
URAL MATHEMATICAL JOURNAL, Vol. 3, No. 1, 2017

AN ALGORITHM FOR COMPUTING BOUNDARY POINTS
OF REACHABLE SETS OF CONTROL SYSTEMS UNDER

INTEGRAL CONSTRAINTS1

Mikhail I. Gusev

Krasovskii Institute of Mathematics and Mechanics,
Ural Branch of the Russian Academy of Sciences,

16 S.Kovalevskaya str., 620990, Ekaterinburg, Russia
gmi@imm.uran.ru

Abstract: In this paper we consider a reachability problem for a nonlinear affine-control system with integral
constraints, which assumed to be quadratic in control variables. Under controllability assumptions it was proved
in [8] that any admissible control that steers the control system to the boundary of its reachable set is a local
solution to an optimal control problem with an integral cost functional and terminal constraints. This leads
to the Pontriagyn maximum principle for boundary trajectories. We propose here a numerical algorithm for
computing the reachable set boundary based on the maximum principle and provide some numerical examples.
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Introduction

We consider here the reachable sets of a nonlinear affine-control system with joint integral
constraints on the state and the control. The numerical algorithms for constructing approximations
of reachable sets of control systems were investigated in many works (see, for example [2, 4, 7, 9–
12, 14, 15, 17]). The properties of reachable sets under integral constraints and algorithms for their
construction were studied in [1, 5, 6, 16]. For systems with pointwise constraints on the control it is
known (see, for example, [13]) that the control, which steers the trajectory to the boundary of the
reachable set, satisfies the Pontryagin maximum principle. In the paper [8] we have considered the
reachability problem for a nonlinear affine-control system with constraints on the control variables
given by the quadratic integral inequality. Assuming the controllability property of the linearized
system, we proved that any admissible control that steers the control system to the boundary of its
reachable set is a local solution to an optimal control problem with an integral cost functional and
a terminal constraint. This leads to the maximum principle for boundary trajectories. The last
result admits a generalization to the case of joint integral constraints on the state and the control
given by the inequality

J(u(·)) =

∫ t1

t0

f0(t, x(t), u(t))dt ≤ µ2.

The reachable set in this case may be considered as the solution to the inverse optimal control prob-
lem: to find the terminal states reachable from the given initial state by the trajectories satisfying
the constraints on the value of the cost functional. The aim of the present paper is to propose a
numerical algorithm for computing boundary points of the reachable set. This algorithm is based
on the solution of equations following from the maximum principle for boundary trajectories.

1The research is supported by Russian Science Foundation, project No. 16-11-10146.
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1. Notation and definitions

Further by A⊤ we denote the transpose of a real matrix A, In is an identity n × n-matrix,
0n is a zero n × n-matrix, 0 stands for a zero vector of appropriate dimension. For x, y ∈ R

n let
(x, y) = x⊤y denotes the inner product, x⊤ = (x1, . . . , xn), ‖x‖ = (x, x)

1

2 be the Euclidean norm,
and Br(x̄): Br(x̄) = {x ∈ R

n : ‖x − x̄‖ ≤ r} be a ball of radius r > 0 centered at x̄. For a set

S ⊂ R
n let ∂S be the boundary of S;

∂f

∂x
(x) is the Jacobi matrix of a vector-valued function f(x).

For a real k×m matrix A a matrix norm is denoted as ‖ A ‖. The symbol Rn×r denotes a space of
n× r real matrices, the symbols L1, L2 and C stand for the spaces of summable, square summable
and continuous vector-functions respectively. The norms in these spaces are denoted as ‖ · ‖

L1
,

‖ · ‖
L2
, ‖ · ‖

C
.

We consider the control system

ẋ(t) = f1(t, x(t)) + f2(t, x(t))u(t), x(t0) = x0, (1.1)

on the fixed interval [t0, t1], where t0 ≤ t ≤ t1, x ∈ R
n, u ∈ R

r, f1 : R
n+1 → R

n, f2 : R
n+1 → R

n×r

are continuous mappings.
The functions f1 and f2 are assumed to be continuously differentiable in x and satisfying the

following conditions:

‖ f1(t, x) ‖ ≤ l1(t)(1+ ‖ x ‖), ‖ f2(t, x) ‖ ≤ l2(t), (1.2)

where l1(·) ∈ L1, l2(·) ∈ L2. Under these assumptions for any u(·) ∈ L2 there exists a unique
absolutely continuous solution x(t) of system (1.1) which satisfies the initial condition x(t0) = x0
and is defined on the interval [t0, t1].

2

Denote as J(u(·)) the following integral functional

J(u(·)) =

∫ t1

t0

(Q(t, x(t)) + u⊤(t)R(t, x(t))u(t))dt.

Here x(t) is a solution of system (1.1) corresponding to the control u(t) and the initial vector
x0. The function Q(t, x) and the positive definite symmetric matrix R(t, x) are assumed to be
continuous on [t0, t1]×R

n and satisfying the inequalities Q(t, x) ≥ 0, u⊤R(t, x)u ≥ α‖u‖2 for some
α > 0 and any (t, x, u) ∈ [t0, t1]× R

n × R
r.

Define the set
U = {u(·) ∈ L2 : J(u(·)) ≤ µ2},

where µ > 0 is a given number, and let P be a m × n full rank real matrix, m ≤ n. Denote by
G(t1) the (output) reachable set of the system (1.1) at the time t1 for the fixed x0 and the integral
constraints:

G(t1) =
{

y ∈ R
m : ∃u(·) ∈ U, y = Px(t1, u(·))

}

,

where x(t, u(·)) is a trajectory of system (1.1), corresponding to u(·).
The reachable set is a compact set in R

m, but it may be empty.
Recall the following definitions: the linear control system

ẋ(t) = A(t)x(t) +B(t)u(t), t ∈ [t0, t1], x(t0) = x0,

a) is said to be controllable on [t0, t1] with respect to the output y = Px if for any y1 ∈ R
m there

exists a control u(·) ∈ L2 that transfers the system from the zero initial state x(t0) = 0 to the final

2We use the same notation for the space L2 in the case of a scalar function l2(·) and a vector-function u(·).
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state x(t1) such that Px(t1) = y1;
b) is said to be the linearization of the system ẋ = F (t, x, u) along the trajectory x(t), u(t) if

A(t) =
∂F

∂x
(t, x(t), u(t)), B(t) =

∂F

∂u
(t, x(t), u(t)).

2. The Maximum Principle for Boundary Trajectories

2.1. Extremal Properties of Boundary Points

Let us show that any admissible control that steers the control system to the boundary of its
reachable set is a local solution to an optimal control problem with an integral cost functional and
terminal constraints.

Theorem 1. Assume that:

1) y1 ∈ ∂G(t1);

2) u(·) ∈ U is a control that steers the system from the state x(t0) = x0 to the point x(t1),
Px(t1) = y1, x(t) is the corresponding trajectory;

3) the linearization along (x(t), u(t)) of system (1.1) is controllable on [t0, t1] w.r.t. output
y = Px;

Then there exists σ > 0 such that J(v(·)) ≥ µ2 for any v(·) ∈ B(u(·), σ) ⊂ L2 satisfying the
condition Px(t1) = y1. Since J(u(·)) ≤ µ2, this implies that J(u(·)) = µ2 and the control u(·)
provides a local minimum in the optimal control problem

J(u(·)) → min, u(·) ∈ L2, x(t0) = x0, Px(t1) = y1 (2.3)

with terminal constraint Px(t1) = y1.

P r o o f. The proof follows the scheme of the proof of the Theorem 1 [8] and uses the Graves
theorem [3]. �

Since the local minimum in L2 admits the needle variations of the control, the local L2-minimizer
satisfies Pontryagin’s maximum principle. Introduce the Pontryagin function (Hamiltonian) asso-
ciated with (2.3)

H(p, t, x, u) = −p0f0(t, x, u) + p⊤(f1(t, x) + f2(t, x)u),

p0 ≥ 0, f0(t, x, u) = Q(t, x)+u⊤R(t, x)u. Assume additionally that Q(t, x), R(t, x) are continuously
differentiable in x. A locally optimal control for (2.3) satisfies the maximum principle: there exist
p0 ≥ 0, l ∈ R

m, (p0, l) 6= 0, and a function p(t) such that

H(p(t), t, x(t), u(t)) = max
v∈Rr

H(p(t), t, x(t), v),

˙p(t) = −
∂H

∂x
(p(t), x(t), u(t)) = −A⊤(t)p(t) + p0

∂f0

∂x
(t, x(t), u(t)), p(t1) = P⊤l.

Since the terminal constraints are regular (rankP = m), we have p0 + ‖p(t)‖ 6= 0, t ∈ [t0, t1].
As previously, we denote here by (A(t), B(t)) the matrices of the linearization along (x(t), u(t))
of system (1.1). Applying the maximum principle to the solution of problem (2.3) we come the
following
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Corrolary 1. Suppose that u(t) satisfies the assumptions of Theorem 1. Then there exist
l ∈ R

m, l 6= 0 and a function p(t) such that

˙p(t) = −
∂H

∂x
(p(t), x(t), u(t)) = −A⊤(t)p(t) +

1

2

∂f0

∂x
(t, x(t), u(t)), p(t1) = P⊤l,

u(t) = R−1(t, x(t))f⊤2 (t, x(t))P (t), t ∈ [t0, t1].

P r o o f. If a pair (A(t), B(t)) is controllable w.r.t. y = Px, then p0 > 0. Indeed, if it turned
out that p0 = 0, then p(·) is a non zero solution of the equation

ṗ(t) = −A⊤(t)p(t), p(t1) = P⊤l,

and from the maximum principle we would obtain

p⊤(t)B(t)u(t) = max
v∈Rr

p⊤(t)B(t)v

almost everywhere in t. The last is valid only if p⊤(t)B(t) ≡ 0. Represent p(t) in the form
p(t) = X⊤(t1, t)P

⊤l, then ‖l⊤PX(t1, t)B(t)‖2 = 0, t ∈ [t0, t1]. Integrating both sides of the last
equality over [t0, t1], we get l⊤V l = 0. This contradicts to the controllability of (A(t), B(t)) w.r.t.
y = Px, since l 6= 0. Thus we can take p0 = 1

2 , from the maximum principle it follows that
Hu(p(t), t, x(t), u(t)) = 0, hence u(t) = u(t, x(t), p(t)), where u(t, x, p) = R−1(t, x)f⊤2 (t, x)p. �

2.2. Algorithm

Let us describe the following algorithm for calculating boundary points of reachable sets based
on the results of previous subsection. Further we assume that P = [Im, 0] if m < n or P = In
if m = n. In this case the transversality conditions p(t1) = P⊤l take the form pi(t1) = 0, i =
m+ 1, .., n. Letting

ẋ0(t) = f0(t, x(t), u(t)), x0(t0) = 0,

we get J(u(·)) = x0(t1). Substituting u(t, x, p) into differential equations, we obtain the following
system

ẋ(t) = f1(t, x(t)) + f2(t, x(t))u(t, x(t), p(t)), x(t0) = x0,

ṗ(t) = −
∂f

∂x
H(p(t), x(t), u(t, x(t), p(t))), p(t0) = q,

ẋ0(t) = f0(t, x(t), u(t, x(t), p(t))), x0(t0) = 0.

(2.1)

Denote by X the following (2n + 1)-column vector X = [x; p;x0] and write equations (2.1) as the
system

Ẋ(t) = F (t,X(t)), X(t0) = [x0; q; 0], (2.2)

By F (t,X) we denote the right-hand side of (2.1). Since x0 is fixed, the solution of (2.2) depends
only on the vector q ∈ R

n, denote this solution as X(t, q) = [x(t, q); p(t, q);x0(t, q)]. These functions
have continuous derivatives Xq(t, q) with respect to q, which can be found by integrating the
linearization of (2.2) along the trajectory X(t, q)

Ẋq(t, q) =
∂F

∂X
(t,X(t, q))Xq(t, q), Xq(t0, q) = [0n; In; 0]. (2.3)

The integration of equations (2.1)and (2.2) over the interval [t0, t1] may be performed simultane-
ously. To this end, we unite both systems into one system of dimension (2n + 1)(n + 1)

Ẋ(t) = F (t,X(t)), X(t0) = [x0; q; 0],

Ẋq(t, q) =
∂F

∂X
(t,X(t, q))Xq(t, q), Xq(t0, q) = [0n; In; 0].

(2.4)
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Consider the following continuously differentiable functions

ψ0(q) = x0(t1, q)− µ2, ψi(q) = pm+i(t1, q), i = 1, ..., n −m,

their derivatives in q may be found by numerical integration of differential equations (2.4). The
calculations of boundary points require the solution of the system of equations

ψi(q) = 0, i = 0, ..., n −m, (2.5)

and also the integration of system (2.1) with zeros of system (2.5) as the initial points for (2.1). In
case m = n the system (2.5) consists of a single equation ψ0(q) = 0.

Let us describe a simple version of the algorithm for calculating zeros of ψi(q) in the case
m = n = 2. Represent q ∈ R

2 in polar coordinates: q1(θ) = r(θ) cos(θ + θ0) + q01, q2(θ) =
r(θ) sin(θ + θ0) + q02. Here r(θ) is a distance from a reference point q0 and θ is an angle between
q − q0 and the reference direction q̄ = (cos θ0, sin θ0). Differentiating the identity ψ0(q(θ)) = 0, we
get a differential equation for r(θ)

ṙ(θ) = r(θ)
ψ0q1(q(θ)) sin(θ + θ0)− ψ0q2(q(θ)) cos(θ + θ0)

ψ0q1(q(θ)) cos(θ + θ0) + ψ0q2(q(θ)) sin(θ + θ0)
, 0 ≤ θ ≤ 2π. (2.6)

To start the solution we use a one-dimensional search procedure for finding the root of equation
ψ(q0 + rq̄) = 0 and after this take this root as the initial state for differential equation (2.6).

3. Examples

Here we illustrate the above procedure for two examples of 2-dimensional control systems.

E x a m p l e 1. Consider the Duffing equation

ẋ1 = x2, ẋ2 = ϕ(x1) + u, t ∈ [0, t1], x1(0) = 0, x2(0) = 0, (3.1)

ϕ(x1) = −αx1 − βx31, α, β > 0, which describes the motion of nonlinear stiff spring on impact of
an external force u. Consider the integral constraint on the state and the control

∫ t1

0
(ax21(t) + bx22(t) + u2(t))dt ≤ 2,

where a, b are nonegative parameters and take P = I2.

It is easy to verify that the controllability assumptions of Theorem 1 are satisfied here. Really,
consider any trajectory (x(t), u(t)) of (3.3). The linearization of (3.3) along (x(t), u(t)) has the
matrices

A(t) =

(

0 1

ϕ
′

(x1(t)) 0

)

, B(t) =

(

0
1

)

.

An adjoint system ṡ = −A⊤(t)s is as follows

ṡ1(t) = −ϕ
′

(x1(t))s2(t),

ṡ2(t) = −s1(t).

Thus, the identity s⊤(t)B(t) = s2(t) ≡ 0 for t ∈ [t0, t1] implies s1(t) ≡ 0. This means the
controllability of the pair (A(t), B(t)).
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Figure 1. Reachable sets for different values of t1.
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Figure 2. Reachable sets for different values of a, b.

The system (2.4) takes the following form

Ẋ1 = X2,

Ẋ2 = ϕ(X1) +X4,

Ẋ3 = aX1 − ϕ
′

(X1)X4,

Ẋ4 = bX2 −X3,

Ẋ5 = aX2
1 + bX2

2 +X2
4 ,

Ẋ5+i = X6+i,

Ẋ6+i = ϕ
′

(X1)X5+i +X8+i,

Ẋ7+i = aX5+i − ϕ
′′

(X1)X4X5+i − ϕ
′

(X1)X8+i,

Ẋ8+i = bX6+i −X7+i,

Ẋ9+i = 2aX1X5+i + 2bX2X6+i + 2X4X8+i.

(3.2)

In equations (3.2) i = 1, 6, so (3.2) is a system of 15-th order. Integrating this system over [0, t1]
for initial state X⊤(0) = (0, 0, q1, q2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0) we get

ψ0(q) = X5(t1, q)− µ2,
∂ψ0

∂q1
(q) = X10(t1, q),

∂ψ0

∂q2
(q) = X15(t1, q), q⊤ = (q1, q2).

Since x(0) = 0 and ϕ(x1) is an odd function having even derivative it is not difficult to prove that
the set {q : ψ0(q) = 0} is symmetric with respect to the origin. In this case it is natural to take the
reference point q0 = 0. As the reference direction we choose q̄ = (1, 0). The results of numerical
simulations for the case α = 1, β = 10 are shown in Fig. 1–2.

The Fig. 1 shows the plot of the reachable sets boundaries for t1 = 0.5, 1, 1.5, and 2 respectively,
and for a = 0, b = 0. The reachable sets boundaries for the values of a = 0, b = 0; a = 5, b = 10;
a = 30, b = 15 and t1 = 2 are presented in Fig. 2.

E x a m p l e 2. Consider the following system [16]

ẋ1 = x2, ẋ2 = ϕ(x1) + u, t ∈ [0, 2π], x1(0) = 0, x2(0) = 0, (3.3)

where ϕ(x1) = − sinx1. The integral constraint on the state and the control are given by the
inequality

∫ 2π

0
(ax21(t) + bx22(t) + u2(t))dt ≤ 2
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Figure 3. Reachable sets for different values of a, b Figure 4. Zero-level lines of ψ0(q) for different val-
ues of a, b
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Figure 5. Reachable sets for different values of µ2. Figure 6. Graph of the function r(θ).

as in Example 1. As above the controllability assumptions of Theorem 1 are satisfied for the
considered system.

The results of numerical simulation are shown in the Fig. 3–6. The Fig. 3 shows the plot of
the reachable sets boundaries for t1 = 2, and for a = 0, b = 0; a = 0.1, b = 0; a = 0.5, b = 0.1
respectively. This plot demonstrates that reachable sets are nonconvex for a = 0, b = 0 and became
convex under increase of parameters a, b.

The next plot (Fig. 4) exhibits the zero-level lines of ψ0(q) corresponding to the curves of Fig. 3.

The Fig. 5 demonstrates the dependence of reachable sets on the value µ2 = 0.5, 1, 1.5, 2, 2.2.
It shows that reachable sets that are convex for small µ2 loose their convexity as µ2 increases
(see [16]). In this example the method fails for µ2 > 2.2 because a numerical integration of (2.6)
unable to meet integration tolerances. Note that the considered procedure may by applied if the
zero-level line ψ0(q) = 0 is a differentiable curve. Differentiability can be violated in the points
where ψ0q1(q) = ψ0q2(q) = 0 or the right-hand side of (2.6) is singular. The graph of the solution
of (2.6) corresponding to the value µ2 = 2.2 is shown in Fig. 6.
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4. Conclusion

This paper describes an algorithm for computing the boundaries of the reachable sets under
joint integral constrains on state and control variables. The reachable set may be considered here
as the solution to the inverse optimal control problem: to find the terminal states reached from the
given initial state by the trajectories satisfying the constraints on the value of the cost functional.
The Pontriagyn maximum principle for boundary trajectories is applied to construct a numerical
algorithm for computing the boundary points. The results of numerical simulation for two examples
of second order nonlinear control systems are presented.
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