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Abstract: This paper deals with the known uncrossing zero-sum two-player sequential game, which is
employed to obtain upper running time bound for the transformation of an arbitrary subset family of some
finite set to an appropriate laminar one. In this game, the first player performs such a transformation, while
the second one tries to slow down this process as much as possible. It is known that for any game instance
specified by the ground set and initial subset family of size n and m respectively, the first player has a winning
strategy of O(n4m) steps. In this paper, we show that the first player has a more efficient strategy, which helps
him (her) to win in O

(

max{n2, mn}
)

steps.
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1. Introduction

A laminar family of subsets for a given finite set is a well-known concept in discrete mathematics
widely exploited in algorithm design for combinatorial optimization problems. For instance, in [5]
and [4], laminar families are used to construct polynomial time approximation algorithms for several
modifications of the Tree Augmentation Problem (TAP). Recently [1], these results have been
extended to efficient approximation algorithms for the Leaf-to-Leaf Connectivity Augmentation
Problem (CAP).

On the other hand, strongly laminar instances of the Asymmetric Traveling Salesman Problem
(ATSP) belong to the main building blocks of the first constant-ratio approximation algorithm for
the ATSP proposed by the authors of the breakthrough papers [9] and [10]. By relying on this
algorithm the authors of recent works [3, 6, 7] proved constant-ratio polynomial time approxima-
tion for several related asymmetric combinatorial problems including Prize-Collecting TSP and
Capacitated Vehicle Routing Problem.

An advantage of employment the laminar families in approximation algorithms is based on the
following two observations:

(i) for any finite set V of size |V | = n, the size |L| of an arbitrary laminar family L of its subsets
is O(n) [8];

(ii) any non-necessary laminar subset family F of size m can be transformed to some equivalent
laminar family (see, e.g. [2]) in polynomial time with respect to n and m.

To obtain an upper bound for the running time of such a transformation, the authors of [2]
introduced a sequential two-person zero-sum uncrossing game, where the first player is aimed to
make the initial family F laminar, and the second player tries to slow down this process as much
as possible. For each step of the game, its state is specified by the current family. The game ends
with the first player winning as soon as the state becomes laminar family.

In [2], the authors showed that the first player has a strategy that allows he (she) to win in
polynomial number of steps.
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Theorem 1. In the uncrossing game, the first player has a strategy to make the initial family F

laminar in O(n4m) steps.

Theorem 2. In the uncrossing game, the first player has a strategy to make the family F

laminar in O(max{nm,n2}) steps.

The rest of our paper is structured as follows. In Section 2, we give formulation of the uncrossing
game and recall some its properties essential to our own constructions. Section 3 contains the proof
of Theorem 2. Finally, in Section 4, we summarize our results and overview some directions of
future research.

2. Problem statement and preliminaries

Let V be an arbitrary non-empty finite set. In the sequel, we call it ground set.

Definition 1. Subsets X,Y ∈ 2V are called crossing and denoted X ∦ Y , if all of the sets

X\Y , Y \X, X ∩ Y , V \(X ∪ Y ) are non-empty. Otherwise the sets X and Y are called laminar

and denoted X ‖ Y .

A subset family F ⊆ 2V is called laminar if it contains no crossing subsets.

Definition 2. A subset family I ⊆ 2V is called cross-closed, if for any crossing sets X,Y ∈ I

at least one of the pairs

{X ∩ Y,X ∪ Y } or {X\Y, Y \X} (2.1)

belongs to I as well.

Obviously, for an arbitrary X ∦ Y , both pairs (2.1) are laminar. To simplify description of the

uncrossing game, define two elementary uncrossing operations as follows. The first operation
∩,∪
−−→

substitutes some crossing subsets X,Y ∈ F by the subsets X ∩ Y,X ∪ Y ∈ I, while the second one
\,\
−−→ makes the similar replacement by the subsets X\Y, Y \X ∈ I.

Definition 3. The uncrossing game is a sequential two-player zero-sum game, whose instance

is specified by some non-empty finite set V and a family F. It is assumed that F ⊆ I for some

cross-closed family I ⊆ 2V given implicitly by a membership oracle.

Each step of the game is defined as follows. If the family F is laminar, then the first player

wins. Otherwise, it performs one uncrossing operation for some subsets X,Y ∈ F, X ∦ Y . In turn,

the second player returns back to F one of the subsets X or Y .

In [2] several properties of the uncrossing game were proved. We remind some of them which
are necessary for our own results.

Statement 1. Let X,Y,Z ∈ F such that X ∦ Y , X ‖ Z, and Y ‖ Z. The relation Q ‖ Z holds

for any Q ∈ {X\Y, Y \X,X ∪ Y,X ∩ Y }.

Statement 1 allows to simplify the uncrossing game at each step, when the current family F

contains a subset Z laminar to each other X ∈ F.

Lemma 1. The first player has a strategy to reduce the initial game instance to O(nm) subin-
stances of the uncrossing game, each of them is of the smaller size.
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As it follows from the proof of Lemma 1, each of the obtained subinstances is equivalent to the
uncrossing game specified by the ground set W and the family R, where

W = 1, r, and R = {1, 2, 1, 3, . . . , 1, r − 2, 2, r − 1} (2.2)

for some r ≤ n, and the appropriate cross-closed family I∗ induced by the family I. Hereinafter,
we use the standard notation i, j for the integer interval {i, i + 1, . . . , j − 1, j}, whose entries are
taken modulo r. In turn, it is easy to verify that this game is equivalent to the game

CG(r) :

{

W = 1, r,

R = {1, 2, 2, 3, 2, 4, . . . , 2, r − 1},
(2.3)

which is the main object of the subsequent discussion.
Indeed, we can obtain game CG(r) (see Fig. 1) by the cyclic shift on −1 to form a family

R = {r, 1, 1, 2, 1, 3, . . . , 1, r − 2}

and taking the complement W \ r, 1 = 2, r − 1. The reverse transformation can be obtained by
supplementing the complement W\1, 2 = 3, r producing the family {3, r, 2, 3, 2, 4, . . . , 2, r − 1} by
the cyclic shift on −1 resulting in the family

R = {1, 2, 1, 3, , . . . , 1, r − 2, 2, r − 1}.

The game CG(r) belongs to the known class of cyclic uncrossing games (see, e.g. [2]), each of
them has the following properties:

(i) the family R is partitioned into two laminar subfamilies R = L1⊔̇L2, such that 1, i ∈ L1 for
2 6 i 6 r − 2 and 2, j ∈ L2;

(ii) the game is invariant to cyclic shifts and replacing each interval by its complement;
(iii) any two neighboring elements i, i + 1 (modulo r) are separated by some set X ∈ R, i.e.

|X ∩ {i, i+ 1}| = 1.

In the sequel, we propose a first player winning strategy for the CG(r) based on transformation
of the initial game to some simpler one. To this end, each time when the transformed family
contains a pair {i, i + 1} violating property (iii), we can contract the interval i, i+ 1 to a single
point, which makes ground set W smaller and accordingly transforms R and I∗.

r-3

r-2

r-1
r

1
2

3

3r-3

r-2

r-1
r

1

2

Figure 1. Towards the equivalence of game (2.2) and CG(r).

Evidently, for r < 4 the game CG(r) has a trivially solvable by the first player, since the initial
family R is laminar. Consider the first non-trivial game CG(4).
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Lemma 2. The first player can win in the CG(4) after the single step.

P r o o f. By construction of CG(4), the family R consists of the only crossing pair 1, 2 and 2, 3.
Since I∗ is cross-closed, it contains either {1} and {3} or {2} and {4} (equivalent to 1, 3). Then,

the first player at the first step performs either the uncrossing operation 1, 2 ∦ 2, 3
\,\
−−→ {1}, {3}

or 1, 2 ∦ 2, 3
∩,∪
−−→ {2}, {4}, respectively. Thus, regardless to the behavior of the second player, the

family R becomes laminar to the second step, since singletons are laminar to any other subset and
can be excluded. Therefore, Lemma 2 follows.

3. Proof of Theorem 2

For subsequent discussions we will need to introduce one more family of cyclic uncrossing games.
Each such a game has the form

CG(r, q) :

{

W = 1, r,

R = {1, 2, . . . , 1, q, 2, q + 1, . . . , 2, r − 1},

where 2 ≤ q ≤ r − 2 and the family I∗ satisfies the additional constraints

{1}, {2} ∈ I∗, {3}, . . . , {q}, {r} /∈ I∗. (3.1)

First, consider the special case, where q = r − 2.

Lemma 3. For an arbitrary r ≥ 4, in the game CG(r, r − 2), the first player has a winning

strategy within at most r − 3 steps.

P r o o f can be obtained by induction on r. In the base case r = 4, the game CG(4, 2) allows
a single step winning strategy of the first player. To prove the induction step, assume that in
CG(r− 1, r− 3) there exists a winning strategy of the first player within r− 4 steps and show that
the claim holds for the game CG(r, r − 2).

At the first step of this game, the first player performs the uncrossing operation

1, r − 2 ∦ 2, r − 1
\,\
−−→ {1}, {r − 1},

which is admissible since {r} does not belong to the cross-closed family I∗. By construction,
the second player has two options, to return to R either 1, r − 2 or 2, r − 1. In the first case, R
becomes laminar and the first player wins immediately. Otherwise, the family R takes the form
{1, 2, . . . 1, r − 3, 2, r − 1}. Here elements r−2 and r−1 no longer separated. After the contraction,
we obtain the game

CG(r − 1, r − 3) :

{

W = 1, r − 1,

R = {1, 2, . . . , 1, r − 3, 2, r − 2}.

Therefore, in the initial game CG(r, r − 2) the first player has a winning strategy of at most

1 + (r − 4) = r − 3

steps. Lemma 3 is proved. �

Lemma 4. For the game CG(r, q) first player has a strategy that allows him to win in at most

2r − q − 5 steps.
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P r o o f. The main idea of our proof consists of the following steps:

(i) we introduce an auxiliary edge-weighted digraph H with the node set

G = {CG(r, q) : 2 ≤ q ≤ r − 2}.

An ordered pair
(

CG(r1, q1), CG(r2, q2)
)

is an arc of the graph H, if the first player has a
strategy to reduce CG(r1, q1) to the game CG(r2, q2) without visiting any other element of G.
Each arc is weighted with the appropriate number of steps. It is convenient to illustrate this
graph on the integer lattice (Fig. 2).

(ii) we define linear order on the node set of the graph H as follows:

CG(r2, q2) ≺ CG(r1, q1) ⇐⇒ (r2 < r1) ∨ ((r1 = r2) ∧ (q2 > q1)); (3.2)

(iii) we show that this order is consistent to the digraph H in the following way: for an arbitrary
arc

(

CG(r1, q1), CG(r2, q2)
)

it holds; CG(r2, q2) ≺ CG(r1, q1).
(iv) finally, we complete the proof by induction regarding the order (3.2).
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Figure 2. An auxiliary digraph H . Outgoing arcs and neighbors of CG(8, 5) are highlighted.
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Discuss the aforementioned points in detail.
Point (i). To define arc set of the graph H, fix an arbitrary node CG(r, q) ∈ G and show that

its outgoing neighbors (i.e. the nodes CG(r′, q′) ∈ G, for which (CG(r, q), CG(r′, q′)) is an arc) are
as follows:

N(CG(r, q)) =
{

CG(r − 1, q − 1), CG(r, q + 1), CG(r − 1, q),

CG(r − 2, q − 1), . . . , CG(r − q + 1, 2)
} (3.3)

In addition, we calculate a weight assigned to each arc connecting CG(r, q) with its neigh-
bors (Fig. 2).

By construction, for the family I∗ specifying the game CG(r, q) there exist two options, I∗ can
contain or not the singleton {q + 1}.

Case {q+1} ∈ I∗. At the first step of the game, the first player makes the uncrossing operation

1, q ∦ 2, q + 1
\,\
−−→ {1}, {q + 1}.

If the second player returns 1, q, i. e.

R = {1, 2, 1, q, 2, q + 2, . . . , 2, r − 1}

and then, after the contacting {q + 1, q + 2} the initial game is transformed to

CG(r − 1, q) :

{

W = 1, r − 1,

R = {1, 2, . . . , 1, q, 2, q + 1, . . . , 2, r − 2},

since this actions obviously keep all the additional constraints

{1}, {2} ∈ I∗ and {3}, . . . , {q}, {r − 1} /∈ I∗ (3.4)

for the transformed family I∗. Thus, CG(r − 1, q) is an outgoing neighbor of the node CG(r, q).

Else, if the second player returns 2, q + 1, performing the similar contraction of {q, q + 1}
transforms CG(r, q) to the game

CG(r − 1, q − 1) :

{

W = 1, r − 1,

R = {1, 2, 1, q − 1, 2, q, . . . , 2, r − 2},

since constraints (3.4) are also remain valid.

In the case {q + 1} /∈ I∗, we have 1, q + 1, 2, q ∈ I∗, since the crossing intervals 1, q and 2, q + 1
belong to the cross-closed family I∗. By carrying out the similar argument for 1, q − 1 ∦ 2, q,
1, q − 2 ∦ 2, q − 1 and so on and relying on equation (3.1), we obtain that in this case all the
intervals 2, 3, 2, 4, . . . , 2, q belong to I∗.

At the first step of the game CG(r, q), the first player performs the uncrossing operation

1, 2 ∦ 2, q + 1
∩,∪
−−→ {2}, {1, q + 1}.

Next, if the second player returns 1, 2 the game CG(r, q) is transformed to

CG(r, q + 1) :

{

W = 1, r,

R = {1, 2, . . . , 1, q, 1, q + 1, 2, q + 2, . . . , 2, r − 1},

since constraints (3.1) together with {q + 1} /∈ I∗ hold.
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Otherwise, if the second player returns 2, q + 1 we have

R = {1, 3, . . . , 1, q + 1, 2, q + 1, . . . , 2, r − 1}.

By contracting the interval {2, 3} to the singleton {2}, we got a new game G′ specified by the novel
ground set W = 1, r − 1, subset family

R′ = {1, 2, . . . , 1, q, 2, q, . . . , 2, r − 2}

and the transformed cross-closed family I∗ containing the singleton {2}. Observe that, although
the constraints (3.4) are still satisfied, game G′ does not belong to the game family G.

Further, if q = 2, then the game G′ coincides with CG(r− 1, 2). Otherwise, we need to proceed
with the playing.

At the second step, the first player makes the uncrossing operation

1, 2 ∦ 2, q
∩,∪
−−→ {2}, 1, q.

If the second player returns 1, 2, the family I∗ is kept unchanged and we obtain the game

CG(r − 1, q) :

{

W = 1, r − 1,

R = {1, 2, . . . , 1, q, 2, q + 1, . . . , 2, r − 2}

since constraints (3.4) remain valid.
Else, if the second player returns 2, q and transforms the family R to the form

{1, 3, . . . , 1, q, 2, q, 2, q + 1, . . . , 2, r − 2}, as in the previous step, by contracting interval {2, 3}
to the singleton {2}, we obtain again the game

G′ :

{

W = 1, r − 2,

R′ = {1, 2, . . . , 1, q − 1, 2, q − 1, . . . , 2, r − 3}

satisfying the conditions {1}, {2} ∈ I∗ and {3}, . . . , {q − 1}, {r − 2} /∈ I∗ for the transformed
family I∗. Again, if q = 3, game G′ is equivalent to CG(r− 2, q− 1). Else, we proceed with playing
the game G′.

Finally, to the beginning of the (q − 1)-th step, the game G′ will have the form

G′ :

{

W = 1, r − q + 2,

R′ = {1, 2, 1, 3, 2, 3, . . . , 2, r − q + 1},

where {1}, {2} ∈ I∗ and {3}, {r − q + 2} /∈ I∗. The first player makes the uncrossing operation

1, 2 ∦ 2, 3
∩,∪
−−→ {2}, 1, 3.

If the second player returns 1, 2, then we obtain the game CG(r − q + 2, 3). Otherwise, if he
(she) returns 2, 3 the game G′ is transformed to the game CG(r−q+1, 2). Indeed, after the second
player move, we have R = {1, 3, 2, 3, . . . , 2, r − q + 1}, which can be easily transformed to the form
R = {1, 2, 2, 4, . . . , 2, r − q + 2} by contracting of the interval 2, 3.

To this end, we proved that the set of outgoing neighbors of the node CG(r, q) coincides with
the set N(CG(r, q)) defined by formula (3.3). As it follows from the argument above, weights of
the appropriate arcs are as follows:

w
(

CG(r, q), CG(r, q + 1)
)

= w
(

CG(r, q), CG(r − 1, q − 1)
)

= 1,

w
(

CG(r, q), CG(r − 1, q)
)

= 2,

w
(

CG(r, q), CG(r − 2, q − 1)
)

= 3,

. . . ,

w
(

CG(r, q), CG(r − q + 1, 2)
)

= q

(3.5)
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Figure 3. Illustration of the argument of point (i).

(see, also Fig. 3). Generally speaking, there are two parallel arcs connecting the nodes CG(r, q)
and CG(r − 1, q), but, to obtain the upper bound we take the longest one. Point (i) is proved.

In turn, point (iii) immediately follows from (3.2) and (3.3).

To complete the proof, we use CG(4, 2) as a base case of the induction. Since this game is a
special case of the game CG(4), the first player can win in a single step, by Lemma 2.

Induction step follows from the point (iii) and the following simple observation. Indeed, de-
note by L(r, q) the number of steps in the first player winning strategy in the game CG(r, q).
By construction,

L(r, q) = max
{

w
(

CG(r, q), CG(r′, q′)
)

+ L(r′, q′) : CG(r′, q′) ∈ N(CG(r, q))
}

.

By induction hypothesis, L(r′, q′) = 2r′ − q′ − 5. Taking into account (3.5), it is easy to verify that
L(r, q) ≤ 2r − q − 5. Lemma 4 is proved. �

Let’s get back to the game CG(r).

Lemma 5. For an arbitrary r ≥ 4, in the game CG(r) first player has a winning strategy of

at most 2r − 7 steps.

P r o o f. By construction, the game CG(r) has the following form:

CG(r) :

{

W = 1, r,

R = {1, 2, 2, 3, . . . , 2, r − 1}

There exist two possible options.

Option 1. {1}, {3} ∈ I∗ or {2}, {r} ∈ I∗.



144 Ksenia Rizhenko

CG(r)

0

CG(r, 2) type

win
1

CG(r − 1)

1

CG(r − 1, 2) type

win

. . .

CG(4)

Figure 4. Scheme of possible transitions for game CG(r).

It is easy to show that these conditions are symmetrical and can be considered in a similar way.
Consider the case {1}, {3} ∈ I∗.

At the first step, the first player makes the following uncrossing operation:

1, 2 ∦ 2, 3
\,\
−−→ {1}, {3}.

If the second player returns 2, 3, then the first player wins immediately. Else, if he (she) returns
1, 2, we obtain the game

CG(r − 1) :

{

W = 1, r − 1,

R = {1, 2, 2, 3, . . . , 2, r − 2}

after the contacting of {3, 4}.

Option 2. In this case we necessarily have {1}, {2} ∈ I∗, 1, 3 ∈ I∗, and {3}, {r} /∈ I∗. These
conditions leads that the considered game is CG(r, 2).

Complete the proof by induction by r (see Fig. 4). The base case is CG(4), for which the claim
follows from Lemma 2. Let Lemma 5 is valid for r − 1. Prove it for r. Indeed, as it follows from
the above argument, the game CG(r) is either coincides with CG(r, 2) or can be reduced in one
step to the game CG(r − 1). In the first case, the first player has a winning strategy of at most
2r − 2− 5 = 2r − 7, by Lemma 4, while in the second case such a strategy has at most

1 + 2(r − 1)− 7 ≤ 2r − 7

steps. Lemma 5 follows. �
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To the moment, we proved all the necessary technical lemmas and can return to proof of
Theorem 2.

P r o o f of Theorem 2. The proposed strategy of the first player for the general uncrossing
game specified by the triple (V,F, I), where |V | = n, |F| = m and I is given implicitly by the
membership oracle, consists of following two stages.

First, we solve the cyclic games CG(r, 2) and CG(r) for r ∈ 4, n. As it follows from Lemma 4
and Lemma 5, all these games can be solved by at most O(n2) steps.

At the second stage, we employ Lemma 1, who guarantees that the first player has a strategy
to reduce the initial game to O(mn) games of form CG(r) (for some r ∈ 4, n). For each such cyclic
game, we take the solution (laminar family) obtained at the first stage (in constant time).

Thus, the overall strategy has B = O(mn+ n2) steps. It is clear that

B =

{

O(mn), if m ≥ n,

O(n2), otherwise.

Theorem 2 is proved. �

It should be noticed that our strategy of the first player differs from the framework proposed
in [2], where cyclic games obtained in Lemma 1 were solved ad hoc. By following to this framework
and applying our Lemma 4 and 5, we can obtain another winning strategy of the first player, but
with worse running time upper bound O(n2m).

4. Conclusion

In this paper we proposed a more efficient first player winning strategy for the well-known
uncrossing game. Proof of our result is entirely constructive and provides an algorithm to make
laminar a given set family efficiently. Therefore, incorporating our result to approximation algo-
rithms for combinatorial optimization problems relying on laminar set families can increase their
performance.

In Lemma 5, for some special type of cyclic uncrossing games, we showed that the first player
can win within at most linear number of steps. It seems interesting to generalize this result to more
wide class of uncrossing games.
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