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Abstract: In this paper, we formulate and study an initial boundary-value problem of the type of the
third boundary condition for a degenerate partial differential equation of high even order in a rectangle. Using
the Fouriers method, based on separation of variables, a spectral problem for an ordinary differential equation
is obtained. Using the Green’s function method, the latter problem is equivalently reduced to the Fredholm
integral equation of the second kind with a symmetric kernel, which implies the existence of eigenvalues and
a system of eigenfunctions of the spectral problem. Using the found integral equation and Mercer’s theorem,
the uniform convergence of certain bilinear series depending on the eigenfunctions is proved. The order of the
Fourier coefficients has been established. The solution to the considered problem has been written as a sum
of the Fourier series over the system of eigenfunctions of the spectral problem. The uniqueness of the solution
to the problem was proved using the method of energy integrals. An estimate for solution of the problem was
obtained, which implies its continuous dependence on the given functions.

Keywords: Degenerate equation, Initial boundary-value problem, Method of separation of variables, Spec-
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1. Introduction

Recently, researchers have been paying more and more attention to degenerate partial differen-
tial equations. This trend is primarily driven by the intrinsic requirements of the theory of partial
differential equations. Additionally, a multitude of problems in gas dynamics, hydrodynamics [4, 5],
the theory of infinitesimal bending of surfaces, and the momentless theory of shells with alternating
curvature [17], as well as in the theory of oscillations [8, 9], mathematical biology [12], filtration
theory, boundary layer theory, and technical mechanics, necessitate the investigation of degenerate
partial differential equations.

Currently, intensive research is underway on initial boundary value problems in quadrangular
domains for degenerate partial differential equations of high even order in spatial variables. For
instance, in [3], initial boundary value problems in a rectangle were formulated and investigated
for the following degenerate equation:

∂lu

∂tl
= (−1)k

∂k

∂xk

(

xα
∂ku

∂xk

)

+ f(x, t), l = 1, 2, α ∈ (0, 2k). (1.1)

Moreover, in [2] and [13], similar equations with generalizations were explored.

When considering initial boundary value problems for degenerate equations of type (1.1), the
formulation of the problems is significantly influenced by the degree of degeneracy α [2, 3], and
sometimes by the evenness and oddness of the number k. Additionally, as the order of the equation
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increases, the number of options for boundary conditions also increases. For instance, in [2, 3],
when considering initial boundary value problems for equation (1.1) in the quadrilateral

Ω = {0 < x < 1, 0 < t < T}
at 0 < α < 1, boundary conditions of the form

(

∂j/∂xj
)

u
∣

∣

x=0
= 0, j = 0, k − 1; (∂q/∂xq)u|x=1 = 0, q = 0, k − 1 (1.2)

were specified, at α ∈ (1, k), some boundary conditions at x = 0 are replaced by the boundedness
condition, and at α ∈ (k, 2k) at x = 0 no boundary conditions were specified.

In [13], considering equation (1.1) for α ∈ (0, 1), boundary conditions of the form (1.2) were
specified, but here q = k, 2k − 1.

In [6, 7], when considering a degenerate equation of a different type, boundary conditions (1.2)
were adopted. In [15], for a specific degenerate equation, a problem with boundary conditions
relating the values of the desired function and the derivatives with respect to x at x = 0 and
x = 1 was formulated and studied. In [1] and [16], for equation (1.1) with α = 0, l = 2, and
for a degenerate fourth-order equation of type (1.1) respectively, conditions of the third type were
specified for both x = 0 and x = 1. Moreover, in [14], a mixed problem was considered for a fourth-
order degenerate equation with fractional case of l, namely for 1 < l < 2, and the dependence of
the degeneration degree of α to the formulation of the boundary conditions has been studied.

In this paper, an initial boundary value problem with conditions similar to the third boundary
condition for a degenerate partial differential equation of high even order in a rectangle is formulated
and investigated.

2. Formulation of the problem

In a rectangle
Ω = {(x, t) : 0 < x < 1; 0 < t < T},

we consider the following degenerate equation of high even order

∂2u

∂t2
+

∂2n

∂x2n

(

xα
∂2nu

∂x2n

)

= f(x, t), (2.1)

where u = u(x, t) is an unknown function, f(x, t) is a given function, and α is a given real number,
such that 0 < α < 1 and n ∈ N .

We study the following initial boundary-value problem:

Problem A. Find a function u(x, t) such that:
1) ut,

(

∂j/∂xj
)

u,
(

∂j/∂xj
) [

xα
(

∂2n/∂x2n
)

u
]

∈ C(Ω̄), j = 0, 2n − 1;
(

∂2n/∂x2n
) [

xα
(

∂2n/∂x2n
)

u
]

, utt ∈ C(Ω);
2) it satisfies the equation (2.1) in the domain Ω;
3) it satisfies the following initial conditions

u(x, 0) = ϕ1(x), x ∈ [0, 1], ut(x, 0) = ϕ2(x), x ∈ [0, 1] (2.2)

and boundary conditions

∂2j

∂x2j
u(0, t)=

∂2j+1

∂x2j+1
u(0, t),

∂2j

∂x2j

(

xα
∂2n

∂x2n
u(x, t)

)
∣

∣

∣

x=0
=

∂2j+1

∂x2j+1

(

xα
∂2n

∂x2n
u(x, t)

)
∣

∣

∣

x=0
;

∂2j

∂x2j
u(1, t)=

∂2j+1

∂x2j+1
u(1, t),

∂2j

∂x2j

(

xα
∂2n

∂x2n
u(x, t)

)
∣

∣

∣

x=1
=

∂2j+1

∂x2j+1

(

xα
∂2n

∂x2n
u(x, t)

)
∣

∣

∣

x=1
;

j = 0, n − 1, t ∈ [0, T ],























(2.3)
where ϕ1(x) and ϕ2(x) are given continuous functions.
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3. Investigation of the spectral problem

By formally applying the Fourier method to the problem A, we get the following spectral
problem:

M [v(x)] ≡
(

xαv(2n)(x)
)(2n)

= λv(x), 0 < x < 1; (3.1)

v(j)(x),
(

xαv(2n)(x)
)(j) ∈ C[0, 1], j = 0, 2n − 1;

v(2j)(0) = v(2j+1)(0),
[

xαv(2n)(x)
](2j)

∣

∣

∣

x=0
=

[

xαv(2n)(x)
](2j+1)

∣

∣

∣

x=0
, j = 0, n − 1;

v(2j)(1) = v(2j+1)(1),
[

xαv(2n)(x)
](2j)

∣

∣

∣

x=1
=

[

xαv(2n)(x)
](2j+1)

∣

∣

∣

x=1
, j = 0, n − 1.























(3.2)

It is easy to verify that for any functions v(x) and w(x) satisfying the conditions (3.2), the
equality

∫ 1

0
w(x)M [v(x)]dx =

∫ 1

0
v(x)M [w(x)]dx

holds true. This implies that the problem with conditions M [v(x)] = 0 and (3.2) is self-adjoint.
Let v(x) be a function satisfying conditions {(3.1), (3.2)}. Then, multiplying the equation (3.1)

with the function v(x) and integrating the resulting equality over the interval [0, 1], and subse-
quently applying the integration by parts rule and considering equalities (3.2), we arrive at

λ

∫ 1

0
v2(x)dx =

∫ 1

0
xα

[

v(2n)(x)
]2
dx. (3.3)

If λ = 0, then from equality (3.3) it follows that

v(2n)(x) = 0, 0 < x < 1.

Hence, due to the conditions

v(2j)(0) = v(2j+1)(0), v(2j)(1) = v(2j+1)(1), j = 0, n− 1,

we have v(x) ≡ 0, 0 ≤ x ≤ 1. If λ < 0, then from (3.3) it immediately follows that v(x) ≡ 0,
0 ≤ x ≤ 1. Consequently, problem {(3.1), (3.2)} can have nontrivial solutions only for λ > 0.

Assuming λ > 0, we prove the existence of eigenvalues of problem {(3.1), (3.2)} using the Green’s
function method. The Green’s function G(x, s) of this problem has the following properties:

1)
(

∂j/∂xj
)

G(x, s), j = 0, 2n − 1 and
(

∂j/∂xj
) [

xα
(

∂2n/∂x2n
)

G(x, s)
]

, j = 0, 2n − 2 are
continuous for all x, s ∈ [0, 1];

2) in each of the intervals [0, s) and (s, 1] there exists a continuous derivative
(

∂2n−1/∂x2n−1
) [

xα
(

∂2n/∂x2n
)

G(x, s)
]

, and at x = s it has a jump:

(

∂2n−1/∂x2n−1
) [

xα
(

∂2n/∂x2n
)

G(x, s)
]x=s+0

x=s−0
= 1; (3.4)

3) in the intervals (0, s) and (s, 1) with respect to the argument x there exists a continuous
derivative MG(x, s) and the equality MG(x, s) = 0 holds;

4) for s ∈ (0, 1) with respect to x it satisfies the conditions

∂2jG(0, s)

∂x2j
=

∂2j+1G(0, s)

∂x2j+1
,

∂2j

∂x2j

(

xα
∂2n

∂x2n
G(x, s)

)
∣

∣

∣

x=0
=

∂2j+1

∂x2j+1

(

xα
∂2n

∂x2n
G(x, s)

)
∣

∣

∣

x=0
, j = 0, n − 1;














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∂2jG(1, s)

∂x2j
=

∂2j+1G(1, s)

∂x2j+1
,

∂2j

∂x2j

(

xα
∂2n

∂x2n
G(x, s)

)∣

∣

∣

x=1
=

∂2j+1

∂x2j+1

(

xα
∂2n

∂x2n
G(x, s)

)∣

∣

∣

x=1
, j = 0, n − 1.















As proven above, problem {(3.1), (3.2)} for λ = 0 has only a trivial solution. Then, according
to [11, p. 39], there exists a unique Green’s function G(x, s) for this problem. Let us now prove
that the Green’s function G(x, s), satisfying the above conditions 1–4, is symmetric with respect
to its arguments.

Let
v(x), h(x) ∈ C2n−1[0, 1]; xαv(2n)(x), xαh(2n)(x) ∈ C2n−1[0, 1] ∩C2n(0, 1).

Let us introduce the following notation:

M [v(x)] ≡
(

xαv(2n)(x)
)(2n)

= f(x), M [h(x)] ≡
(

xαh(2n)(x)
)(2n)

= g(x).

Then the following equality holds true

h(x)M [v(x)] − v(x)M [h(x)] = h(x)
(

xαv(2n)(x)
)(2n) − v(x)

(

xαh(2n)(x)
)(2n)

=

2n−1
∑

j=0

d

dx

{

(−1)j
[

h(j)(x)
(

xαv(2n)(x)
)(2n−1−j) − v(j)(x)

(

xαh(2n)(x)
)(2n−1−j)

]}

= f(x)h(x)− g(x)v(x), 0 < x < 1.

(3.5)

If we assume v(x) = G(x, s) and h(x) = G(x, ξ), then at all the points of the interval (0, 1),
except points x 6= ξ, x 6= s, the equalities M [v(x)] = 0 and M [h(x)] = 0 hold. Then equality (3.5)
takes the form

2n−1
∑

j=0

d

dx

{

(−1)j
[

dj

dxj
G(x, ξ)

d2n−1−j

dx2n−1−j

(

xα
d2n

dx2n
G(x, s)

)

− dj

dxj
G(x, s)

d2n−1−j

dx2n−1−j

(

xα
d2n

dx2n
G(x, ξ)

)

]}

= 0, x ∈ (0, 1)/{s, ξ}
(3.6)

Without loss of generality, we assume that s < ξ. Then the segment [0, 1] is divided into three
segments: [0, s], [s, ξ], [ξ, 1]. Integrating the equality (3.6) over these segments, we obtain

2n−1
∑

j=0

{

(−1)j
[

dj

dxj
G(x, ξ)

d2n−1−j

dx2n−1−j

(

xα
d2n

dx2n
G(x, s)

)

− dj

dxj
G(x, s)

d2n−1−j

dx2n−1−j

(

xα
d2n

dx2n
G(x, ξ)

)

]}x=s−0

x=0

+
2n−1
∑

j=0

{

(−1)j
[

dj

dxj
G(x, ξ)

d2n−1−j

dx2n−1−j

(

xα
d2n

dx2n
G(x, s)

)

− dj

dxj
G(x, s)

d2n−1−j

dx2n−1−j

(

xα
d2n

dx2n
G(x, ξ)

)

]}x=ξ−0

x=s+0

+
2n−1
∑

j=0

{

(−1)j
[

dj

dxj
G(x, ξ)

d2n−1−j

dx2n−1−j

(

xα
d2n

dx2n
G(x, s)

)

− dj

dxj
G(x, s)

d2n−1−j

dx2n−1−j

(

xα
d2n

dx2n
G(x, ξ)

)

]}x=1

x=ξ+0

= 0.
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If we consider the properties 1 and 4 of the Green’s function G(x, s), then the last equality
takes the form:

−
[

G(x, ξ)
d2n−1

dx2n−1

(

xα
d2n

dx2n
G(x, s)

)]
∣

∣

∣

x=s+0

x=s−0
+

[

G(x, s)
d2n−1

dx2n−1

(

xα
d2n

dx2n
G(x, ξ)

)]x=s+0

x=s−0

−
[

G(x, ξ)
d2n−1

dx2n−1

(

xα
d2n

dx2n
G(x, s)

)]x=ξ+0

x=ξ−0
+

[

G(x, s)
d2n−1

dx2n−1

(

xα
d2n

dx2n
G(x, ξ)

]∣

∣

∣

x=ξ+0

x=ξ−0
= 0.

According to the property 2 of the function G(x, η), the derivative of
(

∂2n−1/∂x2n−1
) [

xα
(

∂2n/∂x2n
)

G(x, η)
]

is continuous at x 6= η. Therefor we have the equality

[

G(x, ξ)
d2n−1

dx2n−1

(

xα
d2n

dx2n
G(x, s)

)∣

∣

∣

x=s−0
−G(x, ξ)

d2n−1

dx2n−1

(

xα
d2n

dx2n
G(x, s)

)∣

∣

∣

x=s+0

]

+
[

G(x, s)
d2n−1

dx2n−1

(

xα
d2n

dx2n
G(x, ξ)

)
∣

∣

∣

x=ξ+0
−G(x, s)

d2n−1

dx2n−1

(

xα
d2n

dx2n
G(x, ξ)

)
∣

∣

∣

x=ξ−0

]

= 0.

Hence, by virtue of equality (3.4), the equality

−G(s, ξ) +G(ξ, s) = 0,

follows, which we need to prove.
In the special case when n = 1, the Green’s function G (x, s) takes the following form:

G (x, s) =



















sx3−α

(2− α)2
+

sx2−α

(1− α)2
+

( s3−α

(2− α)2
+

s

3− α
+

1

3− α

)

(x+ 1) , 0 ≤ x ≤ s,

xs3−α

(2− α)2
+

xs2−α

(1− α)2
+

( x3−α

(2− α)2
+

x

3− α
+

1

3− α

)

(s+ 1) , s ≤ x ≤ 1.

Now, applying the method used in [11], it is easy to verify that problem {(3.1), (3.2)} is equiv-
alent to study of the following integral equation

v(x) = λ

∫ 1

0
G(x, s)v(s)ds. (3.7)

Since the kernel is continuous, symmetric and positive, the integral equation (3.7), and therefore,
the problem {(3.1), (3.2)} both have a countable set of eigenvalues

0 < λ1 ≤ λ2 ≤ λ3 ≤ . . . ≤ λk < . . . , λk → +∞,

and the corresponding system of eigenfunctions v1(x), v2(x), v3(x), . . . , vk(x) . . . forms an or-
thonormal system in the space L2(0, 1) [10].

In addition, it is not difficult to verify that the system of functions xα/2v
(2n)
k (x)/

√
λk,

k = 1, 2, . . . also forms an orthonormal system in L2(0, 1).

Lemma 1. Let the function g(x) satisfy the conditions (3.2) and Mg(x) ∈ C(0, 1) ∩ L2(0, 1).
Then, g(x) can be expanded on the segment [0, 1] into the absolutely and uniformly convergent series

in the system of eigenfunctions of the problem {(3.1), (3.2)}.

P r o o f. Using the integration by parts rule, the properties of the Green’s function G(x, s),
and the conditions imposed on the function g(x), it is straightforward to verify the equality:

∫ 1

0
G(x, s)Mg(s)ds =

∫ 1

0
G(x, s)

[

sαg(2n)(s)
](2n)

ds = g(x).
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Since Mg(x) ∈ L2(0, 1), it follows from the last equality that g(x) is a function representable
through the kernel G(x, s). Additionally, the function G(x, s), i.e. the kernel of equation (3.7), is
continuous in Ω̄. Then, based on Theorem 2 in [10, p. 153], the statement of Lemma 1 holds true. �

Lemma 2. The following series converge uniformly on segment [0, 1] :

+∞
∑

k=1

[

v
(j)
k (x)

]2
/λk,

+∞
∑

k=1

(

[

xαv
(2n)
k (x)

](j)
)2

/λ2
k, j = 0, 2n − 1 (3.8)

P r o o f. Considering the equality (3.1) and the properties of the function G(x, s), from (3.7)
at v(x) ≡ vk(x), we obtain

v
(j)
k (x) = λk

∫ 1

0

∂j

∂xj
G(x, s)vk(s)ds =

∫ 1

0

[

sαv
(2n)
k (s)

](2n) ∂j

∂xj
G(x, s)ds, j = 0, 2n − 1.

Hence, applying the rule of integration by parts 2n times, and then considering the condi-
tions (3.2), we have

v
(j)
k (x) =

∫ 1

0
sαv

(2n)
k (s)

∂2n+j

∂xj∂s2n
G(x, s)ds, j = 0, 2n − 1,

which, due to λk > 0, implies the equality

v
(j)
k (x)√
λk

=

∫ 1

0

(

sα/2
∂2n+j

∂xj∂s2n
G(x, s)

)

(

sα/2v
(2n)
k (s)√
λk

)

ds, j = 0, 2n − 1. (3.9)

From (3.9) it follows that v
(j)
k (x)/

√
λk is the Fourier coefficient of the function by the orthonor-

mal system
{

sα/2v
(2n)
k (s)/

√
λk

}+∞

k=1
.

Therefore, according to Bessel’s inequality [10], we obtain

+∞
∑

k=1

[

v
(j)
k (x)

]2
/λk ≤

∫ 1

0
sα

[ ∂2n+j

∂xj∂s2n
G(x, s)

]2
ds, j = 0, 2n − 1. (3.10)

The integral on the right-hand side (3.10) can be rewritten as

∫ 1

0
sα

[ ∂2n+j

∂xj∂s2n
G(x, s)

]2
ds =

∫ 1

0
s−α

[

∂j

∂xj

(

sα
∂2n

∂s2n
G(x, s)

)

]2

ds, j = 0, 2n − 1.

Since

sα
∂2nG(x, s)

∂s2n
,
∂jG(x, s)

∂xj
∈ C(Ω̄), j = 0, 2n − 1,

the function in the square bracket is continuous on Ω̄. Then, due to 0 < α < 1, the integral on the
right-hand side, and therefore the integral in (3.10), is uniformly bounded at j = 0, 2n − 1, which
implies that the first series in (3.8) converges uniformly.

The convergence of the remaining series can be proved similarly.
Lemma 2 has been proved. �
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Lemma 3. Let the conditions

g(j)(x) ∈ C[0, 1], j = 0, 2n − 1, xα/2g(2n)(x) ∈ C(0, 1) ∩ L2(0, 1);

g(2j)(0) = g(2j+1)(0), g(2j)(1) = g(2j+1), j = 0, n− 1

be fulfilled, then the inequality

+∞
∑

k=1

λkg
2
k ≤

∫ 1

0
xα

[

g(2n)(x)
]2
dx (3.11)

holds true. Specifically, the series on the left-hand side converges, where

gk =

∫ 1

0
g(x)vk(x)dx, k ∈ N.

P r o o f. By utilizing equation (3.1), we can write

λ
1/2
k gk = λ

1/2
k

∫ 1

0
g(x)vk(x)dx = λ

−1/2
k

∫ 1

0
g(x)

[

xαv
(2n)
k (x)

](2n)
dx.

Hence, by applying the integration by parts rule 2n times and considering the properties of the
functions g(x) and vk(x), we derive

λ
1/2
k gk =

∫ 1

0

{

xα/2g(2n)(x)
}{

λ
−1/2
k xα/2v

(2n)
k (x)

}

dx.

This implies that λ
1/2
k gk is the Fourier coefficient of the function xα/2g(2n)(x) by the or-

thonormal system
{

xα/2v(2n)(x)/
√
λk

}+∞

k=1
. Therefore, according to Bessel’s inequality [10],

inequality (3.11) holds true. Lemma 3 has been proved. �

Lemma 4. Let the function g(x) satisfy the conditions (3.2) and let

Mg(x) ∈ C(0, 1) ∩ L2(0, 1),

then the following inequality holds true

+∞
∑

k=1

λ2
kg

2
k ≤

∫ 1

0
[Mg(x)]2dx. (3.12)

Specifically, the series on the left side converges, where

gk =

∫ 1

0
g(x)vk(x)dx, k ∈ N.

P r o o f. By virtue of the formula for gk and equation (3.1), the equality

λkgk = λk

∫ 1

0
g(x)vk(x)dx =

∫ 1

0
g(x)

[

xαv
(2n)
k (x)

](2n)
dx

is valid.
Applying the rule of integration by parts 4n times to the integral on the right side and consid-

ering the properties of the functions g(x) and vk(x), we get
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λkgk =

∫ 1

0

[

xαg(2n)(x)
](2n)

vk(x)dx =

∫ 1

0

[

Mg(x)
]

vk(x)dx.

This implies that the value λkgk is the Fourier coefficient of the function Mg(x) in the
orthonormal system of functions {vk(x)}+∞

k=1. Then, according to Bessel’s inequality [10], inequal-
ity (3.12) holds true. Lemma 4 has been proved. �

Similarly to Lemma 3, one can prove the following

Lemma 5. If the function g(x) satisfies the conditions (3.2) and

[Mg(x)](j) ∈ C[0, 1], j = 0, 2n − 1; xα/2[Mg(x)](2n) ∈ C(0, 1) ∩ L2(0, 1);

[Mg(x)](2j)
∣

∣

x=0
= [Mg(x)](2j+1)

∣

∣

x=0
, [Mg(x)](2j)

∣

∣

x=1
= [Mg(x)](2j+1)

∣

∣

x=1
, j = 0, n − 1,

then the inequality
+∞
∑

k=1

λ3
kg

2
k ≤

∫ 1

0
xα

{

[Mg(x)](2n)
}2

dx

holds true, particularly, the series on the left side converges, where

gk =

∫ 1

0
g(x)vk(x)dx, k ∈ N.

4. Existence, uniqueness and stability of a solution to Problem A

We will seek a solution to problem A in the form

u(x, t) =
+∞
∑

k=1

uk(t)vk(x), (4.1)

where vk(x), k ∈ N are the eigenfunctions of the problem {(3.1), (3.2)}, and uk(t), k ∈ N are the
unknown functions to be determined.

Substituting (4.1) into equation (2.1) and the initial conditions (2.2), with respect to uk(t),
k ∈ N , we obtain the following problem

u′′k(t) + λkuk(t) = fk(t), t ∈ (0, T ), k ∈ N,

uk(0) = ϕ1k, u′k(0) = ϕ2k,

where

ϕjk =

∫ 1

0
ϕj(x)vk(x)dx, j = 1, 2; fk(t) =

∫ 1

0
f(x, t)vk(x)dx, k ∈ N.

It is known that the solution to the last problem exists, is unique and is determined by the
following formula:

uk(t) = ϕ1k cos
(

t
√

λk

)

+ ϕ2kλ
−1/2
k sin

(

t
√

λk

)

+ λ
−1/2
k

∫ t

0
fk(τ) sin

[

(t− τ)
√

λk

]

dτ,

0 ≤ t ≤ T.

(4.2)

From here, the following estimate

|uk(t)| ≤ |ϕ1k|+
1√
λk

|ϕ2k|+
1√
λk

√

∫ T

0
f2
k (τ)dτ , 0 ≤ t ≤ T (4.3)

easily follows.
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Theorem 1. Let the function ϕ1(x) satisfy the conditions of Lemma 5, the function ϕ2(x)
satisfy the conditions of Lemma 4, and the function f(x, t) satisfy the conditions of Lemma 4 with

respect to the argument x uniformly in t. Then series (4.1), the coefficients of which are defined

by the equalities (4.2), determines the solution to problem A.

P r o o f. To do this, it is necessary to prove the uniform convergence in Ω̄ of series (4.1) and
the following series, formally obtained from (4.1):

ut(x, t) =
+∞
∑

k=1

u′k(t)vk(x),

∂ju(x, t)

∂xj
=

+∞
∑

k=1

uk(t)v
(j)
k (x), j = 1, 2n − 1,

∂j

∂xj

(

xα
∂2nu(x, t)

∂x2n

)

=

+∞
∑

k=1

uk(t)
(

xαv
(2n)
k (x)

)(j)
, j = 0, 2n − 1

and uniform convergence in any compact set of Ω0 ⊂ Ω the series

∂2n

∂x2n

(

xα
∂2nu(x, t)

∂x2n

)

=
+∞
∑

k=1

uk(t)
(

xαv
(2n)
k (x)

)(2n)
, (4.4)

utt(x, t) =

+∞
∑

k=1

u′′k(t)vk(x). (4.5)

Let us consider series (4.1). By virtue of (4.3) from (4.1), for any (x, t) ∈ Ω̄ we have

|u(x, t)| ≤
+∞
∑

k=1

|uk(t)| |vk(x)| ≤
+∞
∑

k=1

|vk(x)|√
λk

(

√

λk |ϕ1k|+ |ϕ2k|+

√

∫ T

0
f2
k (τ)dτ

)

.

From here, applying the Cauchy–Schwarz inequality, we obtain

|u(x, t)| ≤

√

√

√

√

+∞
∑

k=1

v2k(x)

λk

(

√

√

√

√

+∞
∑

k=1

λkϕ
2
1k +

√

√

√

√

+∞
∑

k=1

ϕ2
2k +

√

√

√

√

∫ T

0

+∞
∑

k=1

[fk(τ)]
2 dτ

)

. (4.6)

The series on the right-hand sides of this inequality, due to the conditions of Theorem 1,
according to Lemmas 2 and 3, converges uniformly. Therefore, the series on the left side, i.e.
series (4.1), converges uniformly in Ω̄.

Now, we consider the series (4.4). By virtue of equation (3.1), in any compact set Ω0 the series
in (4.4) may be written in the form

+∞
∑

k=1

λkuk(t)vk(x). (4.7)

To prove the uniform convergence of series (4.7), according to (4.3), it is enough to prove the
absolute and uniform convergence of the series

+∞
∑

k=1

λkϕ1kvk(x),

+∞
∑

k=1

√

λkϕ2kvk(x),

+∞
∑

k=1

√

λk

√

∫ T

0
[fk(τ)]

2 dτvk(x). (4.8)
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In Ω0, we apply the Cauchy-Schwarz inequality to each of these series:

∣

∣

∣

+∞
∑

k=1

λkϕ1kvk(x)
∣

∣

∣
≤

+∞
∑

k=1

∣

∣

∣

√

λ3
kϕ1k

vk(x)√
λk

∣

∣

∣
≤

[

+∞
∑

k=1

λ3
kϕ

2
1k

∞
∑

k=1

v2k(x)

λk

]1/2
,

∣

∣

∣

+∞
∑

k=1

√

λkϕ2kvk(x)
∣

∣

∣
≤

+∞
∑

k=1

∣

∣

∣
λkϕ2k

vk(x)√
λk

∣

∣

∣
≤

[

+∞
∑

k=1

λ2
kϕ

2
2k ·

∞
∑

k=1

v2k(x)

λk

]1/2
,

∣

∣

∣

+∞
∑

k=1

√

λk

√

∫ T

0
[fk(τ)]2dτ · vk(x)

∣

∣

∣
≤

+∞
∑

k=1

∣

∣

∣

√

λ2
k

∫ T

0
[fk(τ)]2dτ · vk(x)√

λk

∣

∣

∣

≤
[

∫ T

0

+∞
∑

k=1

λ2
k[fk(τ)]

2dτ ·
+∞
∑

k=1

v2k(x)

λk

]1/2
.

The series on the right-hand sides of these inequalities, due to the conditions of Theorem 1,
according to Lemmas 2, 4 and 5, converges uniformly. Then the series located on the left sides,
i.e. series (4.8) converges absolutely and uniformly in Ω0. Therefore, the series (4.7), and therefore
the series in (4.4), converges uniformly in the compact set Ω0. The uniform convergence in Ω0 of
series (4.5) follows from the convergence of series (4.4) and the validity of equation (2.1).

The uniform convergence of the remaining series is similarly proved. Theorem 1 has been
proved. �

Theorem 2. A problem a cannot have more than one solution.

P r o o f. Let us assume that there exist two solutions u1(x, t) and u2(x, t) of problem A.
We denote their difference by u(x, t). Then the function u(x, t) satisfies the equation (2.1) for
f(x, t) ≡ 0, and conditions (2.2) and (2.3) for ϕ1(x) ≡ ϕ2(x) ≡ 0.

Let ∀T0 ∈ (0, T ],

Ω0 = {(x, t) : 0 < x < 1, 0 < t < T0} .

It is obvious that Ω̄0 ⊂ Ω̄. Let us introduce the following function:

ω(x, t) = −
∫ T0

t
u(x, ξ)dξ, (x, t) ∈ Ω̄0.

This function has the following properties:

1) ωt, ωtt,
∂jω

∂xj
,

∂j

∂xj

(

xα
∂2nω

∂x2n

)

∈ C
(

Ω̄0

)

, j = 0, 2n − 1;

2) it satisfies the conditions (2.3) at t ∈ [0, T0].

Let us consider the equation (2.1) for f(x, t) ≡ 0 and multiply it by the function ω(x, t), and then
integrate the resulting equality over the domain Ω0 :

∫

Ω0

ω(x, t)
{

utt(x, t) +
∂2n

∂x2n

[

xα
∂2nu(x, t)

∂x2n

]}

dtdx = 0.

We rewrite this equality as

∫ T0

0
dt

∫ 1

0
ω(x, t)

∂2n

∂x2n

[

xα
∂2nu(x, t)

∂x2n

]

dt+

∫ 1

0
dx

∫ T0

0
ω(x, t)utt(x, t)dt = 0.



142 Akhmadjon K. Urinov and Dastonbek D. Oripov

Now, applying the rule of integration by parts, we obtain

∫ T0

0

[

ω(x, t)
∂2n−1

∂x2n−1

(

xα
∂2nu(x, t)

∂x2n

)

− ∂ω(x, t)

∂x

∂2n−2

∂x2n−2

(

xα
∂2nu(x, t)

∂x2n

)

+ . . .

+ . . .− ∂2n−1ω(x, t)

∂x2n−1

(

xα
∂2nu(x, t)

∂x2n

)

]x=1

x=0

dt+

∫ T0

0
dt

∫ 1

0
xα

∂2nω(x, t)

∂x2n
∂2nu(x, t)

∂x2n
dx+

+

∫ 1

0

[

ω(x, t)
∂u(x, t)

∂t

∣

∣

∣

t=T0

t=0
−

∫ T0

0

∂ω(x, t)

∂t

∂u(x, t)

∂t

]

dx = 0,

from which, due to the properties of functions ω(x, t) and u(x, t), the equality

∫ T0

0
dt

∫ 1

0
xα

∂2nω(x, t)

∂x2n
∂2nu(x, t)

∂x2n
dx−

∫ 1

0
dx

∫ T0

0

∂ω(x, t)

∂t

∂u(x, t)

∂t
dt = 0

follows.

Hence, taking into account equalities

u =
∂ω

∂t
,

∂2nu

∂x2n
=

∂2n+1ω

∂x2n∂t
,

we have

∫ 1

0
xαdx

∫ T0

0

∂2nω(x, t)

∂x2n
∂2n+1ω(x, t)

∂x2n∂t
dt−

∫ 1

0
dx

∫ T0

0
u(x, t)

∂u(x, t)

∂t
dt = 0.

Further, taking into account the equalities

u(x, t)
∂u(x, t)

∂t
=

1

2

∂

∂t
[u(x, t)]2,

∂2nω(x, t)

∂x2n
∂2n+1ω(x, t)

∂x2n∂t
=

1

2

∂

∂t

[

∂2nω(x, t)

∂x2n

]2

,

and applying the rule of integration by parts to integrals over t, taking into account ω (x, T0) = 0,
u(x, 0) = 0, we obtain

∫ 1

0
u2 (x, T0) dx+

∫ 1

0
xα

[

∂2nω(x, t)

∂x2n

]2

t=0

dx = 0.

It follows that u (x, T0) ≡ 0, x ∈ [0, 1]. Since we considered ∀T0 ∈ [0, T ], then u(x, t) ≡ 0,
(x, t) ∈ Ω̄. Then u1(x, t) ≡ u2(x, t), (x, t) ∈ Ω̄. Theorem 2 is proven. �

Theorem 3. Let functions ϕ1(x), ϕ2(x) and f(x, t) satisfy the conditions of Theorem 1. Then

for the solution of Problem A the following estimates

‖u(x, t)‖2L2(0,1)
≤ K0

[

‖ϕ1(x)‖2L2(0,1)
+ ‖ϕ2(x)‖2L2(0,1)

+ ‖f(x, t)‖2L2(Ω)

]

, (4.9)

B‖u(x, t)‖C(Ω) ≤ K1

[

‖ϕ(2n)
1 (x)‖L2,r(0,1) + ‖ϕ2(x)‖L2(0,1) + ‖f(x, t)‖L2(Ω)

]

, (4.10)

are valid, where

‖ϕ1(x)‖L2,r(0,1)
=

[
∫ 1

0
xα [ϕ1(x)]

2 dx

]1/2

and r = r(x) = xα, and K0 and K1 are some real positive numbers.
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P r o o f. Here, taking into account the orthonormality of the system {vk(x)}+∞
k=1 and inequal-

ity (4.3) followed from (4.1), we obtain

‖u(x, t)‖2L2(0,1)
=

+∞
∑

k=1

u2k(t) ≤
+∞
∑

k=1

[

|ϕ1k|+
1√
λk

|ϕ2k|+
1√
λk

‖fk(t)‖L2(0,T )

]2

≤ 3

+∞
∑

k=1

[

ϕ2
1k +

1

λk
ϕ2
2k +

1

λk
‖fk(t)‖2L2(0,T )

]

≤ 3

+∞
∑

k=1

[

ϕ2
1k +

1

λ1
ϕ2
2k +

1

λ1
‖fk(t)‖2L2(0,T )

]

.

Hence, considering Bessel’s inequality, we get

‖u(x, t)‖2L2(0,1)
≤ K0

(

‖ϕ1(x)‖2L2(0,1)
+ ‖ϕ2(x)‖2L2(0,1)

+
+∞
∑

k=1

‖fk(t)‖2L2(0,T )

)

, (4.11)

where K0 = 3C, C = max (1, 1/λ1) .
Taking into account the following easily verifiable equality

‖f(x, t)‖2L2(Ω) =
+∞
∑

n=1

‖fk(t)‖2L2(0,T ) ,

from (4.11), we obtain inequality (4.9).
Further, according to the statements of Lemmas 2 and 3, from (4.6) it follows

‖u(x, t)‖C()) = sup
Ω

|u(x, t)| ≤ K1

{

√

∫ 1

0
xα[ϕ

(2n)
1 (x)]2dx+

√

√

√

√

+∞
∑

k=1

ϕ2
2k +

√

√

√

√

∫ T+∞

0

+∞
∑

k=1

[fk(τ)]
2 dτ

}

,

where

K1 = sup
[0,1]

√

√

√

√

+∞
∑

k=1

v2k (x)/λk .

From here, due to the introduced notation, inequality (4.10) follows. Theorem 3 has been
proved. �

5. Conclusion

In a quadrilateral, an initial boundary-value problem has been considered for a high-order
partial differential equation that degenerates at the boundary of the domain. The uniqueness of
the solution to the problem was proved by the method of energy integrals. The solution to the
problem was found in the form of a Fourier series. The sufficient conditions for the given functions
have been identified that ensure the existence of a solution to the problem. The estimates for the
solution of the problem in spaces L2 [0, 1] and C [0, 1] have been obtained.
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