subbasis
{S(x,A)| x ∈ X, A ∈ ℘(Y )}

generates the discrete topology on Y X when X is finite. If we take A = Y , then the subbasis

{

∅} ∪ {S(x, Y )| x ∈ X
}

generates the indiscrete topology on Y X . If we restrict the subsets of Y used in the subbasis, we
obtain a weaker topology on Y X . Therefore, we conclude that “Y being a topological space” is
not essential for defining a topology on Y X . In particular, starting with the discrete topology on
Y yields the discrete topology on Y X , while starting with the indiscrete topology on Y yields the
indiscrete topology on Y X .

In this paper, we will discuss various topologies on Y X . For this purpose, the following gener-
alized open sets are important tools.

Definition 2. A subset A of a topological space Y is said to be
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– semi-open [15] if A ⊆ Co(Io(A));
– preopen [16] if A ⊆ Io(Co(A));
– β-open [10] or semi-preopen [3] if A ⊆ Co(Io(Co(A)));
– b-open [4] if A ⊆ Io(Co(A)) ∪ Co(Io(A));
– h-open [1] if, for every nonempty open set U 6= Y, A ⊆ Io(A ∪ U),

where Io and Co denote the interior and closure operators, respectively.

We denote the collection of all semi-open sets, preopen sets, β-open sets, and b-open sets in a
topological space Y by SO(Y ), PO(Y ), βO(Y ), and BO(Y ), respectively. These collections satisfy
the following inclusion relations: the collection of open sets ⊆ PO(Y ) ⊆ BO(Y ) ⊆ βO(Y ) and the
collection of open sets ⊆ SO(Y ) ⊆ BO(Y ) ⊆ βO(Y ).

The following is one way to obtain weaker and stronger topologies on Y X ; it serves as an
introductory result of the paper.

Lemma 1. Suppose σ and σ′ are two topologies on the set Y such that σ ⊆ σ′. Then, the

point-open topology induced by σ′ is finer than the point-open topology induced by σ.

P r o o f. Let βτ and βτ ′ be bases for the point-open topologies τ and τ ′ induced by σ and σ′,
respectively, on Y X . Let

B = S(x1, U1) ∩ S(x2, U2) ∩ · · · ∩ S(xn, Un)

be a member of βτ , and suppose f ∈ B. Then f ∈ S(xi, Ui) for all i = 1, 2, . . . , n. This implies
that f ∈ S(xi, U

′
i), where Ui = U ′

i for all i = 1, 2, . . . , n. So,

f ∈ S(x1, U
′
1) ∩ S(x2, U

′
2) ∩ · · · ∩ S(xn, U

′
n) = B′ ∈ βτ ′

as U ′
1, U

′
2, . . . , U

′
n are open subsets of (Y, σ′). Thus, for every f ∈ B, there exists B′ ∈ βτ ′ such

that B′ ⊆ B. This completes the proof. �

Note that if σ′ is strictly finer than σ, then the point-open topology induced by σ′ is strictly
finer than the point-open topology induced by σ.

Our aim is to discuss different point-open topologies for various operators in topological spaces.
Thus, for various operators, we consider a topological ideal [2, 14].

An ideal I on a topological space (Y, σ) is a collection of subsets of Y satisfying:

(i) If A ⊆ B ∈ I, then A ∈ I;
(ii) If A,B ∈ I, then A ∪B ∈ I.

This concept of an ideal on a topological space was first introduced by Kuratowski [14] in 1933.
The study of the local function (or the generalization of limit points) is an important aspect of the
theory of topological ideals. It is defined as follows:

A∗ = {y ∈ Y | Uy ∩A /∈ I, Uy ∈ σ(y)},

where σ(y) is the collection of all open sets of (Y, σ) containing y. The set-valued set function [20]
associated with the operator ()∗ is the operator ψ [18, 22], which is defined by the relation ψ(A) =
Y \ (Y \ A)∗.

Throughout this paper, (Y, σ, I) denotes an ideal topological space. Furthermore, an ideal I on
the topological space (Y, σ) is called a codense ideal [9] (or, equivalently, the ideal topological space
(Y, σ, I) is called an H-S space [8]) if I ∩ σ = {∅}.
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2. Topologies on Y
X

In this section, we consider X as a set and Y as a topological space (or simply, a space).

Lemma 2. Given a point x ∈ X and a subset A of the topological space Y , define

S(x, Io(A)) =
{

f ∈ Y X | f(x) ∈ Io(A)
}

.

The sets S(x, Io(A)) form a subbasis for a topology on Y X .

P r o o f. Let f ∈ Y X . Then

f ∈ S(x, Y ) = S(x, Io(Y )) ⊆
⋃

i

S(xi, Io(Ai)),

where xi ∈ X and Ai are subsets of Y . So,

f ∈
⋃

i

S(xi, Io(Ai)).

Thus,

Y X ⊆
⋃

i

S(xi, Io(Ai)).

Hence, the sets S(xi, Io(Ai)) form a subbasis for a topology on Y X . �

The topology generated by the above subbasis is called the point-interior topology on Y X .
As is well known, the operator Co is the set-valued set function [20] associated with Io. Thus,

if we define the sets S(x, Io(A)) by
{

f ∈ Y X | f(x) ∈ X \ Co(X \A)
}

or
{

f ∈ Y X | f(x) /∈ Co(X \ A)
}

,

then we obtain the same topology.
Now we state that the operator Co independently generates a topology on Y X as follows.

Lemma 3. Given a point x ∈ X and a subset A of the topological space Y, define

S(x,Co(A)) =
{

f ∈ Y X | f(x) ∈ Co(A)
}

.

The sets S(x,Co(A)) form a subbasis for a topology on Y X .

The topology generated by the above subbasis is called the point-closure topology on Y X .
As Io ∼Y Co [20], one can rewrite the above Lemma using the Io operator. The point-open

topology and the point-interior topology on Y X coincide. However, the point-interior topology and
the point-closure topology are not comparable.

Example 1. Let X = {a, b} and (Y, σ) be a topological space, where Y = {1, 2, 3} and
σ =

{

∅, Y, {2}, {3}, {2, 3}
}

. All possible functions from X to Y are defined by

f1(a) = 1, f1(b) = 2; f2(a) = 1, f2(b) = 3; f3(a) = 2, f3(b) = 3;

f4(a) = 2, f4(b) = 1; f5(a) = 3, f5(b) = 1; f6(a) = 3, f6(b) = 2;

f7(a) = 1, f7(b) = 1; f8(a) = 2, f8(b) = 2; f9(a) = 3, f9(b) = 3.
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Then, a basis of the point-interior topology τ on Y X is

βτ =
{

∅, Y X , {f3}, {f6}, {f8}, {f9}, {f3, f8}, {f6, f9}, {f6, f8}, {f3, f9},

{f3, f4, f8}, {f5, f6, f9}, {f1, f6, f8}, {f2, f3, f9}, {f3, f6, f8, f9},

{f3, f4, f5, f6, f8, f9}, {f1, f2, f3, f6, f8, f9}
}

.

A basis of the point-closure topology τ ′ on Y X is

βτ ′ =
{

∅, Y X , {f7}, {f1, f7}, {f2, f7}, {f4, f7}, {f5, f7},

{f1, f2, f7}, {f4, f5, f7}, {f1, f4, f7, f8}, {f2, f3, f4, f7}, {f1, f5, f6, f7}, {f2, f5, f7, f9},

{f1, f2, f3, f4, f7, f8}, {f1, f2, f5, f6, f7, f9}, {f1, f4, f5, f6, f7, f8}, {f2, f3, f4, f5, f7, f9}
}

.

Here, f6 ∈ {f6} ∈ βτ but there does not exist any B′ ∈ βτ ′ such that f6 ∈ B′ ⊆ {f6}. Thus, τ
′

is not finer than τ .

Similarly, f7 ∈ {f7} ∈ βτ ′ but there does not exist any B ∈ βτ such that f7 ∈ B ⊆ {f7}. Thus,
τ is not finer than τ ′.

Hence, the point-interior topology and the point-closure topology on Y X are not comparable.

Lemma 4. Given a point x ∈ X and a subset A of the topological space Y, define

S(x, Io(Co(A))) =
{

f ∈ Y X | f(x) ∈ Io(Co(A))
}

.

The sets S(x, Io(Co(A))) form a subbasis for a topology on Y X .

P r o o f. Let f ∈ Y X . Then

f ∈ S(x, Y ) = S(x, Io(Co(Y ))) ⊆
⋃

i

S(xi, Io(Co(Ai))),

where xi ∈ X and Ai are subsets of Y . Therefore,

f ∈
⋃

i

S(xi, Io(Co(Ai))).

Thus,

Y X ⊆
⋃

i

S(xi, Io(Co(Ai))).

Hence, the sets S(xi, Io(Co(Ai))) form a subbasis for a topology on Y X . �

The topology generated by the above subbasis is called the point-interior-closure topology

on Y X . Since IoCo ∼Y Co Io [20], we may rewrite the subbasis of the point-interior-closure topology
on Y X using the Co Io operator.

Proposition 4. Suppose Y is a topological space. Then, the point-open topology on Y X is finer

than the point-interior-closure topology on Y X .

P r o o f. Let βτ and βτ ′ be bases for the point-interior-closure topology and the point-open
topology on Y X , respectively. Let

B = S(x1, Io(Co(A1))) ∩ S(x2, Io(Co(A2))) ∩ · · · ∩ S(xn, Io(Co(An)))
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be a member of βτ , and let f ∈ B. Then

f ∈ S(xi, Io(Co(Ai))) ∀i = 1, 2, . . . , n.

This implies that f ∈ S(xi, Ui), where

Ui = Io(Co(Ai)) ∀i = 1, 2, . . . , n.

Therefore,
f ∈ S(x1, U1) ∩ S(x2, U2) ∩ · · · ∩ S(xn, Un) = B′ ∈ βτ ′ ,

as U1, U2, . . . , Un are open subsets of Y . Thus, for every f ∈ B, there exists B′ ∈ βτ ′ such that
B′ ⊆ B. �

For the converse of this proposition, we have the following.
Let

B′
1 = S(x1, U1) ∩ S(x2, U2) ∩ · · · ∩ S(xn, Un)

be a member of βτ ′ , and let g ∈ B′
1. Then

g ∈ S(xi, Ui) ⇒ g ∈ S(xi, Io(Co(Ui))) (as Ui ⊆ Co(Ui) ⇒ Ui ⊆ Io(Co(Ui))), ∀i = 1, 2, . . . , n.

So,
g ∈ S(x1, Io(Co(U1))) ∩ S(x2, Io(Co(U2))) ∩ · · · ∩ S(xn, Io(Co(Un))) = B1 ∈ βτ .

Thus, for each B′
1 ∈ βτ ′ , there exists B1 ∈ βτ . However, B1 ⊆ B′

1 does not hold in general. To
justify this statement, we give the following example.

Example 2. Let (Y, σ) be a topological space, where Y = {a, b, c} and σ = {∅, Y, {c}}. Then

{

Io(Co(A))| A ⊆ Y
}

= {∅, Y }.

Thus,
{

Io(Co(A))| A ⊆ Y
}

is not equal to σ.

Lemma 5. Given a point x ∈ X and a subset A of the topological space Y , define

S(x,Co(Io(A))) =
{

f ∈ Y X | f(x) ∈ Co(Io(A))
}

.

The sets S(x,Co(Io(A))) form a subbasis for a topology on Y X .

P r o o f. Let f ∈ Y X . Then

f ∈ S(x, Y ) = S(x,Co(Io(Y ))) ⊆
⋃

i

S(xi,Co(Io(Ai))),

where xi ∈ X and Ai are subsets of Y . So,

f ∈
⋃

i

S(xi,Co(Io(Ai))).

Thus,

Y X ⊆
⋃

i

S(xi,Co(Io(Ai))).
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Hence, the sets S(xi,Co(Io(Ai))) form a subbasis for a topology on Y X . �

The topology generated by the above subbasis is called the point-closure-interior topology

on Y X .
The following example shows that the point-interior-closure topology and the point-closure-

interior topology on Y X are not comparable.

Example 3. In Example 1, a basis of the point-interior-closure topology τ on Y X is

βτ =
{

∅, Y X , {f3}, {f6}, {f8}, {f9}, {f3, f4, f8}, {f5, f6, f9}, {f1, f6, f8}, {f2, f3, f9}
}

.

A basis of the point-closure-interior topology τ ′ on Y X is

βτ ′ =
{

∅, Y X , {f7}, {f1, f7}, {f2, f7}, {f4, f7}, {f5, f7},

{f1, f2, f7}, {f4, f5, f7}, {f1, f4, f7, f8}, {f2, f3, f4, f7}, {f1, f5, f6, f7}, {f2, f5, f7, f9},

{f1, f2, f3, f4, f7, f8}, {f1, f2, f5, f6, f7, f9}, {f1, f4, f5, f6, f7, f8}, {f2, f3, f4, f5, f7, f9}
}

.

Here, f3 ∈ {f3} ∈ βτ , but there does not exist any B′ ∈ βτ ′ such that f3 ∈ B
′ ⊆ {f3}. Thus, τ

′

is not finer than τ .
Similarly, f7 ∈ {f7} ∈ βτ ′ , but there does not exist any B1 ∈ βτ such that f7 ∈ B1 ⊆ {f7}.

Thus, τ is not finer than τ ′.
Hence, the point-interior-closure topology and the point-closure-interior topology of Y X are not

comparable.

Lemma 6. Let Y be a topological space. Given a point x ∈ X and a subset A ∈ SO(Y ) (resp.
PO(Y ), βO(Y ), BO(Y )), define

S(x,A) = {f ∈ Y X | f(x) ∈ A}.

The sets S(x,A) form a subbasis for a topology on Y X .

The topology generated by the above subbasis is called the point-semi-open (resp. point-

preopen, point-β-open, point-b-open) topology on Y X .

Theorem 1. Suppose Y is a topological space. Then, the point-preopen topology on Y X is finer

than the point-open topology on Y X .

P r o o f. Let βτ and βτ ′ be bases for the point-open topology and the point-preopen topology
on Y X , respectively. Let

B = S(x1, U1) ∩ S(x2, U2) ∩ · · · ∩ S(xn, Un)

be a member of βτ , and let f ∈ B. Then f ∈ S(xi, Ui) for all i = 1, 2, . . . , n. This implies that
f ∈ S(xi, Ui), where Ui ∈ PO(Y ) for all i = 1, 2, . . . , n (since Ui are open in Y ). So,

f ∈ S(x1, U1) ∩ S(x2, U2) ∩ · · · ∩ S(xn, Un) = B′ ∈ βτ ′

as U1, U2, . . . , Un ∈ PO(Y ) are open subsets of Y . Thus, for every f ∈ B, there exists B′ ∈ βτ ′

such that B′ ⊆ B. Hence, the proof is complete. �

For the converse of Theorem 1, we always obtain a set B1 ∈ βτ for any B′
1 ∈ βτ ′ , but it is not

necessarily the case that B1 ⊆ B′
1. To illustrate this, we present the following example.
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Example 4. Let (Y, σ) be a topological space, where Y = {a, b, c} and σ = {∅, Y, {c}}. Then

{A ⊆ Y | A ∈ PO(Y )} =
{

∅, Y, {c}, {a, c}, {b, c}
}

.

Thus,
{A ⊆ Y | A ∈ PO(Y )} 6= σ.

However, the two topologies will be equal when PO(Y ) = σ.

Theorem 2. Suppose Y is a topological space. Then, the point-semi-open (resp. point-β-open,
point-b-open) topology on Y X is finer than the point-open topology on Y X .

The proof of this theorem follows from the fact that open sets in Y are contained in SO(Y )
(resp. βO(Y ), BO(Y )). The reader should not conclude that, for any collection A containing the
collection of open sets of Y , the point-open topology with respect to A is necessarily finer than the
point-open topology on Y X . However, the result of Theorem 2 holds because every open set is a
preopen (resp. semi-open, b-open, β-open) set.

Therefore, a common generalization is discussed in the following lemma.

Lemma 7. Suppose a collection G ⊆ ℘(Y ) (the power set of Y ) satisfies the following condi-

tions:

1) ∅, Y ∈ G;
2) G is closed under arbitrary unions.

Let h : G → G and k : G → G be two set-valued set functions [20] such that h(A) = Y \ k(Y \A) for
all A ∈ ℘(Y ) and h(∅) = ∅, h(Y ) = Y .

Given a point x ∈ X and a subset A ⊆ h ◦ k(A), define

S(x,A) = {f ∈ Y X | f(x) ∈ A}.

The sets S(x,A) form a subbasis for a topology on Y X .

P r o o f.

h ◦ k(Y ) = h(Y \ h(Y \ Y )) = h(Y \ h(∅)) = h(Y ) (as h(∅) = ∅) = Y.

Thus, Y ⊆ h ◦ k(Y ).
Let f ∈ Y X . Then

f ∈ S(x, Y ) ⊆
⋃

i

S(xi, (Ai)),

where xi ∈ X and Ai ⊆ h ◦ k(Ai). So,

f ∈
⋃

i

S(xi, (Ai)).

Thus,

Y X ⊆
⋃

i

S(xi, (Ai)).

Hence, the sets S(xi, (Ai)) form a subbasis for a topology on Y X . �

The topology generated by the above subbasis is called the point-associated topology on Y X .
The following is an example of this topology.

Example 5. By taking h and k to be the Io and Co operators, respectively, we see that Lemma 7
coincides with Lemma 4.
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Lemma 8. Let Y be a topological space. Given a point x ∈ X and a subset A ∈ D(Y ) (the set

of all dense sets in Y ), define

S(x,A) = {f ∈ Y X | f(x) ∈ A}.

The sets S(x,A) form a subbasis for a topology on Y X .

P r o o f. Let f ∈ Y X . Then

f ∈ S(x, Y ) ⊆
⋃

i

S(xi, (Ai)),

where xi ∈ X and Ai ∈ D(Y ) (as Y ∈ D(Y )). So, f ∈
⋃

i

S(xi, (Ai)). Thus,

Y X ⊆
⋃

i

S(xi, (Ai)).

Hence, the sets S(xi, (Ai)) form a subbasis for a topology on Y X . �

The topology generated by the above subbasis is called the point-dense topology on Y X .

Example 6.

1. In Example 1, a basis of the point-open topology τ on Y X is

βτ =
{

∅, Y X , {f3}, {f6}, {f8}, {f9}, {f3, f8}, {f3, f9}, {f6, f8}, {f6, f9},

{f3, f4, f8}, {f5, f6, f9}, {f1, f6, f8}, {f2, f3, f9}, {f3, f6, f8, f9},

{f1, f2, f3, f6, f8, f9}, {f3, f4, f5, f6, f8, f9}
}

.

A basis of the point-dense topology τ ′ on Y X is

βτ ′ =
{

Y X , {f3, f6, f8, f9}, {f1, f2, f3, f6, f8, f9}, {f3, f4, f5, f6, f8, f9}
}

.

In this case, the point-open topology is strictly finer than the point-dense topology.

2. In Example 1 with σ = {∅, Y, {3}}, a basis of the point-open topology τ on Y X is

βτ =
{

∅, Y X , {f9}, {f5, f6, f9}, {f2, f3, f9}
}

.

A basis of the point-dense topology τ ′ on Y X is

βτ ′ =
{

Y X , {f9}, {f2, f9}, {f3, f9}, {f5, f9}, {f6, f9},

{f2, f3, f9}, {f5, f6, f9}, {f1, f2, f6, f9}, {f2, f5, f7, f9}, {f3, f4, f5, f9}, {f3, f6, f8, f9},

{f1, f2, f5, f6, f7, f9}, {f1, f2, f3, f6, f8, f9}, {f2, f3, f4, f5, f7, f9}, {f3, f4, f5, f6, f8, f9}
}

.

In this case, the point-dense topology is strictly finer than the point-open topology.

Hence, we conclude that the point-open topology and the point-dense topology on Y X are not
comparable.
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3. Topologies on Y
X due to ideal

It is known from [7, 11, 17, 18] that ψ is not an interior operator. The following lemma shows
that a noninterior operator may also serve as an essential tool in obtaining a topology on Y X .

Lemma 9. Let I be an ideal on the topological space Y . Given a point x ∈ X and a subset A
of the topological space Y , define

SI(x, ψ(A)) =
{

f ∈ Y X | f(x) ∈ ψ(A)
}

.

The sets SI(x, ψ(A)) form a subbasis for a topology on Y X .

P r o o f. Let f ∈ Y X . Then

f ∈ SI(x, Y ) = SI(x, ψ(Y )) ⊆
⋃

i

SI(xi, ψ(Ai)),

where xi ∈ X and Ai are subsets of Y . So,

f ∈
⋃

i

SI(xi, ψ(Ai)).

Thus,

Y X ⊆
⋃

i

SI(xi, ψ(Ai)).

Hence, the sets SI(xi, ψ(Ai)) form a subbasis for a topology on Y X . �

The topology generated by the above subbasis is called the point-ψ topology on Y X .
Since ψ ∼Y ∗ [20], the subbasis for the point-ψ topology on Y X can be equivalently rewritten

in terms of the ∗-operator.
Comparison of the point-ψ topology with other topologies on Y X are as follows.

Proposition 5. Suppose I is an ideal on the topological space Y . Then, the point-open topology

on Y X is finer than the point-ψ topology on Y X .

P r o o f. Let βτ and βτ ′ be bases for the point-ψ topology and the point-open topology on
Y X , respectively. Let

B = SI(x1, ψ(A1)) ∩ SI(x2, ψ(A2)) ∩ · · · ∩ SI(xn, ψ(An))

be a member of βτ , and let f ∈ B. Then f ∈ SI(xi, ψ(Ai)) for all i = 1, 2, . . . , n. This implies that
f ∈ S(xi, Ui), where Ui = ψ(Ai) (since for each i, ψ(Ai) is open by [11, 18]), for all i = 1, 2, . . . , n.
Hence,

f ∈ S(x1, U1) ∩ S(x2, U2) ∩ · · · ∩ S(xn, Un) = B′ ∈ βτ ′

since U1, U2, . . . , Un are open subsets of Y . Thus, for each f ∈ B, there exists B′ ∈ βτ ′ such that
B′ ⊆ B. �

For the converse relation of this proposition, we give the following example.

Example 7. Consider Example 1 with σ =
{

∅, Y, {3}, {1, 3}, {2, 3}
}

and I = {∅, {1}}. Then, a
basis of the point-ψ topology τ on Y X is

βτ =
{

∅, Y X , {f2, f5, f7, f9}, {f1, f2, f5, f6, f7, f9}, {f2, f3, f4, f5, f7, f9}
}

.
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A basis of the point-open topology τ ′ on Y X is

βτ ′ =
{

∅, Y X , {f9}, {f2, f9}, {f3, f9}, {f5, f9}, {f6, f9},

{f2, f3, f9}, {f5, f6, f9}, {f1, f2, f6, f9}, {f2, f5, f7, f9}, {f3, f4, f5, f9}, {f3, f6, f8, f9},

{f1, f2, f5, f6, f7, f9}, {f1, f2, f3, f6, f8, f9}, {f2, f3, f4, f5, f7, f9}, {f3, f4, f5, f6, f8, f9}
}

.

Here, f9 ∈ {f9} ∈ βτ ′ , but there does not exist any B1 ∈ βτ such that f9 ∈ B1 ⊆ {f9}. Thus, τ is
not finer than τ ′.

However, the set {ψ(A) : A ⊆ Y } does not form a topology on Y .

Example 8. Let (Y, σ, I) be an ideal topological space, where Y = {a, b, c}, σ =
{

∅, Y, {c}, {a, c}, {b, c}
}

, and I = {∅, {a}}. Then {ψ(A)| A ⊆ Y } = {∅, Y, {a, c}}. In this example,
it is clear that

{ψ(A)| A ⊆ Y } 6= σ

on Y .

As a consequences of the above results and Theorem 46.7 of [21], we have the following.

Theorem 3. Suppose I is an ideal on the metric space (Y, d) and Y is a topological space. For

the function space Y X , the following inclusions of topologies hold :

(uniform) ⊃ (compact convergence) ⊃ (point-open) = (point-interior) ⊇ (point-ψ).

Proposition 6. Suppose I is a codense ideal on the topological space Y . Given a point x ∈ X
and a subset A of the topological space Y, define

SI(x,A
∗) = {f ∈ Y X | f(x) ∈ A∗}.

The sets SI(x,A
∗) form a subbasis for a topology on Y X .

P r o o f. Let f ∈ Y X . Then

f ∈ SI(x, Y ) = SI(x, Y
∗) (since I is a codense ideal) ⊆

⋃

i

SI(xi, A
∗
i ),

where xi ∈ X and Ai are subsets of Y . Thus,

f ∈
⋃

i

SI(xi, A
∗
i ).

Thus,

Y X ⊆
⋃

i

SI(xi, A
∗
i ).

Hence, the sets SI(xi, A
∗
i ) form a subbasis for a topology on Y X . �

The topology generated by the above subbasis is called the point-∗ topology on Y X .

Example 9. Consider Example 1 with σ =
{

∅, Y, {3}, {1, 3}, {2, 3}
}

and I = {∅, {1}}. Then, a
basis of the point-ψ topology τ on Y X is

βτ =
{

∅, Y X , {f2, f5, f7, f9}, {f1, f2, f5, f6, f7, f9}, {f2, f3, f4, f5, f7, f9}
}

.
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A basis of the point-∗ topology τ ′ on Y X is

βτ ′ =
{

∅, Y X , {f8}, {f3, f4, f8}, {f1, f6, f8}
}

.

Here, f2 ∈ {f2, f5, f7, f9} ∈ βτ , but there does not exist any B′ ∈ βτ ′ such that f2 ∈ B′ ⊆ B.
Thus, τ ′ is not finer than τ .

Similarly, f8 ∈ {f8} ∈ βτ ′ , but there does not exist any B1 ∈ βτ such that f8 ∈ B1 ⊆ {f8}.
Thus, τ is not finer than τ ′.

Hence, the point-ψ topology and point-∗ topology of Y X are not comparable.

To discuss further topologies on Y X , we make use of the notion of ψ-sets in an ideal topological
space. This concept was introduced by Modak and Bandyopadhyay in [7], whose definition is as
follows.

Let I be an ideal on a topological space Y . A subset A of Y is called a ψ-set if A ⊂ Io(Co(ψ(A))).
The collection of all ψ-sets in the ideal topological space Y is denoted by ψY (Y ).

Theorem 4. Let I be an ideal on the topological space Y . Given a point x ∈ X and A ∈ ψY (Y ),
define

SI(x,A) = {f ∈ Y X | f(x) ∈ A}.

The sets SI(x,A) form a subbasis for a topology on Y X .

Before proceeding to the proof of this theorem, we make a few remarks on ψ-sets. The collection
ψY (Y ) forms a topology on Y whenever the ideal I is a codense ideal or a σ-boundary ideal [23]
on Y . Modak and Bandyopadhyay studied this topology in [7] and showed that this topology
coincides with the α-topology [24] of the ∗-topology [12] generated by σ. Thus, we say that the
topology obtained in Theorem 4 is the point-open topology for ψY (Y ) (forms a topology on Y ). If
we denote the σ∗-topology generated by σ by ∗-topology, the topology constructed in Theorem 4
is the point-open topology of (σ∗)α. We also note that codenseness is not essential for the proof
of Theorem 4. However, if we consider the point-open topology of Y X arising from (σ∗)α, then
codenseness is required. We omit the proof of this theorem, leaving it as an exercise for the reader.

For our next discussion, we will refer to the topology obtained in Theorem 4 as the point-Coψ
topology on Y X .

The following gives a comparison of the point-Coψ topology on Y X .

Corollary 1. Suppose I is an ideal on the topological space Y . Then, the point-Coψ topology

on Y X is finer than the point-open topology on Y X .

P r o o f The proof of this corollary is only meaningful when I is not a codense ideal on Y ;
otherwise, the result follows immediately from Lemma 1. �

Theorem 5. Suppose I is an ideal on the topological space Y . Then, the point-Coψ topology

on Y X is finer than the point-ψ topology on Y X .

P r o o f. Let βτ and βτ ′ be bases for the point-ψ topology and the point-Coψ topology on Y X ,
respectively. Let

B = SI(x1, ψ(A1)) ∩ SI(x2, ψ(A2)) ∩ · · · ∩ SI(xn, ψ(An))

be a member of βτ , and let f ∈ B. Then

f ∈ SI(xi, ψ(Ai)), ∀i = 1, 2, . . . , n.
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This implies that f ∈ SI(xi, Ui), where Ui = ψ(Ai) for all i = 1, 2, . . . , n. Therefore,

f ∈ SI(x1, U1) ∩ SI(x2, U2) ∩ · · · ∩ SI(xn, Un) = B′ ∈ βτ ′

(as U1, U2, . . . , Un are open subsets of Y and Ui ∈ ψY (Y )). Thus, for every f ∈ B, there exists
B′ ∈ βτ ′ such that B′ ⊆ B. This completes the proof. �

The converse of this theorem does not necessarily hold in general.

If we replace the Co operator with ()∗ operator, we obtain another topology on Y X . To this
end, we introduce Modak’s ψ̇∗-set [17]. Its formal definition is as follows.

Let I be an ideal on a space Y . A subset A of Y is called a ψ̇∗-set if A ⊆ Io((ψ(A))∗). The
collection of all ψ̇∗-sets in an ideal topological space Y is denoted by ψ̇∗(Y ).

Theorem 6. Let I be a codense ideal on the topological space Y . Given a point x ∈ X and a

subset A ∈ ψ̇∗(Y ), define

SI(x,A) = {f ∈ Y X | f(x) ∈ A}.

The sets S(x,A) form a subbasis for a topology on Y X .

P r o o f. Since Y is open, Y ⊆ ψ(Y ). Then Y = Y ∗ (as I is codense)⊆ (ψ(Y ))∗. This implies
Y = Io(Y ) ⊆ Io((ψ(Y ))∗), and hence, Y ∈ ψ̇∗(Y ).

Let f ∈ Y X . Then

f ∈ SI(x, Y ) ⊆
⋃

i

SI(xi, (Ai)),

where xi ∈ X and Ai ∈ ψ̇∗(Y ). Therefore,

f ∈
⋃

i

S(xi, (Ai)).

Hence,

Y X ⊆
⋃

i

SI(xi, (Ai)).

Thus, the sets SI(xi, (Ai)) form a subbasis for a topology on Y X . �

The topology generated by the above subbasis is called the point-ψ̇∗ topology on Y X .

Moreover, if I is a codense ideal on Y , then the collections ψY (Y ) and ψ̇∗(Y ) both represent
the α-sets of the ∗-topology of σ (see [7]). Thus, the point-open topologies induced by ψY (Y ) and
ψ̇∗(Y ) coincide.

Definition 3 [19]. Let (Y, σ, I) be an ideal topological space, and A ⊆ Y . Then A is called

hψ-open if, for every nonempty open set U 6= Y, it holds A ⊆ ψ(A ∪ U).

Theorem 7. Let (Y, σ, I) be an ideal topological space. Given a point x ∈ X and a hψ-open set

A of the topological space Y, define

SI(x,A) = {f ∈ Y X | f(x) ∈ A}.

The sets SI(x,A) form a subbasis for a topology on Y X .
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P r o o f . This follows from the fact that the collection of hψ-open sets forms a topology
on Y . �

The topology generated by the above subbasis is called the point-hψ-open topology on Y X .

Theorem 8. Suppose I is an ideal on the topological space Y . Then, the point-hψ-open topology

on Y X is finer than the point-open topology on Y X .

P r o o f . This follows directly from the fact that the topology generated by the hψ-open sets
is finer than the topology σ on Y . �

Theorem 9. Let Y be a topological space. Given a point x ∈ X and an h-open set A of the

space Y , define

S(x,A) = {f ∈ Y X | f(x) ∈ A}.

The sets S(x,A) form a subbasis for a topology on Y X .

The topology generated by the above subbasis is called the point-h-open topology on Y X .

Theorem 10. The point-h-open topology on Y X is finer than the point-open topology on Y X .

From the above theorems, we conclude the following common phenomenon.

Corollary 2. Let I be an ideal on a topological space Y . Then, the point-open topology on Y X

is contained in the point-h-open topology on Y X , which in turn is contained in the point-hψ-topology
on Y X .

4. Topologies on Y
X induced by continuous functions

In this section, we discuss the interrelation among the open-point topology, the point-open
topology, and the bi-point topology [13, 26].

Theorem 11. Let Cop(Z,H) be the group of all continuous open functions from Z to H. Then,

the open-point topology on Cop(Z,H) is finer than the point-open topology on Cop(Z,H).

P r o o f. Let βτ and βτ ′ be bases for the open-point and point-open topologies on Cop(Z,H),
respectively. Let B′ = [z1, V1]

+∩ · · · ∩ [zn, Vn]
+, where n ∈ N, zi ∈ Z, and each Vi is an open subset

of H, be a member of βτ ′ , and let f ∈ B′. Then f ∈ [zi, Vi]
+ for all i = 1, 2, . . . , n, and f : Z → H

is continuous. Hence, zi ∈ Bi, where Bi = f−1(Vi) for all i = 1, 2, . . . , n (as f−1(Vi) are open in Z).
Let ri ∈ Vi be such that f(zi) = ri. Then zi ∈ f−1(ri). Therefore,

zi ∈ f−1(ri) ∩Bi ∀i = 1, 2, . . . , n.

Thus,
f ∈ [B1, r1]

− ∩ · · · ∩ [Bn, rn]
− = B ∈ βτ .

Therefore, for every f ∈ B′, there exists B ∈ βτ .
It remains to show that B ⊆ B′. Let f ∈ B. Then

f−1(ri) ∩Bi 6= ∅.

Let
zi ∈ f−1(ri) ∩Bi.
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Then
f(zi) ∈ f [f−1(ri) ∩Bi] ⊆ f(f−1(ri)) ∩ f(Bi) ⊆ f(Bi) = Vi.

Hence, f(zi) ∈ Vi, which implies f ∈ B′. This show that B ⊆ B′. This completes the proof. �

Openness of a function is a necessary condition for Theorem 11. To illustrate this, we give the
following example.

Example 10. Let (Z, τ) and (Y, σ) be two topological spaces, where Z = {a, b}, τ = {∅, Z, {a}},
Y = {1, 2, 3}, and σ =

{

∅, Y, {2}, {3}, {2, 3}
}

. All possible functions from Z to Y are given by

f1(a) = 1, f1(b) = 2; f2(a) = 1, f2(b) = 3; f3(a) = 2, f3(b) = 3;

f4(a) = 2, f4(b) = 1; f5(a) = 3, f5(b) = 1; f6(a) = 3, f6(b) = 2;

f7(a) = 1, f7(b) = 1; f8(a) = 2, f8(b) = 2; f9(a) = 3, f9(b) = 3.

Now,
C(Z, Y ) = {f4, f5, f7, f8, f9}.

Here, f7 is not an open map since f7({a}) = {1} /∈ σ. We have

[a, {2}]+ = {f4, f8}, [a, {3}]+ = {f5, f9}, [a, {2, 3}]+ = {f4, f5, f8, f9},

[b, {2}]+ = {f8}, [b, {3}]+ = {f9}, [b, {2, 3}]+ = {f8, f9},

[a, Y ]+ = [b, Y ]+ = {f4, f5, f7, f8, f9}.

Then, a basis for the point-open topology on C(Z, Y ) is

β′ =
{

∅, {f4, f8}, {f5, f9}, {f8}, {f9}, {f8, f9}, {f4, f5, f8, f9}, {f4, f5, f7, f8, f9}
}

.

Also,

[{a}, 1]− = {f7}, [{a}, 2]− = {f4, f8}, [{a}, 3]− = {f5, f9},

[Z, 1]− = [Z, 2]− = [Z, 3]− = {f4, f5, f7, f8, f9}.

Then, a basis for the open-point topology on C(Z, Y ) is

β =
{

∅, {f7}, {f4, f8}, {f5, f9}, {f4, f5, f7, f8, f9}
}

.

In this example, we see that the open-point topology on C(Z, Y ) is not finer than the point-open
topology on C(Z, Y ).

Theorem 12. Let Cop(Z,H) be the group of all continuous open functions from Z to H. Then,

the bi-point-open topology on Cop(Z,H) is finer than the point-open topology on Cop(Z,H).

P r o o f. Let βτ , βτ ′ , and βτ ′′ be bases for the open-point topology on Cop(Z,H), the point-
open topology on Cop(Z,H), and the bi-point-open topology on Cop(Z,H), respectively. Let

B′ = [z1, V1]
+ ∩ · · · ∩ [zn, Vn]

+,

where n ∈ N, zi ∈ Z, and each Vi is an open subset of H, be a member of βτ ′ , and let f ∈ B′.
Then, from Theorem 11, there exists

B = [B1, r1]
− ∩ · · · ∩ [Bn, rn]

− ∈ βτ ,

where n ∈ N, ri ∈ H, and Bi are open subsets of Z such that f ∈ B. Thus,

f ∈ [z1, V1]
+ ∩ · · · ∩ [zn, Vn]

+ ∩ [B1, r1]
− ∩ · · · ∩ [Bn, rn]

− = B′′ ∈ βτ ′′ .

Clearly, B′′ ⊆ B′. This completes the proof. �
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Theorem 13. Let Cop(Z,H) be the group of all continuous open functions from Z to H. Then,

the bi-point-open topology on Cop(Z,H) is finer than the open-point topology on Cop(Z,H).

P r o o f. Let βτ , βτ ′ and βτ ′′ be bases for the open-point topology on Cop(Z,H), the point-open
topology on Cop(Z,H), and the bi-point-open topology on Cop(Z,H), respectively. Let

B = [B1, r1]
− ∩ · · · ∩ [Bn, rn]

− ∈ βτ ,

where n ∈ N, each ri ∈ H, and each Bi is an open subset of Z, be a member of βτ and f ∈ B.
Then

f−1(ri) ∩Bi 6= ∅.

Let zi ∈ f
−1(ri) ∩Bi. Then

f(zi) ∈ f [f−1(ri) ∩Bi] ⊆ ff−1(ri) ∩ f(Bi) ⊆ f(Bi) = Vi,

where each Vi is open in H. Therefore, f(zi) ∈ Vi. This implies that

f ∈ B′ = [z1, V1]
+ ∩ · · · ∩ [zn, Vn]

+ ∈ βτ ′ .

Thus,

f ∈ [z1, V1]
+ ∩ · · · ∩ [zn, Vn]

+ ∩ [B1, r1]
− ∩ · · · ∩ [Bn, rn]

− = B′′ ∈ βτ ′′ .

Clearly, B′′ ⊆ B′. This completes the proof. �

5. Conclusion

In this paper, the role of generated open sets in defining topologies on Y X has been discussed.
The interrelations among these topologies were also explored. We have shown that the concept of
a topological ideal provides a useful framework for studying such topologies on Y X . Furthermore,
for a topological group H and a space Z, the relationship between the point-open topology and the
bi-point-open topology on C(Z,H) was also examined.
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