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Abstract: In this paper, we establish a result on the Hyers–Ulam–Rassias stability of the Euler–Lagrange
functional equation. The work presented here is in the framework of modular spaces. We obtain our results
by applying a fixed point theorem. Moreover, we do not use the ∆α-condition of modular spaces in the proofs
of our theorems, which introduces additional complications in establishing stability. We also provide some
corollaries and an illustrative example. Apart from its main objective of obtaining a stability result, the present
paper also demonstrates how fixed point methods are applicable in modular spaces.
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1. Introduction

In this paper, our main result concerns the stability property of a type of Euler–Lagrange
functional equation. This type of equations was introduced by Rassias [18] in 1992. The name
is derived from the Euler–Lagrange identity [19] and has several variants [12, 20, 26, 30], but our
study is conducted within the framework of modular spaces.

The kind of stability investigated for the functional equation considered here is well-known as
Hyers–Ulam–Rassias stability, which is very general and applicable to diverse branches of math-
ematics [4, 7, 25]. The concept originates from a mathematical question posed by Ulam [27] in
1940, along with its extensions and partial answers provided by Hyers [6] and Rassias [21]. In the
most general terms, following Gruber [5], Hyers–Ulam–Rassias stability holds for a mathematical
equation if, whenever it approximately satisfies an equation from a certain class, it admits an exact
solution close to that approximate one. It involves questions such as whether a given approximately
linear equation has an exact linear approximation.
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Our framework of study is modular spaces [13, 16, 17, 28]. A modular space is a linear space
equipped with a modular function possessing specific properties. Such a function introduces an ad-
ditional structure on the linear space, thereby broadening its scope. Several studies from different
domains of functional analysis have been successfully extended to this structure. References [9, 14]
provide the technical details of the modular spaces mentioned above. Functional equations of
various kinds have been considered in the investigation of Hyers–Ulam–Rassias stability proper-
ties [8, 23, 29]. We study the stability of such equations in modular spaces without assuming the
∆α-condition, using a fixed point technique. It may be noted that fixed point methods have already
been applied to Hyers–Ulam–Rassias stability problems in [2, 24]. Here, we apply this approach to
our problems in modular spaces.

2. Preliminaries

If X and Y are assumed to be a real vector space and a Banach space, respectively, then a
mapping f : X → Y satisfies the functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y), ∀x, y ∈ X, (2.1)

which is known as the quadratic functional equation.
Any solution of (2.1) is called a quadratic mapping. In particular, if X = Y = R, the quadratic

form f(x) = ax2 is a solution of (2.1).
We consider here a type of Euler–Lagrange functional equation known as the general k-quadratic

Euler–Lagrange functional equation:

q(kx + y) + q(kx− y) = 2[q(x + y) + q(x− y)] + 2(k2 − 2)q(x) − 2q(y), ∀x, y ∈ X, (2.2)

where k ∈ N, and q : X → Y is a function from a real vector space X to a Banach space Y .
Here, we recall certain definitions, theorems, and results regarding modular spaces.

Definition 1 [16, 17]. A generalized functional m : X → [0,∞] is called a modular if, for any

two elements x, y ∈ X, where X is considered as a vector space over a field K (in our case R or C),
the following conditions hold :

(i) m(x) = 0 if and only if x = 0,
(ii) m(c x) = m(x) for every scalar c with |c| = 1,
(iii) m(x′) ≤ m(x) +m(y) whenever x′ is a convex combination of x and y,

(iii)’ if c1 , c2 ≥ 0 and c1 + c2 = 1, then m(c1 x + c2 y) ≤ c1m(x) + c2m(y), and in this case,
m is said to be a convex modular.

Definition 2. The modular space, denoted by Xm, is defined as

Xm :=
{

x ∈ X : m(αx) → 0 as α→ 0
}

.

Example 1. If (X, ‖·‖) is a normed space, then ‖·‖ is a convex modular on X, but the converse
is not necessarily true [15].

Definition 3. If m is a convex modular, then the norm known as the Luxemburg norm is

defined as

‖x‖m := inf
{

α > 0 : m
(x

α

)

≤ 1
}

.
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Definition 4. Consider Xm as a modular space and let {xn} be a sequence in Xm. Then,

(i) the sequence {xn} is called m-convergent to a point x ∈ Xm, denoted xn
m
−→ x, if

m(xn − x) → 0 as n→ ∞ [10];
(ii) {xn} is called an m-Cauchy sequence if for any ǫ > 0, m(xn − xp) < ǫ for sufficiently large

n, p ∈ N [10];
(iii) a subset K(⊂ Xm) is called m-complete if every m-Cauchy sequence in Xm is m-convergent

to an element in K [10].

Note that m-convergence does not imply m-Cauchy since m does not satisfy the triangle inequality.

In fact, one can show that this implication holds if and only if m satisfies the ∆2-condition.

(iv) The modular m is said to have the Fatou property if m(x) ≤ limn→∞ inf m(xn) whenever the

sequence {xn} is m-convergent to x [10];
(v) a modular m is said to satisfy the ∆α-condition if there exists κ ≥ 0 such that

m (αx) ≤ κm (x) for all x ∈ Xm and α ∈ N, α ≥ 2 [3].

Observations.

(i) m(x) ≤ δ m ((1/δ)x) for all x ∈ Xm, if m is a convex modular and 0 < δ ≤ 1;
(ii) in general, the modular m does not behave like a norm or a metric since it is not subaddi-

tive [16]; however, every norm on X is a modular on X.

Definition 5. Consider a modular space Xm, a nonempty subset C ⊂ Xm, and a mapping

D : C → C. The orbit of D at a point z ∈ Xm is the set

O(z) :=
{

z, Dz, D2z, . . .
}

.

The quantity

δm(z) := sup{m (x− y) : x, y ∈ O(z)}

is called the orbit diameter of D at z. In particular, if δm(z) < ∞, then D has a bounded orbit

at z.

Definition 6. Let the modular m be defined on the vector space X, and let C ⊂ Xm be

nonempty. A function D : C → C is called m-Lipschitzian if there exists a constant L ≥ 0
such that

m (D(x) −D(y)) ≤ Lm (x− y), ∀x, y ∈ C.

If L < 1, then D is called an m-contraction.

Definition 7 [11]. Let C be a subset of a modular function space Xm. A function D : C → C
is called an m-strict contraction if there exists a constant λ < 1 such that

m (D(x) −D(y)) ≤ λm (x− y), ∀x, y ∈ C.

Theorem 1 [1] (The Banach Contraction Mapping Principle in Modular Spaces).
Assume that Xm is m-complete. Let C be a nonempty m-closed subset of Xm, and let T : C → C
be an m-contraction mapping. Then T has a fixed point z if and only if T has an m-bounded orbit.

Moreover, if
m(x− z) <∞,

then {T n(x)} m-converges to z for any x ∈ C.

If x1 and x2 are two fixed points of T such that m (x1−x2) <∞, then from the above theorem
we conclude that x1 = x2. Furthermore, if C is m-bounded, then T has a unique fixed point in C.
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3. The generalized Hyers–Ulam stability of (2.2) in modular spaces

Lemma 1. Assume that X is a linear space, and let Xm be an m-complete convex modular

space. Consider the set

M = {h : X → Xm : h(0) = 0}

and define a mapping m̃ on M by

m̃(h) = inf{c > 0 : m(h(x)) ≤ cψ(x, x)}, h ∈ M,

where ψ : X2 → [0,∞). Then Mm̃ is a complete convex modular space.

P r o o f. It is easy to prove that m̃ is a convex modular on M [22].
For completeness, let {hn} be an m̃-Cauchy sequence in Mm̃, and let ǫ > 0 be given. Then

there exists k ∈ N such that m̃(hn − hp) ≤ ǫ for all p, n ≥ k. Therefore,

m (hn(x) − hp(x)) ≤ ǫψ(x, x) for all x ∈ X and p, n ≥ k. (3.1)

This shows that {hn(x)} is an m-Cauchy sequence in Xm for each fixed x ∈ Xm. Since Xm is
m-complete, it follows that {hn(x)} is m-convergent in Xm for each fixed x ∈ X. Thus, we can
define h : X → Xm by

h(x) = lim
n→∞

hn(x), for any x ∈ X.

Clearly, h ∈ Mm̃. Since m has the Fatou property, taking the limit as m→ ∞ in (3.1), we obtain

m (hn(x) − h(x)) ≤ ǫψ(x, x) for all x ∈ X and n ≥ k.

Thus, m̃(hn −h) ≤ ǫ for all n ≥ k, and therefore {hn} is an m̃-convergent sequence in Mm̃. Hence,
Mm̃ is complete. �

Theorem 2. Let X be a linear space, and Xm be anm-complete convex modular space. Suppose

that q : X → Xm is a function with q(0) = 0 satisfying the inequality

m (q(kx + y) + q(kx− y) − 2[q(x + y) + q(x− y)] − 2(k2 − 2)q(x) + 2q(y) ) ≤ ψ(x, y) (3.2)

for all x, y ∈ X and some k ∈ N, where ψ : X2 → [0,∞) is a function satisfying

ψ (kx, ky) ≤ k2Lψ(x, y)

for all x, y ∈ X and some L with 0 < L < 1. Then there exists a unique mapping P : X → Xm

satisfying (2.2) such that

m (2P (x) − q(x)) ≤
1

2k2(1 − L)
ψ(x, 0). (3.3)

P r o o f. Putting y = 0 in (3.2), we obtain

m (2q(kx) − 2k2q(x)) ≤ ψ(x, 0) (3.4)

or equivalently,

m (q(kx) − k2q(x)) ≤
1

2
ψ(x, 0). (3.5)
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Now,

m
(

q(x) −
q(kx)

k2

)

= m
( 1

2k2
(2q(k x) − 2k2q(x))

)

≤
1

2k2
ψ(x, 0).

Consider the set
M = {h : X → Xm : h(0) = 0}

and define a function m̃ on M by

m̃(h) = inf{c > 0 : m(h(x)) ≤ cψ(x, x)}, h ∈ M.

By Lemma 1, Mm̃ is a complete convex modular space.
Also, consider the operator S : Mm̃ → Mm̃ defined by

Sh(x) =
1

k2
h(kx) ∀h ∈ Mm̃, x ∈ X and k ∈ N.

Thus,

Sn h(x) =
1

k2n
h(kn x) ∀h ∈ Mm̃, x ∈ X and k ∈ N.

Let us show that S is an m̃-strictly contractive mapping. Let h, z ∈ Mm̃, and suppose there
exists a constant c ∈ [0,∞) such that

m̃(h− z) ≤ c.

Then,

m(h(x) − z(x)) ≤ cψ(x, x) ∀x ∈ X.

Now,

m(Sh(x) − Sz(x)) = m
( 1

k2
h(kx) −

1

k2
z(kx)

)

≤
1

k2
m(h(kx) − z(kx))

≤
1

k2
cψ(kx, kx) ≤ cLψ(x, x) ∀x ∈ X.

Therefore,
m̃(Sh− Sz) ≤ cL.

Hence,
m̃(Sh− Sz) ≤ Lm̃(h− z) for all g, h ∈ Mm̃.

That is, S is an m̃-strict contraction.
Now, we prove

δm̃ = sup {m̃(Sn (f) − Sm (f)) : m,n ∈ N} <∞.

From (3.5), we have

m
(

q(k2x) − k2q(kx)
)

≤
1

2
ψ(kx, 0). (3.6)

Thus,

m

(

q(k2x)

(k2)2
− q(x)

)

= m

(

1

(k2)2
(q(k2x) − k2q(kx)) +

1

k2
(q(kx) − k2q(x))

)

≤
1

(k2)2
m(q(k2x) − k2q(kx)) +

1

k2
m(q(kx) − k2q(x))

≤
1

2(k2)2
ψ(kx, 0) +

1

2k2
ψ(x, 0)

(3.5), (3.6)
=

1

2

1
∑

i=0

1

k2(i+1)
ψ(kix, 0) for all x ∈ X.
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Since

1

2

n−1
∑

i=0

1

k2(i+1)
≤ 1,

for all n ≥ 0, we have

m
(q(knx)

k2n
− q(x)

)

= m

[ n−1
∑

i=0

(q(ki+1 x)

k2(i+1)
−
q(kix)

k2i

)

]

=

n−1
∑

i=0

1

2 k2(i+1)
m

(

2 q(ki+1 x) − 2 k2 q(kix)
)

=

n−1
∑

i=0

1

2 k2(i+1)
ψ(ki x, 0)

(3.4)

≤
ψ(x, 0)

2k2

n−1
∑

i=0

Li ≤
ψ(x, 0)

2k2(1 − L)
since 0 < L < 1.

Hence,

m
(q(knx)

k2n
− q(x)

)

≤
ψ(x, 0)

2k2(1 − L)
since 0 < L < 1 (3.7)

∀x ∈ X and n ∈ N. Thus, from (3.7) it follows that for any n, p ∈ N,

m
(q(knx)

2k2n
−
q(kpx)

2k2p

)

≤
1

2
m
(q(knx)

k2n
− q(x)

)

+
1

2
m
(q(kpx)

k2p
− q(x)

)

≤
1

2
·

ψ(x, 0)

2k2(1 − L)
+

1

2
·

ψ(x, 0)

2k2(1 − L)
≤

ψ(x, 0)

2k2(1 − L)
for all x ∈ X [by (3.7)].

This implies that

m̃
(

Sn
(1

2
q
)

− Sp
(1

2
q
))

≤
1

2K2(1 − L)
<∞

for all p, n ∈ N.

This shows that S has a bounded orbit at 1/2q. Then,

m
(

Sn(
1

2
q(x)) −

1

2
q(x)

)

= m
(q(knx)

2k2n
−

1

2
q(x)

)

≤
1

2
m
(q(knx)

k2n
− q(x)

)

≤
1

2
·

ψ(x, 0)

2k2(1 − L)
< finite ∀x ∈ X and ∀k ∈ N [by (3.7)].

Thus, by applying Theorem 1,

(i) S has a fixed point P ∈ M at 1/2q, that is, SP = P , or equivalently,

P (x) =
1

k2
P (kx) for all x ∈ X;

(ii) the sequence {Sn (1/2q)} m̃-converges to P .

Therefore,

lim
n→∞

m
(( 1

2k2n
q(knx)

)

− P (x)
)

= 0.

Thus, we can define

P (x) :=
1

2
lim
n→∞

q(knx)

k2n
.
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Again, replacing x and y by knx and kny, respectively, in (3.2), we obtain

m
( 1

2k2n
q(kn(kx+ y)) + q(kn(kx− y)) − 2[q(kn(x+ y)) + q(kn(x− y))]

−2(k2 − 2)q(knx) + 2q(kny)
)

≤
1

2k2n
ψ(knx, kny) ≤

1

2
Lnψ(x, y) ∀x ∈ X, n ∈ N.

Now, taking the limit as n→ ∞ and applying the Fatou property, where 0 < L < 1, we get

P (kx+ y) + P (kx− y) = 2[P (x + y) + P (x− y)] + 2(k2 − 2)P (x) − 2P (y).

Thus, P is a k-quadratic Euler–Lagrange mapping.
Also, since m has the Fatou property, it follows from (3.7) that

m(2P (x) − q(x)) ≤
1

2k2(1 − L)
ψ(x, 0) ∀x ∈ X.

To prove uniqueness, let P ′ : X → Xm be another k-quadratic Euler–Lagrange functional mapping
satisfying inequality (3.3). Then we have

m
(

P (x) − P ′(x)
)

≤
1

2
m (2P (x) − q(x)) +

1

2
m

(

2P ′(x) − q(x)
)

≤
ψ(x, 0)

2k2(1 − L)
<∞

for all x ∈ X and k ∈ N.
Again, let P and P ′ be two fixed points of S such that

m
(

P (x)) − P ′(x)
)

<∞.

Then, by Theorem 1, we conclude that P (x) = P ′(x) for all x ∈ X.
This completes the proof of the theorem. �

Corollary 1. Let X be a normed linear space, and let Xm be an m-complete convex modular

space. Suppose θ ≥ 0. Let q : X → Xm be a function with q(0) = 0 satisfying

m
(

q(kx+ y) + q(kx− y) − 2[q(x + y) + q(x− y)] − 2(k2 − 2)q(x) + 2q(y)
)

≤ θ
(

‖x‖p + ‖y‖p
)

for all x, y ∈ X, k ∈ N, and 0 ≤ p < 1. Then there exists a unique k-quadratic mapping

P : X → Xm such that

m
(

2P (x) − q(x)
)

≤
θ

k2(2 − 2p)
‖x‖p

for all x ∈ X.

P r o o f. Define
ψ(x, y) = θ

(

‖x‖p + ‖y‖p
)

for all x, y ∈ X and take L = 2p−1. Then the proof of the result follows similarly to Theorem 2. �

Corollary 2. Let ǫ ≥ 0, X be a normed linear space, and Xm be an m-complete convex modular

spaces. Suppose a function q : X → Xm with q(0) = 0 satisfies

m(q(kx+ y) + q(kx− y) − 2[q(x + y) + q(x− y)] − 2(k2 − 2)q(x) + 2q(y) ) ≤ ǫ

for all x, y ∈ X and k ∈ N. Then there exists a unique k-quadratic mapping P : X → Xm such

that

m(2P (x) − q(x)) ≤
ǫ

k2

for all x ∈ X.
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P r o o f. Define ψ(x, y) = ǫ for all x, y ∈ X and take L = 1/2. Then the proof of the result
follows similarly to Theorem 2. �

Corollary 3. Let θ, ǫ ≥ 0, X be a normed linear space, and let Y be a Banach space. Suppose

that a mapping q : X → Y with q(0) = 0 satisfies the inequality

∥

∥q(kx+ y) + q(kx− y) − 2[q(x + y) + q(x− y)] − 2(k2 − 2)q(x) + 2q(y)
∥

∥ ≤ ǫ+ θ(‖x‖ + ‖y‖)

for all x, y ∈ X and k ∈ N. Then there exists a unique k-quadratic mapping P : X → Y such that

‖(2P (x) − q(x))‖ ≤
ǫ

k2(2 − 2p)
+

θ

k2(2 − 2p)
‖x‖p

for all x ∈ X and 0 ≤ p < 1.

P r o o f. Since every normed linear space is a modular space, we define m(x) = ‖x‖ and

ψ(x, y) = ǫ+ θ(‖x‖p + ‖y‖p)

for all x, y ∈ X and take L = 2p−1. Then the proof follows from Theorem 2. �

Example 2. Let (X, ‖ · ‖) be a commutative Banach algebra, and let Xm be an m-complete
convex modular space, where m(x) = ‖x‖.

Define q : X → Xm by

q(x) = ax2 +A‖x‖x0

for all x ∈ X, where a, A ∈ R
+ and x0 is a unit vector in X. Then

m
(

q(kx+ y) + q(kx− y) − 2[q(x + y) + q(x− y)] − 2(k2 − 2)q(x) + 2q(y)
)

≤ 2A
[

(k2 − k − 2)‖x‖ + 4‖y‖
]

for all x, y ∈ X.

Define

ψ(x, y) = 2A[(k2 − k − 2)‖x‖ + 4‖y‖]

for all x, y ∈ X and take L = 1/2. Thus, all the conditions of Theorem 2 are satisfied. Then there
exists a unique k-quadratic Euler–Lagrange function P : X → Xm such that

m(2P (x) − q(x) ≤
2A(k2 − k − 2)

k2
‖x‖ ∀ x ∈ X.

Remark 1. Many of the Hyers–Ulam–Rassias stability results rely on the ∆α-condition stated in
part (v) of Definition 4 for various values of α ≥ 2. Our theorems are established without assuming
this condition on the modular space. Omitting this condition makes the proof more involved.
Furthermore, we have employed fixed point methods within the framework of modular spaces.
Such an approach to stability problems in modular spaces has previously appeared in [22]. This
methodology can also be adapted to other functional equations, potentially serving as a foundation
for future research.
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