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Abstract: The paper considers the problem of finding the reachable set for a linear system with determinate
and stochastic Liu’s uncertainties. As Liu’s uncertainties, we use uniformly distributed ordinary uncertain values
defined in some uncertain space and independent of one another. This fact means that the state vector of the
system becomes infinite-dimensional. As determinate uncertainties, we consider feedback controls and unknown
initial states. Besides, there is a constraint in the form of a sum of uncertain expectations. The initial estimation
problem reduces to a determinate multi-step problem for matrices with a fixed constraint at the right end of the
trajectory. This reduction requires some information on Liu’s theory. We give necessary and sufficient conditions
for the finiteness of a target functional in the obtained determinate problem. We provide a numerical example
of a two-dimensional two-step system.
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1. Introduction

Baoding Liu’s uncertainty theory has been widely developed in the last decade [9, 12, 13]. Ele-
ments of the theory are used in control theory, mathematical programming, financial mathematics,
robotics, and other areas of applied mathematics. Liu notes in his book that “uncertainty theory
has become a branch of axiomatic mathematics for modeling belief degrees.”

It should be noted that Liu’s theory is only one of the possible approaches to describing and
accounting for uncertainty. Such approaches include various versions of probability theory, Zadeh’s
fuzzy set theory, interval analysis, and chaos theory [1, 6, 8, 11]. Possibility theory is actively
developed as an alternative to probability in [10]. The theory of guaranteed estimation [7], based
on a set-theoretic description of uncertainty, has also gained wide popularity. Of course, Liu’s
theory overlaps with the theories mentioned above.

This paper presents an extended version of the lecture given at the XIV All-Russian Conference
on Control Problems [2]. We consider the estimation problem for discrete time Liu’s processes
described by the linear equations

xk = (Akxk−1 +Bkvk)(1 + λkξk), xk ∈ R
n, k ∈ 1 : m, (1.1)

where |λk| ≤ 1 are real numbers; vk = Kkxk−1 are uncertain feedback controls; ξk are ordinary
uncertain values uniformly distributed on [−1, 1], independent one of another, and defined on the
N-space (Ω,F , N), where F is a σ-algebra, and N is the uncertainty measure (function) of the set.
The following constraints are also given:

J(x0,K) =
∑

k∈1:m

E
(
v′kRkvk + x′k−1Qkxk−1

)
≤ 1, x0 ∈ X0, (1.2)
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where E is the uncertain expectation, vk = Kkxk−1, K = K1:m, Rk and Qk are symmetric matrices
of appropriate dimension, andX0 is a convex compact set in R

n. One can see that the state vector xk
depends on elementary event ω ∈ Ω because of uncertain values ξk(ω). So, estimating the reachable
set at the terminal time m becomes the problem of infinite dimension for system (1.1) under
constraints (1.2). Note that an estimation problem for a determinate system with an uncertain
matrix was studied in [5]. First of all, let us recall some facts on Liu’s theory.

2. Necessary facts on Liu’s theory

Given a measurable space (Ω,F), where Ω is an arbitrary set and F is a σ-algebra of subsets
of Ω, the uncertain measure N is defined on F to satisfy the following axioms:

1. Normality: N(Ω) = 1.

2. Duality: N(A) +N(Ac) = 1 for any event A ∈ F , where Ac = Ω \ A.
3. Subadditivity: for any sequence Ai ∈ F ,

N
( ⋃

i∈N

Ai

)

≤
∑

i∈N

N(Ai).

Any uncertain measure satisfies the relations 0 ≤ N(A) ≤ 1 and N(A) ≤ N(B) for all A,B ∈ F
such that A ⊂ B. But it is not a measure in ordinary sense [4]. Of course, any probability measure P
satisfies axioms 1–3 and is, therefore, an uncertainty measure. Every measurable function ξ : Ω → R

is called an uncertain variable. The independence of the family ξt, t ∈ T , of uncertain variables is
defined as follows:

N
( ⋂

t∈T

ξ−1
t (Bt)

)

=
∧

t∈T

N
(
ξ−1
t (Bt)

)

for any Bt ∈ B, where B is the Borelian σ-algebra on R and
∧

t∈T at = inft∈T at. The independence
of uncertain variables was generalized to an arbitrary set T of indexes t in [3].

If ξ is an uncertain variable, then its distribution function is defined by the formula Fξ(x) =
N(ξ ≤ x) for all x ∈ R, which corresponds to the similar notion in probability theory. It is proved
(see [3, 9]) that a nondecreasing function F : R → [0, 1] is a distribution function for some uncertain
variable if and only if the following properties hold:

(1) F 6≡ 1;

(2) F 6≡ 0;

(3) the condition F (x) = 1 for all x > x∗ must imply that F (x∗) = 1.

For any distribution function satisfying 1–3, one can build a so-called ordinary uncertain vari-
able ξ(x) = x on the measure space (R,B) in the following way. First, consider a family of sets
L consisting of semi-infinite intervals (−∞, x], their complements (x,∞), the empty set, and the
entire space R. One can define the uncertainty measure N on L as follows: N((−∞, x]) = F (x),
N((x,∞)) = 1−F (x), and F (∅) = 0. After that, for B ∈ B, the uncertainty measure Nξ is defined
on B by the formula

Nξ(B) =







inf
B⊂

⋃

i∈N

Ai

∑

i∈N
N(Ai) if inf

B⊂
⋃

i∈N

Ai

∑

i∈N
N(Ai) < 0.5,

1− inf
Bc⊂

⋃

i∈N

Ai

∑

i∈N

N(Ai) if inf
Bc⊂

⋃

i∈N

Ai

∑

i∈N

N(Ai) < 0.5,

0.5 in other cases.

(2.3)
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Here, the infimums are taken over all sequences Ai ∈ L that cover the corresponding sets. We see
that Nξ = N on L.

An ordinary uncertain variable ξ uniformly distributed on [−1, 1] has its distribution function

Fξ(x) =







0, if x ≤ −1;

(x+ 1)/2, if x ∈ (−1, 1);

1, if x ≥ 1.

Such uncertain variables belong to the class of regular uncertain variables, for which there is an
interval (a, b) where Fξ(x) is continuous and strictly increasing. Besides, limx→a Fξ(x) = 0 and
limx→b Fξ(x) = 1. Here, it is possible that a = −∞ and b = ∞.

The mathematical expectation of an uncertain variable ξ is defined by the formula

Eξ =

∫
∞

0
N(ξ ≥ x)dx−

∫ 0

−∞

N(ξ ≤ x)dx

if at least one of the integrals is finite. Since the function 1 − Fξ(x) differs from the function
N(ξ ≥ x) only at countably many points, we have

Eξ =

∫
∞

0
(1− Fξ(x))dx−

∫ 0

−∞

Fξ(x)dx =

∫
∞

0
xdFξ(x) +

∫ 0

−∞

xdFξ(x)

using integration by parts. For variables with regular distribution functions, we have

∫
∞

0
xdFξ(x) =

∫ 1

Fξ(0)
F−1
ξ (α)dα,

∫ 0

−∞

xdFξ(x) =

∫ Fξ(0)

0
F−1
ξ (α)dα. (2.4)

From (2.3), we obtain Eξ = 0 for the ordinary uniformly distributed uncertain variable ξ. A func-
tion f : R

n → R is called strictly increasing if f(u1, . . . , un) ≥ f(v1, . . . , vn) for ui ≥ vi and
f(u1, . . . , un) > f(v1, . . . , vn) for ui > vi.

The following theorem is often used in applications.

Theorem 1 [12, Theorem 2.6]. Let [u; v] = [u1; . . . ;um; v1; . . . ; vn] be independent uncertain
variables with regular distribution functions [Fu;Fv ] = [Fu1

; . . . ;Fum ;Fv1 ; . . . ;Fvn ], respectively. If
the function f(u, v) is strictly increasing in u and strictly decreasing in v, then the uncertain variable
ξ = f(u, v) has the inverse distribution function

F−1
ξ (a) = f

(
F−1
u (a), F−1

v (1− a)
)
, a ∈ (0, 1),

F−1
u = [F−1

u1
; . . . ;F−1

um
], F−1

v = [F−1
v1 ; . . . ;F−1

vn ].
(2.5)

Corollary 1. For any uncertain variable ξ, E(aξ) = aEξ for all a ∈ R. For any regular
and independent uncertain variables ξ and η with finite mathematical expectations, E(aξ + bη) =
aEξ + bEη for all a, b ∈ R.

Indeed,

N(aξ ≤ x) = N(ξ ≤ x/a) = Fξ(x/a), a > 0,

and

E(aξ) =

∫
∞

−∞

xdFξ(x/a) = aEξ.
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If a < 0, then N(aξ ≤ x) = N(ξ ≥ x/a) = 1− Fξ(x/a) N -almost everywhere and

E(aξ) =

∫
∞

−∞

xd(1− Fξ(x/a)) = aEξ.

Moreover,
F−1
ξ+η = F−1

ξ + F−1
η , F−1

−ξ (a) = F−1
ξ (1− a)

if ξ and η are regular. Unfortunately, the linear property of mathematical expectation is not valid
for arbitrary uncertain variables.

It must be kept in mind that uncertain variables ξ and η with identical distribution functions
Fξ ≡ Fη ≡ F may have different distributions Nξ and Nη on R. For example, the ordinary
uncertain variable ξ uniformly distributed on [−1, 1] has the uncertainty measure Nξ(ξ = x) =
F (x)

∧
(1 − F (x)) 6= 0 for all x ∈ (−1, 1) by (2.3). On the other hand, the uniformly distributed

uncertain variable η with probability Nη((a, b]) = (b − a)/2, a, b ∈ [−1, 1], has Nη(η = x) = 0 for
all x ∈ (−1, 1).

In contrast to probability theory, the distribution Nξ of an ordinary uncertain variable cannot
be analytically expressed in terms of the distribution function Fξ(x) = N(ξ ≤ x). Additionally, a
function identically equal to a constant on R cannot be a distribution function in probability theory
but in Liu’s theory (see [3]). The results of the following lemma were proved in [13, Example 1.6]
but for completeness, we present a proof, which is, moreover, simpler.

Lemma 1. For an ordinary uncertain variable ξ uniformly distributed on [−1, 1], E(ξ2+ bξ) =
1/3 for all |b| ≥ 2 and Eξ2 = 7/24.

P r o o f. Let b ≥ 2. The function f(x) = x2 + bx strictly increases on [−1, 1] from 1 − b to
1 + b. If η = f(ξ), then F−1

η = f(F−1
ξ ) by (2.4). Therefore,

Ef(ξ) =

∫ 1

0
F−1
η (a)da =

∫ 1

0

(
(2a− 1)2 + b(2a− 1)

)
da = (2a− 1)3/6 + b(2a− 1)2/4

∣
∣1

0
= 1/3

by (2.4). If b ≤ −2, then the function f(x) = x2 + bx strictly decreases on [−1, 1] from 1 − b to
1 + b. We have η = f(ξ) and F−1

η (a) = f(F−1
ξ (1− a)) by Theorem 1. So, Eη = 1/3 as well.

Now let η = ξ2. Compute Fη via (2.3). Define x1 = −√
x and x2 =

√
x. We have

Fη(x) = Nξ(x1 ≤ ξ ≤ x2).

Since [x1, x2] = (−∞, x2]
⋂
[x1,∞), we have

Fξ(x2)
∧

(1− Fξ(x1)) = (x2 + 1)/2 ≥ 1/2.

For the complement of [x1, x2], we obtain [x1, x2]
c = (−∞, x1)

⋃
(x2,∞) and

Fξ(x1) + 1− Fξ(x2) = 1−
√
x.

Therefore,

Fη(x) =







0 if x < 0,

0.5 if
√
x ∈ [0, 1/2],

√
x if

√
x ∈ (1/2, 1],

1 if
√
x > 1.

Finally,

Eη =

∫ 1

0
xdFη(x) =

∫ 1

1/4

√
xdx/2 = 7/24.
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�

In what follows, we need the distribution function of η = (1+ λξ)2, |λ| ≤ 1. It can be found by
Theorem 1.10 from [13]. Define

x1 = −(
√
x+ 1)/λ, x2 = (

√
x− 1)/λ.

Using the theorem, we obtain

Fη(x) =







0 if x < (1− λ)2,

Fξ(x2)
∧

(1− Fξ(x1)) if Fξ(x2)
∧

(1− Fξ(x1)) < 0.5,

Fξ(x2)− Fξ(x1) if Fξ(x2)− Fξ(x1) > 0.5,

0.5 otherwise,

for 0 < λ ≤ 1. By the formula for Fξ(x), we have

Fη(x) =







0 if x < (1− |λ|)2,
(
√
x− 1)/(2|λ|) + 1/2 if x ∈ [(1− |λ|)2, (1 + |λ|)2],

1, if x > (1 + |λ|)2.
(2.6)

If −1 ≤ λ < 0, then x2 < x1 and η = (|λ|ξ − 1)2. We come to formula (2.6) as well. The inverse
function for the regular uncertain variable η has the form

F−1
η (x) = (|λ|(2x − 1) + 1)2, x ∈ [0, 1].

3. Statement of the problem

Definition 1. A set Xm is called the reachable set for system (1.1) under constraints (1.2) if
it consists of uncertain variables η ∈ R

n for which there exists a family (x0,K) satisfying (1.2) and
such that xm = η with equations (1.1) satisfied. The equalities are considered N -almost everywhere.

The problem is to find the reachable set Xm. Let

Vm(η) = min
{
J(x0,K) : xm = η, x0 ∈ X0, Kk ∈ R

q×n
}
. (3.1)

Then

Xm = {η : Vm(η) ≤ 1}.

Note that if 0 ∈ X0, then always 0 ∈ Xm. Further, we exclude the uncertain variables η for which
Vm(η) = −∞. This can be so because the matrices Rk and Qk in (1.2) can be nonpositive definite.

4. Main results

First, we transform the computation of Vm(η) into an equivalent deterministic optimal control
problem.

Let Xk = E(xkx
′

k). Since xk ∈ R
n, the matrix xkx

′

k belongs to R
n×n and its elements are

uncertain variables. Therefore, Xk is a symmetric matrix for all k ∈ 1 : m.
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Theorem 2. Let Ξ = Eηη′. If the minimization problem (3.1) has a finite value Vm(η), then
it is equivalent to the following deterministic optimal control problem:

Vm(Ξ) = min
{
J(x0,K) : Xm = Ξ, x0 ∈ X0, Kk ∈ R

q×n
}
,

J(x0,K) =
∑

k∈1:m

tr
((
K ′

kRkKk +Qk

)
Xk−1

)
, (4.1)

where tr means the trace of a matrix, under the recurrent relations

Xk = νkUk(Kk,Xk−1), X0 = x0x
′

0, νk = µk/µk−1,

Uk(Kk,X) = (Ak +BkKk)X(Ak +BkKk)
′,

µk =

∫ 1

0
(|λk|(2x− 1) + 1)2 . . . (|λ1|(2x− 1) + 1)2 dx.

(4.2)

The functionals J(x0,K) and J(x0,K) coincide and therefore Vm(Ξ) = Vm(η).

P r o o f. Using equality (1.1), we have

xkx
′

k = Uk

(
Kk, xk−1x

′

k−1

)
(1 + λkξk)

2

= (Ak +BkKk) . . . (A1 +B1K1)x0x
′

0(A1 +B1K1)
′ . . . (Ak +BkKk)

′

×(1 + λkξk)
2 . . . (1 + λ1ξ1)

2, and, therefore,

Xk = (Ak +BkKk) . . . (A1 +B1K1)x0x
′

0(A1 +B1K1)
′ . . . (Ak +BkKk)

′

×E((1 + λkξk)
2 . . . (1 + λ1ξ1)

2).

(4.3)

By Theorem 1 and formulas (2.4), (2.5), and (2.6), we see that

E((1 + λkξk)
2 . . . (1 + λ1ξ1)

2) = µk

in (4.2). Thus, X0 = x0x
′

0 and Xk = νkUk(Kk,Xk−1) for k ∈ 1 : m. The coincidence of J(x0,K)
and J(x0,K) follows from (4.3) and the equalities

J(x0,K) =
∑

k∈1:m

Ex′k−1

(
K ′

kRkKk +Qk

)
xk−1

=
∑

k∈1:m

E tr
((
K ′

kRkKk +Qk

)
xk−1x

′

k−1

)
=

∑

k∈1:m

tr
((
K ′

kRkKk +Qk

)
Xk−1

)
= J(x0,K).

�

Remark 1. We can compute E(1+λξ)2 = 1+λ2E(2/λξ+ξ2) = 1+λ2/3 by Lemma 1. Suppose
that |λk| ≡ 1. Then µk = 4k

∫ 1
0 x2kdx = 4k/(2k + 1). Therefore, limk→∞ νk = 4 in this case.

Remark 2. Note that the properties Rk ≥ 0 and Qk ≥ 0 were not used in the proof of
Theorem 2. If these properties hold, then we have Vm(η) = Vm(Xm) ≥ 0.

Corollary 2. The reachable set is Xm = {η : Vm(Eηη′) ≤ 1}.

Problem (4.1) is determinate. So, we seek the minimum of the smooth functional J(x0,K)
in (4.1) under the equality conditions (4.2) with given Xm = Ξ. According to the Kuhn–Tucker
theorem, we form the Lagrange function

L = J(x0,K) +
∑

k∈1:m

tr (Hk(νkUk(Kk,Xk−1)−Xk)) + tr(Γ(Xm − Ξ)), X0 = x0x
′

0,
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where the symmetric matrices H1:m and Γ are the Lagrange multipliers. Let us write necessary
optimality conditions (x0 is fixed):

∂L
∂Kk

= 2RkKkXk−1 + 2νkB
′

kHkAkXk−1 + 2νkB
′

kHkBkKkXk−1 = 0, k ∈ 1 : m,

∂L
∂Xk−1

= K ′

kRkKk + νk(Ak +BkKk)
′Hk(Ak +BkKk)−Hk−1 +Qk = 0, k ∈ 2 : m,

∂L
∂Xm

= −Hm + Γ = 0.

(4.4)

Here, we use the formula of differentiation

∂ tr (A′B)

∂A
= B

for matrices of appropriate dimensions. Define

Lk = Rk + νkB
′

kHkBk, Mk = νkB
′

kHkAk. (4.5)

To resolve equalities equalities (4.4), we set

Kk = −L+
k Mk + Yk − L+

k LkYk.

This expression satisfies the equation LkKk = −Mk if and only if LkL
+
k Mk = Mk. Here A+ is the

pseudoinverse matrix and Yk ∈ R
q×n is an arbitrary matrix. Substituting the expression for Kk

into the second row of (4.4), we obtain the equation

Hk−1 = νkA
′

kHkAk −M ′

kL
+
k Mk +Qk, Hm = Γ, k ∈ 1 : m. (4.6)

This equation determines H0 for k = 1. We come to the conclusion.

Theorem 3. Let the value Vm(η) = Vm(Ξ) be finite and be reached at the pair (x0,K
0). Then

there exist symmetric matrices H1:m and Γ satisfying equations (4.6) with the matrix coefficients
given in (4.5) and

LkL
+
k Mk = Mk and Lk ≥ 0. (4.7)

Moreover, optimal matrices have the form

K0
k = −L+

k Mk + Yk − L+
k LkYk,

where the matrices Yk ∈ R
q×n are arbitrary. The optimal value is

Vm(η) = Vm(Ξ) = min
{
−tr(ΓΞ) + x′0H0x0 : x0 ∈ X0, Xm = Ξ

}
.

P r o o f. From (4.1), we know that

J(x0,K) =
∑

k∈1:m

tr
((
K ′

kRkKk +Qk

)
Xk−1

)

=
∑

k∈1:m

{
tr
((
K ′

kRkKk +Qk

)
Xk−1

)
+ tr (HkXk)− tr (Hk−1Xk−1)

}
− tr(ΓΞ) + x′0H0x0.

(4.8)
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Substituting Xk and Hk−1 from (4.2) and (4.6) into (4.8), we can write the cost functional as
follows:

J(x0,K) =
∑

k∈1:m

tr
((
K ′

kLkKk +M ′

kKk +K ′

kMk +M ′

kL
+
k Mk

)
Xk−1

)
− tr(ΓΞ) + x′0H0x0

=
∑

k∈1:m

tr
((

Kk + L+
k Mk

)
′
Lk

(
Kk + L+

k Mk

)
Xk−1

)

− tr(ΓΞ) + x′0H0x0.
(4.9)

Here Lk ≥ 0. If Lp 6≥ 0 for some p ∈ 1 : m, then there exist a vector h and a number α < 0 such
that Lph = αh. Let N = [h, . . . , h

︸ ︷︷ ︸

n vectors

]. Then LpN = αN . If

Kk = −L+
k Mk, k 6= p, Kp = −L+

p Mp + δN/
√

|α|,

then
lim
δ→∞

J(x0,K) = −∞.

�

These relations are sufficient for optimality.

Theorem 4. Equations (4.6) along with relations (4.2), (4.5), (4.7) are sufficient for finiteness
of values Vm(Ξ) = Vm(η) > −∞, and optimal values K0

k with corresponding minimum are specified
in Theorem 3. The system contains 2mn(n + 1)/2 equations with the same quantity of variables,
namely, mn(n + 1)/2 variables H0:m−1, n(n + 1)/2 variables Γ, and (m − 1)n(n + 1)/2 variables
X1:m−1.

Indeed, if relations (4.2), (4.5), (4.7) are valid, then

J(x0,K) ≥ −tr(ΓΞ) + x′0H0x0

according to (4.9).

Corollary 3. Consider the matrix

H0 =
∏

k∈0:m−1

(Am−k +Bm−kK
0
m−k).

It follows from (4.3) that Xm = µmH0X0H
′

0. Therefore, tr(ΓXm) = µmx′0H
′

0ΓH0x0. The reachable
set is

Xm = {η : min{x′0(H0 − µmH′

0ΓH0)x0 : x0 ∈ X0, µmH0X0H
′

0 = Ξ = Eηη′} ≤ 1}.

The minimization is provided here under inequalities (4.7).

5. Example

Consider the 2-dimensional system (1.1) in which

n = m = 2, q = 1, λ1 = 0.2, λ2 = −0.1,

A1 =

(
1 0
0 0

)

, A2 =

(
1 0
1 0

)

, B1 =

(
1
0

)

, B2 =

(
1
1

)

.
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Under constraints (1.2), we have

R1 = p, R2 = 4, Q1 = p

(
1 0
0 1

)

, Q2 = p

(
1 0
0 0

)

,

where p ≥ −1 is a numeric parameter. There are 12 variables and the same number of equations.
Let

X1 = (x1ij), Hk = (hkij), Γ = (γij), x0 = (x0i), Kk = (kki), Mk = (mki).

For k = 1, we obtain

h011 = pν1h111/(p+ ν1h111) + p, h012 = 0, h022 = p, k11 = −ν1h111/(p + ν1h111), k12 = 0,

where
ν1 = µ1 = 1 + λ2

1/3 = 76/75 = 1.0133.

From equation (4.2), we have x111 = ν1(1 + k11)
2x201and x1i2 = 0. For k = 2, we have ξij =

ν2(1 + k21)
2x111 for any i and j. Let ξij = ξ and k22 = 0. On the other hand, since H2 = Γ, we

have k21 = −ν2γ/(4 + ν2γ), where γ = γ11 + γ22 + 2γ12. Finally, from equation (4.6) for k = 2, we
obtain

h111 = ν2γ + p− ν22γ
2/(4 + ν2γ), h112 = h122 = 0.

Here

µ2 =

∫ 1

0
(|λ1|(2x− 1) + 1)2(|λ2|(2x − 1) + 1)2dx = 1.0434, ν2 = µ2/µ1 = 1.0297.

These equations imply that an uncertain variable η = (η1, η2) belongs to X2 if and only if Eη21 =
Eη22 = Eη1η2. A family of uncertain variables of the form η1 = η2 = α, where α is some uncertain
variable, satisfies these conditions.

Consider the value ξ = Fx201, where F = ν1ν2(1 + k11)
2(1 + k21)

2. Let x0 be fixed and
f(γ) = h011/F − γ. Then

V2(η) = V2(Ξ) = ξmin {f(γ) : Li ≥ 0}+ px202

for p > 0, where L2 = 4 + ν2γ is the increasing linear function of γ. We see that the expression
f(γ) = h011/F − γ in the braces depends only on γ, but the entire problem is to minimize the
function V2(Ξ) of two variables γ and x02 under nonlinear constraints and the equality condition
ξ = Fx201. Let x02 = 1 and |x01| ≤ 1 for simplicity. We set p = 0.5, for example. Computing the
minimum of the smooth convex function f(γ), we have min f(γ) = 0.4316, and it is achieved at
γ0 = −0.4316. All the constraints are satisfied. So, V2(Ξ) = 0.4316ξ+0.5 ≤ 1 or ξ ∈ [0, 1.1584]. As
matrix Γ, it is possible to take any symmetric matrix with γ0 = −0.4316. If p ↓ 0, then ξ ∈ [0, b(p)],
where b(p) → ∞. If −1 ≤ p < 0, then the value Vm(η) = Vm(Ξ) ≤ 0 is also finite for all ξ ≥ 0.
This means that ξ ∈ [0,∞).

6. Conclusion

• The discrete-time estimation problem has been considered for one class of uncertain Liu
processes whose equations include unknown deterministic parameters subject to a priori constraints.

• The initial value problem is reduced to a deterministic multi-step problem for matrices with
a fixed constraint at the right end of the trajectory.

• Necessary and sufficient conditions for the finiteness of the objective functional in the deter-
ministic problem are obtained.
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• A numerical solution of the initial value problem is considered with an example.
• In the general case, since the expectation has no, generally speaking, property of additivity,

the reduction of problems with uncertain Liu disturbances to determinate ones is difficult. The
received determinate problem is also unusual because it deals with implicit matrix equations.

• The ordinary uniformly distributed uncertain variables in this paper can be easily replaced
by any regular and independent Liu variables.

• A similar problem for continuous systems will be considered in the future.
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